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Measuring Program Comprehension: A
Large-Scale Field Study with Professionals

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, Shanping Li

Abstract—During software development and maintenance, developers spend many time on program comprehension is one of the
most important activities during the whole life cycle of software development and maintenance. Previous studies show that program
comprehension takes up as much as half of a developer’s time. However, most of these studies are performed in a controlled setting, or
with a small number of participants. Moreover, most prior studies investigate the program comprehension activities only within the
IDEs. However, developers’ program comprehension activities go well beyond their IDE interactions. Developers all too often produce,
consume, and communicate information across multiple applications, e.g., IDEs and web browsers.
In this paper, we extend our our ActivitySpace framework to collect and analyze Human-Computer Interaction (HCI) data across many
applications (not just the IDEs). We follow Minelli et al. to assign developers’ activities into four categories: navigation, editing,
comprehension, and other. We measure comprehension time by calculating the time developers spend in program comprehension,
e.g. inspecting console and breakpoint in IDE, reading and understanding tutorials in web browsers, etc. Then we perform a more
realistic investigation of program comprehension activities. We perform a field study of program comprehension in practice with a total
of 7 real projects, 79 professional developers, and amounting to 3,244 working hours. Our study leverages interaction data that is
collected across many applications (not just the IDEs) by the developers. Our study finds that on average, developers spend up to
∼58% of their time on program comprehension, and they frequently use web browsers and document editors to perform program
comprehension activities. We also investigate the impact of programming language, developers’ experience, and project phase to the
time spent on program comprehension, e.g., we find senior developers spend significantly less percentages of time on program
comprehension than junior developers.

Index Terms—Program Comprehension, Field Study, Inference Model
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1 INTRODUCTION

Program comprehension (aka., program understanding, or
source code comprehension) is a process where developers
are actively acquiring knowledge about a software system
by exploring and searching software artifacts, and reading
relevant source code and/or documentation. Such acquired
knowledge helps support other software engineering activi-
ties, such as bug fixing, enhancement, reuse, and documen-
tation.

Previous studies show that program comprehension is
an essential and time-consuming activity in software main-
tenance [12], [13], [21], [28], [53]. Zelkowitz et al. claim that
program comprehension takes more than half of the time
spent on software maintenance [53], which is also confirmed
by Fjeldstad and Hamlen [13], and Corbi [12]. Ko et al.
perform controlled experiments with two debugging tasks
and 10 participants, and they find understanding a program
occupies around 35% of the total time [21]. Minelli et al.
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study the IDE interactions of 18 developers over 700 work-
ing hours, and they find that on average developers spend
70% of their time performing program comprehension [28].
However, only seven of the participants are professionals
and more than 85% of the studied data is based on the activ-
ities of 3 participants who are PhD students. Moreover, the
study only investigates program comprehension activities
in the IDE.

The current empirical understanding the role of pro-
gram comprehension for software development has many
shortcomings, most notable are: (1) several conclusions are
based on anecdotal evidences [12], [13], [53], instead of
empirical experiments on developers; (2) most prior studies
are performed under controlled experiment with artificial
setting, which make it difficult to generalize the results,
e.g., [21]; (3) most prior studies involve a small number of
participants (e.g., Ko et al.’s study has 10 participants [21],
while Minelli et al.’s study has 18 participants [28]), and
most of the participants are not professionals; (4) most prior
studies only investigate program comprehension activities
that occur within IDEs [28], [21]. Our previous study shows
that developers use six or more different desktop and web
applications in their daily development work [5]. For ex-
ample, to understand a piece of source code, a developer
may not only navigate and search for the related source
code inside the IDE, but also search online resources, such
as Stack Overflow.

In this paper, we perform a large-scale field study to
investigate program comprehension activities in a realistic
setting, while taking a more holistic approach that examines
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activities across many applications that are used by developers
instead of only using interaction data that is gathered from
IDEs. Similar to past studies [12], [13], [21], [28], [53], our
study tries to validate a well-known assumption (i.e., pro-
gram comprehension takes much of developer time) that
drives the line of work on improving program comprehen-
sion. It is important to evaluate the assumption, because
there is a large body of research on improving program
comprehension.

Comparing to previous studies, our study need to col-
lect a large number of developers’ activity data from their
real working environment data. So, we decide to use the
methodology of Minelli et al. [28] since their approach
can automatically infer developers’ activities from devel-
opers’ low-level interaction data. Different from the mod-
els of programming understanding used in other studies,
e.g. [12], [48], our programming understanding model sep-
arates “navigation” from other activities. This is because
navigation is one important activity in software develop-
ment. Ko et al. found that developer usually find the target
information by navigating “information scents” [21], e.g.
hyperlinks on a web page or graphic icons. Their study leads
to a model of program understanding grounded in theories
of information forging. But current IDEs cannot support
navigation very well. For example, if developers lost track of
relevant code in Eclipse as they switch to other tasks, they
are forced to find it again. Identifying navigation actions
from developers activities can give more insight of devel-
opers behavior. For example, we can get the process knowl-
edge from developer development. We not only can know
“what a developer code, but also know “how a developer
code. However, identifying navigation from other activities,
e.g. coding and debugging, is very difficult, since developers
interleave navigation and other activities. Furthermore, the
data used in some studies has some limitations in real
working environment and require manual analysis. For
example, Ko et al. use screen capturing technique to record
developers working process in which they perform two
debugging tasks and three enhancement tasks [21]. Then
they transcribe the collected screen-capturing videos into
different developer actions (e.g. reading code, editing code,
etc.). Their results are based on subjective interpretations
of the developers behaviors, but its unrealistic to analyze
our collected data manually in our study because we collect
developers activity data for a period of time (two weeks
in this paper). Furthermore, the storage of screen-capturing
videos is very large. Hence, we extend the work of Minelli
et al. [28] to investigate programming comprehension.

Following by Minelli et al. [28], we categorize devel-
opers’ activities into four categories: navigation, editing,
comprehension, and other1. Navigation time refers to the
time developers spend in browsing through software [41],
including navigation using IDEs or web browsers, clicking
a link, and searching for particular program entities or code,
etc. Editing time refers to the time developers spend on
editing source code. Comprehension time refers to the time
developers spend in program comprehension, including in-
spection activities such as inspecting console and breakpoint
in IDE, reading through a piece of code (identified by e.g.,

1For more details, please refer to Section 2.2.

detecting mouse drifting actions), etc. Notice that sometimes
developers perform navigation activities to assist program
comprehension activities, however, the navigation activities
only involve some quick keyboard/mouse activities, such
as roll the mouse, or click a link, and in that short time, de-
velopers actually do not perform comprehension activities.

Our study is conducted within two large IT companies
named Insigma Global Service2 and Hengtian3 in China,
which have more than 500 and 2,000 employees, respective-
ly. In total, we investigated activities of 79 developers across
7 projects over 3,244 working hours in total. Moreover,
we interviewed 10 of these developers. Our study finds
that: (1) on average, program comprehension takes up to
∼58% of the developers’ time, (2) besides IDEs, developers
frequently use web browsers and document editors during
their program comprehension activities, (3) developers in
Java projects spend a significantly higher percentage of time
on program comprehension than developers in C# projects,
(4) senior developers spend significantly less percentages
of time on program comprehension than junior developers,
and (5) developers working on projects that are in the
maintenance phase spend significantly higher percentages
of time on program comprehension than those working on
projects that are in the development phase.

The following is our list of contributions:

1) We perform a large-scale field study on the role
of program comprehension for software develop-
ment, which include a total of 79 developers across
7 projects over 3,244 working hours. To our best
knowledge, it is the largest field study on program
comprehension until now. Different from previous
studies, our study works on a realistic setting.

2) Our findings are consistent with the previous stud-
ies, and we also investigate the impact of program-
ming language, developers experience, and project
phase to the time spent on program comprehension.

Paper organization. The remainder of this paper is orga-
nized as follows. Section 2 briefly reviews related work.
Section 3 elaborates the field study setup and data collection.
Section 4 presents our field study results. Section 5 discusses
the threats to validity.Section 6 draws the conclusions and
mentions future work.

2 RELATED WORK

Measuring Program Comprehension. There have been
a number of studies on measuring program comprehen-
sion [12], [13], [21], [28], [53]. Zelkowitz et al. [53], Fjeldstad
and Hamlen [13], and Corbi [12] all report that program
comprehension activities take more than half of the time
spent on software maintenance based on anecdotal evi-
dences. Ko et al. perform controlled experiments with two
debugging tasks and 10 participants, and and they find
that program comprehension occupies around 35% of the
total development time [21]. Minelli et al. study the IDE
interactions of 18 participants over 700 working hours, and
they find developers spend 70% of their time performing

2http://www.insigmaservice.com/
3http://www.hengtiansoft.com/en
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program comprehension activities [28]. Most of the partici-
pants in Ko et al.’s and Minelli et al.’s studies are students
rather than professional developers. Their studies also only
analyze developer activities in the IDEs.

Extending these previous studies, in this paper, we in-
vestigated program comprehension activities performed by
79 professionals working on 7 industrial projects in a realistic
setting. We collected a large amount of interaction data
(a total of 3,244 working hours) by monitoring developer
activities across many applications that they used in their daily
work. We also conducted interviews to confirm and better
interpret our quantitative findings.

Field Study on the Role of Program Comprehension for
Software Development. Roehm et al. perform a field study
on the role of program comprehension for software devel-
opment with 28 developers to understand: (1) what strate-
gies developers follow to comprehend programs, (2) what
sources of information do developers use, (3) what informa-
tion is missing, and (4) which tools that developer use and
how do they use them [37]. Our field study is different and
complement Roehm et al.’s study in several aspects: First,
Roehm et al.’s study do not measure program comprehension
time which is the focus of this study. Second, Roehm et al.’s
study observes each participant for 45 minutes, while our
study observes each participant for two weeks. Third, Roehm
et al.’s study is relatively invasive to developer activities, with
each developer needing to comment on what they are doing
in a think-aloud fashion and several researchers observing
the developer. This procedure may make developers change
their behaviors substantially. Our study involves a less
invasive procedure. Fourth, we consider many different RQs
that Roehm et al.’s study does not consider. Only one of our
five RQs (i.e., RQ2: which applications developers use in
program comprehension activities) overlaps. Even with this
RQ, we consider a different angle by measuring the amount
of time that developers spend inside these applications. Our
paper also points to web browsers as useful comprehension
tools, which was not part of by Roehm et al.’s study.

In a later work, Maalej et al. further extended Roehm et
al.’s study to TOSEM by survey 1,477 respondents, and they
analyzed the importance of certain types of knowledge for
program comprehension, and the way developers typically
access and share the knowledge [26]. Different from Maalej
et al.’s study, our study did not involve the online survey,
and we plan to send out a survey to study practitioners
perception on program comprehension to better understand
the conclusion of our study in the future.

Identifying Factors Affecting Program Comprehension.
There have been a number of studies that investigate the
impact of different factors to program comprehension. Sieg-
mund et al. investigate relationships between programming
experience and program comprehension by performing
short controlled experiments (i.e., 40 minute experiments)
using students as participants [40]. Teasley report that nam-
ing style has impact on program comprehension [46]. Latoza
et al. identify working habit as a factor that impacts program
comprehension [23]. In our study (i.e., RQ4), similar to
Siegmund et al.’s work [40], we also investigate the impact
of programming experience on program comprehension.
However, different from their work, our study is performed

under a realistic setting by monitoring the activities of profes-
sional developers for two weeks. Also, different from the above
mentioned studies, we consider additional factors, such as
programming language (see RQ3) and project phase (see
RQ5).

3 FIELD STUDY SETUP

In this section, we present our field study setup which
includes three parts. We first present the criteria and details
of how the participants are selected. Next, we describe the
tool used to collect and organize developer interactions
across applications. Then, we present the details of our
qualitative interviews, which supplement our quantitative
findings. Finally, we present the five research questions
which would be investigated in our study.

3.1 Participant Selection
One aim of our study is to investigate how professionals
(not students) perform program comprehension activities
in an realistic setting. We thus select participants in two
IT companies in China, named Insigma Global Service,
and Hengtian. Insigma Global Service is an outsourcing
company which has more than 500 employees, and it mainly
does outsourcing projects for Chinese vendors (e.g., Chinese
commercial banks, Alibaba, and Baidu). Hengtian is also an
outsourcing company which has more than 2,000 employ-
ees, and it mainly does outsourcing projects for US and
European corporations (e.g., StateStreet Bank, Cisco, and
Reuters).

Notice that in these two companies, around 50% of the
employees are developers (i.e., around 1,250 developers).
Also, a number of projects (around 60%) need to be done
onsite (i.e., developers should work in the client’s company)
and many projects are constrained with strict security poli-
cies. Unfortunately, we cannot collect data from these onsite
and secure projects. After removing developers that work
on these projects, around 830 developers remain as possible
participants of our study. Our toolset for collecting develop-
er interactions works on the Windows operating system and
not all developers use Windows. Thus, we further remove
additional 205 candidate developers from our list of possible
participants. As a result, we have 625 developers left. These
developers are involved in 25 different projects. Next, we
select projects and developers from this pool of 25 projects
and 625 developers following these steps:

• To reduce bias due to the project size, the selected
projects should have different sizes.

• To reduce bias due to the programming languages
used, the selected projects should use different pro-
gramming languages. We choose projects which use
either Java or C# as their main programming lan-
guage. Java and C# are the two most popular pro-
gramming languages used inside these two compa-
nies. Eight projects use Python, Matlab, or C/C++
as their main languages, and thus we exclude them
from our list of projects.

• To reduce bias due to new or inactive projects, we
exclude 8 projects that are close to completion and 2
new projects.
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At the end, 7 projects remain, and there are a total of
410 developers work on the 7 projects. We send emails
to the developers inviting them to join our study. Eighty
three developers allow us to install our tool and collect their
interactions for two weeks (i.e. 10 working days in total,
excluding weekends). Among the 83 developers, 22% (18)
have more than 5 years of professional experience, 42% (35)
have 3 to 5 years of professional experience, and 36% (30)
have less than 3 years of professional experience.

For each developer, we compute his/her effective work-
ing hours across the two weeks. Effective working hours
refer to the time when a developer stays in front of the
computer, doing things which are related to the project. We
exclude the time the developer spends on personal activities
(e.g., eating lunch/dinner), or meetings. Figure 1 presents
the distribution of the effective working hours. The median
effective working hours recorded by our tool is 37.4 hours,
the minimum working hours is 1.4 hours, and the maximum
working hours is 96 hours. We found 4 participants worked
less than 5 hours during the two weeks, two of them were
project managers and they needed to attend many meetings
at that time, one of them moved to the client’s site to work,
and another needed to fly to another country to attend a
industrial conference. We removed the data collected from
these 4 participants to reduce the noise, and in total we
analyze the data from 79 participants. Also, we notice 9
participants worked for more than 80 hours during two
weeks. Among them, seven were from project A, since they
have a minor release at that time. Another two were from
project G, they told us that they are new to the project team,
thus they worked many hours per day to be familiar with
project.

Table 1 presents the statistics of the 7 projects4 that we
investigate in our study. The columns correspond to the
name of the projects (Project), the start time of the projects
(Start.), the number of the developers (# D.), the number of
developers who participate in our study (# S.), the number
of lines of code (LOC), the main programming language
(Pro.), the size of the projects (Size) (L=large, M=medium,
and S=small), and the project phase (P.) (M=Maintenance
and D=Development).

Among the seven projects, projects A, E, and G con-
tain more than 5M LOCs, and more than 50 developers,
considering the size of LOCs, number of developers, and
also developer input and the two companies definition,
in this study, we consider these 3 projects as the large-
size projects. Also, projects B, C, and F contain 1M to 3M
LOCs, and 12 - 45 developers, we label them as medium-
size projects. Moreover, project D only has 0.3M LOCs, and
10 developers, and we label it as a small-size project. We
also ask developers to categorize each project into either
maintenance or development phase depending on whether
the corresponding software product has been released or
not. Among the 7 projects, three are large-sized projects
(A, E, and G), three are medium-sized projects (B, C, and
F), and one is a small-sized project (D). Four projects use
Java (A, C, D, and F), and three use C# (B, E, and G) as
the main programming language. Four projects are in the

4Due to the security polices in these two companies, we anonymize
the project name.

TABLE 1: Statistics of the studied projects.

Project Start. # D. # S. LOC Pro. Size Phase
A 2010.10 118 18 10M Java L M
B 2011.08 12 4 2M C# M M
C 2013.07 30 5 1M Java M D
D 2014.12 10 4 0.3M Java S D
E 2012.04 80 17 5M C# L D
F 2015.04 45 10 3M Java M M
G 2014.08 115 21 11M C# L D

0 20 40 60 80
Effective Working Hours

100

Fig. 1: Distribution of effective working hours.

development phase (C, D, E, and G), and three projects are
in the maintenance phases (A, B, and F).

3.2 HCI Data Collection and Analysis
In this study, we extend our ActivitySpace framework [5], [6]
to collect and analyze Human-Computer Interaction (HCI)
data in developers’ daily work. Figure 2 shows the process
of data collection and analysis: First, we use ActivitySpace
framework to collect time-ordered events while a developer
is interacting with applications. Then we divide a sequence
of time-ordered events into some working sessions by iden-
tifying idle periods and divide a working session into some
spree by the reaction time. Next, we will classify these sprees
by the information provided by the collected events. Finally,
we compute the time of different activities.

3.2.1 Tracking Event
As the developer is interacting with an application, Activ-
itySpace generates time-ordered events (see Figure 3 for an
example). Each event has a time stamp down to millisecond
precision. Each event is composed of an event type, basic
window information collected using OS window APIs, and
focused UI information that the application exposes to the
operating system through accessibility APIs (for mouse click
event only). ActivitySpace monitors three types of mouse
events (including mouse move, mouse wheel, and mouse
click) and two types of keyboard events (including normal
keystrokes like alphabetic and numeric keys and shortcut
keystrokes like “Ctrl+F” (Search or Find) and “Ctrl+O”
(Eclipse shortcut for quick outline).

Basic window information includes the position of
mouse or cursor, the title and boundary of the focused
application window, the title of the root parent window of
the focused application window, and the process name of
the application. If the event type is mouse click, ActivitySpace
uses accessibility APIs to extract the following focused UI
information: UI Name, UI Type, UI Value and UI Boundary of
the focused UI component, and the UI Name and UI Type
of the root parent UI component. The accessibility informa-
tion is very helpful to infer the application context of the
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Fig. 2: The process of HCI data collection and analysis.

developer’s action. For example, if the developer selects an
item in “Project Explorer” of Eclipse or “Solution Explorer”
of Visual Studio, ActivitySpace will record both the selected
item and its root parent UI component (“Project Explorer”
or “Solution Explorer”). This contextual information allows
us to classify the event as a navigation event.

In Figure 3, the first three events occur in an Eclipse
application window, and the last two events occur in a
Firefox application window. Note that each event has its
own window information. However, due to space limita-
tion, we show only window title, window boundary, root
parent window title, and process name for one of the first
three events and one of the last two events. The focused
UI information collected for the two mouse click events
shows that the developer selects a file in “Project Explorer”
in Eclipse, and searches java calendar on Google in Firefox.

In this study, we configure ActivitySpace to monitor
applications that are commonly used in developers’ daily
work, including web browsers (e.g., Firefox, Chrome, In-
ternet Explorer), document editors (and/or readers) (e.g.,
Word, Excel, PowerPoint, Adobe Reader, Foxit Reader, Notepad,
Notepad++), and IDEs (e.g., Eclipse, Visual Studio). We have
validated the list of applications monitored with the devel-
opers and they confirm that these are the ones that they
typically use. We did not monitor command line tools since
we were informed that developers in the two companies
rarely use them when they worked in the Windows en-
vironment5. ActivitySpace generates a placeholder event of
“unknown” event type when a mouse or keyboard event
occurs in all other applications. We analyse the proportion
of time developers spend on such “unknown” applications,
and it is typically less than 2%.

5The developers also informed us that they would frequently use
command line when they worked in Linux environment, however our
current tool can only capture the interaction data in Windows.

3.2.2 Identifying Effective Working Sessions
Given a sequence of time-ordered events, ActivitySpace first
removes all the “unknown” events. That is, we do not
consider activities in unmonitored applications in the sub-
sequent analysis. Then, ActivitySpace identifies idle periods
during which no mouse or keyboard events occur. In this
study, we set the threshold of idle period at 1 hour. We have
checked with the developers who agree that if a developer
has no mouse or keyboard events in 1 hour, he/she has a
high probability to do some program comprehension unre-
lated activities, such as taking a lunch or joining a meeting.
Idle periods split a sequence of time-ordered events into
effective working sessions. For a developer, his effective
work hours is the sum of the time duration of all the
effective sessions.

3.2.3 EventAnalyzer
Given an effective working session, the event segmentation
component (EventSegmentator) of ActivitySpace first splits
the sequence of events into application-window segments
by Process Name of basic window information, for exam-
ple Eclipse or Firefox. Then, for each application-window
segment, EventSegmentator further splits the sequence of
events into view segments by Window Title of basic window
information or Parent UI Name or Parent UI Type of acces-
sibility information, for example, Project Explorer, Console
and Code Editor in Eclipse window, and Navigation Bar and
Web Page area in Firefox window.

Finally, for each view segment, EventSegmentator splits
the sequence of events into a sequence of sprees by the
reaction time (RT), which is defined as follow:
Definition 1 (Spree). A spree is a sequence of mouse/key-

board events in which the interval between each pair of
events is less than reaction time (RT).

The time interval between the two consecutive sprees
must be larger than the RT, while the time interval between
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Event Type Mouse Move Mouse Click Mouse Wheel Mouse Click KeyInput: “Ctrl+V” 

Cursor Position (28, 439) (143, 254) (193, 397) (595, 262) (595, 262) 

Window Title N/A N/A N/A N/A N/A 

Window Boundary (6, 105, 495, 1008) (6, 105, 495, 1008) (6, 105, 495, 1008) (0, 0, 1920, 1040) (0, 0, 1920, 1040) 
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- Eclipse 
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- Eclipse 
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UI Value  N/A  java calendar  

UI Boundary  (123, 249, 205, 267)  (136, 121, 706, 140)  

Parent UI Name  Project Explorer  java calendar - 
Google Search - 
Mozilla Firefox 

 

Parent UI Type  pane  window  

 

timeline

Fig. 3: An example of low level events.

the two consecutive events in a spree must be smaller
than or equal to the RT. The reaction time is the time that
elapses between the end of a physical action sequence (e.g.,
typing, moving the mouse, etc.) and the beginning of con-
crete mental processes (e.g., reflecting, planning, etc.), which
represent the basic moments of program understanding.
The RT is also known as “Psychological Refractory Period”,
which has been used in many psychology studies (e.g.,
personality, driving, and level of alcohol or caffeine). The
term “psychological refractory period” refers to the period
of time during which the response to a second stimulus is
significantly slowed because a first stimulus is still being
processed [33]. According to this theory, developers cannot
perform different activities (i.e., programming comprehen-
sion, navigation, editing) in the same time. So, we use
RT to split the event sequence into sprees. For example, a
developer is typing a piece of code in an editor. After some
typing, the developer pauses and thinks about the code he
just wrote and plans the next steps. Such pauses will split
the event sequence in a view segment into sprees. Note that
a spree might only contain a single action when an action
happens very slowly, for example, a slow nivation action (a
pause, a scroll or an open caller). In such cases, the intervals
among actions are usually larger than RT, which can be
considered as the moment of program comprehension. The
RT might vary from human factors (e.g. personality, age,
level of alcohol or caffeine, etc.) and the task at the hand.
Different settings of RT might generate different results, but
Minelli et al. [28] reported that the different RT values did
not affect their findings. So, in this study, we set RT at 1
second, following their RT setting. We also discuss the effect
of different RT values in section 5.1.

3.2.4 Classifying Sprees
Given a spree, the event labeling component EventLabeler of
ActivitySpace classifies the spree as navigation, comprehension
or editing. Our classification scheme follows Minelli et al.’s
work [28]. Minelli et al. assign inspection activities (e.g.
inspecting stacktrace in Eclipse Console) as comprehension
category, and Browsing (e.g. selecting a package, method,
or class in Project Explorer of Eclipse) and Searching (e.g.

Starting a search in a Finder UI) activities to navigation cat-
egory. Figure 4 presents the process of spree categorization
of EventLabeler.

First, EventLabeler checks the window context (Window
Title, Parent UI component, sub-window) which usually
reflect the developers’ activities directly to classify the spree
as navigation or comprehension. We identify the most com-
mon used UI components, sub-windows in our collected
data which are listed in upper part of Figure 4. For Eclipse
and Visual Studio which are used as main IDEs in our
study, if the developer is performing inspection activities (e.g.
inspecting Console in Eclipse window or Output in Visual
Studio window), the spree is classified as comprehension; if
the developer is performing browsing or searching activities
(e.g. using Project Explorer in Eclipse window or Solution
Explorer in Visual Studio window), the spree is classified
as navigation. For browser, if the spree is in Navigation Bar
or in a search engine’s web page, we regard this spree as
navigation. For all other applications, sprees in Search/Find
windows are classified as navigation.

If EventLabeler cannot determine the category of the spree
based on its window context, it will then try to label the
events in the spree in order to determine its category. The
lower part of Figure 4 presents how EventLabeler labels an
event. For mouse click event, EventLabeler classifies the event
as navigation or comprehension event based on the UI type of
the focused UI component where the mouse click occurs,
as summarized in part Navigation UI Type of Figure 4. UI
Type may indicate the type of activities developers perform,
for example, if the UI Type is tree item or scroll bar, the
developers usually perform Browsing activities, then Event-
Labeler classifies the event as navigation event. If the mouse
click event occurs in a non-navigation UI Type, the event
is classified as comprehension event. For shortcut key event,
EventLabeler labels the event according to its function. For
example, ”Ctrl+F” is classified as a navigation event, while
“F6” (step over in Eclipse) is classified as comprehension.
We identify the most common used shortcut keys in our
collected data, as summarized in part Navigation Shortcut
Key and Comprehension Shortcut Key of Figure 4. EventLabeler
labels normal keystroke events as editing.
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If all the events in the spree are mouse move and/or
mouse wheel events (aka. Mouse Drifting in Minelli et al.’s
work), EventLabeler classifies the spree as comprehension, for
example, the spree (3) in Figure 2 in which the developer
is browsing a web page using a mouse. If the number of
editing events are more than 50% of the sum of editing,
navigation and comprehension events, EventLabeler classi-
fies the spree as editing, for example, spree (2) in Fig 2.
Finally, if the number of navigation events is greater than
that of comprehension events, EventLabeler classifies the spree
as navigation, otherwise as comprehension. For example, spree
(1) in Fig 2 has two navigation events (Ctrl+O to show
quick outline and selecting another editor in the tab), but
no comprehension events. Thus, the spree is classified as
navigation.

3.2.5 Computing Activity Statistics
The comprehension time is the sum of the duration of all
the comprehension sprees and all the time intervals between
sprees that are longer than the RT (1 second in this study)
and shorter than a threshold (5 minutes in this study). Based
on our observation and interview, the time intervals longer
than 5 minutes usually represent the time period during
which the developers have a short break or chat with their
colleagues. We do not consider these time intervals as idle
period because the developer is still in a working mode on
the computer, unlike a long meeting or lunch break. The
navigation and editing time are the sum of the duration of all
the navigation and editing sprees respectively.

We aggregate the statistics of developers’ activities ac-
cording to different types of applications. In this study, we
classify the monitored applications into three types: IDEs (E-
clipse, Visual Studio), web browsers (e.g., Firefox, Chrome,
IE), and document editors (Word, Excel, PowerPoint, PDF
reader, Notepad, Notepad++, etc.).

We filter activities in web browsers that are unlikely
related to software development tasks (e.g. visiting news or
shopping websites) using the keywords in the title of web
pages visited (for example, “Sina”, one of the most popular
news websites in China, or “taobao”, the most popular
online shopping website in China). We observe the collected
data and identify a set of keywords to filter non-software-
development activities in web browsers. We use a long list
of filters that were empirically determined and fine tuned to
ignore websites that are unrelated to software development.
Table 2 shows some example keywords of our used website
filters. We divide the websites that are unrelated to soft-
ware development into seven categories: News, Sports, Social
Network, Shopping, Game, Video, Money. Noted that most of
example keywords in Table 2 are translated from Chinese.
This results in more accurate statistics of developers’ work.

To understand program comprehension across different
applications, ActivitySpace identifies all application switch-
ings by the difference between the process names of the
two consecutive events. Then ActivitySpace can find all con-
tinuous switching sequences, i.e. a sequence that contains
some kinds of switchings, such as IDE ⇒ Web Browser,
IDE ⇒ Web Browser ⇒ IDE, of length 2 to 4. For each
sequence, ActivitySpace counts instances of such switching
and computes the total time spent. The total time carefully
considers overlaps; for example, IDE ⇒ Web Browser ⇒

TABLE 2: Examples of Website Filters

Website Category Example Keywords
News Sina, NetEase, Sohu, Tencent
Sports NBA, Basketball, Football
Social Network weibo, weixin, QQ
Shopping Taobao, Tmall, Jingdong
Game Game, Dota, LOL
Video Iqiyi, Youku, AcFun, Bilibili
Money stock, real estate

TABLE 3: Percentage of time two developers spend on compre-
hension (Compre.), navigation, editing, and others as computed
by our data collection tool and manually labeled by developers.

Dev Tool Compre. Navigation Editing Other

Dev 1 Our 58.26% 18.38% 15.25% 8.15%
Manual 58.31% 18.41% 15.11% 8.17%

Dev 2 Our 62.38% 22.45% 13.88% 1.29%
Manual 62.30% 22.47% 13.71% 1.52%

IDE⇒Web Browser⇒ IDE has two instances of IDE⇒Web
Browser⇒ IDE, but the two instances are overlapping. This
overlapping part is only considered once in the computation
of total time.

3.2.6 Accuracy of Our Data Collection Tool
To investigate the accuracy of our data collection tool on
identifying program comprehension activities, we perform
a preliminary study on two developers. To do so, we install
our data collection tool and a video recording tool on these
two developers’ desktop. Next, we record 4 working hours
for each of these two developers by using both our data
collection tool and the video recording tool. Then, we invite
these two developers to join us to review the videos we
collected. We ask the developers to tell us what they did in
every 1 second, and categorize what they did into one of the
four activities (i.e., navigation, editing, comprehension, and
others). We also use our data collection tool to automatically
compute the time developers spend on these four activities.

Table 3 presents the percentage of time the two develop-
ers spend on comprehension, navigation, editing, and others
computed by our data collection tool and developer manual
labeling. We notice the difference between our data collec-
tion tool and manual labeling is relatively small (less than
0.23%), thus our proposed tool could achieve an acceptable
accuracy.

3.3 Interview
In addition to analyzing the collected data, we interview 10
out of the 79 participants, to confirm and better interpret
our findings. We perform the interviews at the end of the
monitoring process. Table 4 presents the working experi-
ence, programming languages, and project teams of the 10
interviewees. We select 5 Java developers and another 5 C#
developers. Notice these interviewees are selected based on
their professional experience and availability.

The interviews are semi-structured and are divided into
three parts. In the first part, we ask each developer some
demographic questions, such as the working experience of
the interviewees. In the second part, we ask some open-
ended questions, such as the importance, challenges, and
difficulties met during the program comprehension process.
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Fig. 4: The Process of Spree Categorization of EventLabeler

TABLE 4: Statistics of the 10 interviewees.

Interviewee Professional Exp. Program Lang. Project
P1 > 5 Years Java A
P2 >5 Years Java A
P3 2 - 5 Years Java A
P4 2 - 5 Years Java C
P5 < 2 Years Java D
P6 > 5 Years C# E
P7 2 - 5 Years C# E
P8 2 - 5 Years C# E
P9 < 2 Years C# E
P10 < 2 Years C# E

We also ask interviewees to recall some situations when they
find program comprehension particularly challenging. The
purpose of this part is to allow the interviewees to speak
freely about their program comprehension experience.

In the third part, we consider a list of topics related
to program comprehension, and asked the interviewees to
discuss these topics, especially those that they have not been
discussed during the second part of the interview. The topics
include the impact of different programming languages
on program comprehension, the impact of project phase
(development phase or maintenance phase) on program
comprehension, etc.

After the interviews, we used a transcription service
named LuyinBao 6 provided by a famous speech recognition
comapny iFlyTek in China to transcribe the audio into text.
We then read the text, and performed open card sorting [42]
to group statements from the 10 interviewees into different
categories. To do so, we first removed the statements which
are not related to program comprehension, e.g., “I have
experiences on legacy system reengineering”. Then, we created
one card for each of the statements, and the first two authors
worked together to group the statements into different cate-
gories. For each statement, they first manually extracted key
phrases from it. And then they grouped the statements with
similar key phrases into the same category. The process is
repeated until all statements made by the interviewees are

6http://luyin.voicecloud.cn/

mapped to at least one category. Furthermore, since all of the
10 interviewees were Chinese, we use Chinese as the main
language to discuss with them. In the paper, we translate
Chinese into English.

3.4 Research Questions

(RQ1) How much of developers’ time is spent on program
comprehension? What are some common factors that in-
crease program comprehension time?

Previous studies show program comprehension takes up
half of a developer’s time [12], [13], [21], [28], [53]. However,
some conclusions are based on anecdotal evidence [12], [13],
[53], instead of being derived from empirical studies. Some
studies are performed under controlled experiment instead
of real project settings [21]. Furthermore, some studies only
involve a small number of participants [21], [28], and most
of them are not professionals. To address the limitations of
prior works, in this work, we revisit the same question by
monitoring 79 developers working on 7 real world projects
of 0.3-10 millions lines of code over a period totalling of
3,244 working hours.

(RQ2) Which applications do developers use in their
program comprehension activities? How much time do
they spend inside these applications during their program
comprehension activities?

Previous studies only investigate program comprehen-
sion activities performed inside IDEs [21], [28]. We also
notice that to understand a piece of source code, a developer
may not only navigate and search for the related source
code inside the IDE, but also search online resources, such
as Stack Overflow. Investigating program comprehension
activities across multiple applications can help better un-
derstand how developers perform program comprehension
in practice.

(RQ3) Do different programming languages affect the
percentage of time spent on program comprehension?

Different programming languages, such as Java and
C#, may affect the percentage of time spent on program
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TABLE 5: The average percentage of time developers spend on
comprehension (Compre.), navigation, editing, and others.

Project Compre. Navigation Editing Others
ALL 57.62% 23.96% 5.02% 13.40%

A 63.37% 19.31% 5.02% 12.30%
B 55.80% 24.83% 6.36% 13.02%
C 58.86% 27.62% 3.90% 9.62%
D 53.32% 28.36% 5.31% 13.01%
E 56.15% 23.59% 5.53% 14.73%
F 64.05% 20.30% 4.66% 10.99%
G 51.80% 28.02% 4.59% 15.41%

comprehension. A number of factors (e.g., programming
languages, developer experience, and project phase, etc)
would affect the time spent on program comprehension, and
investigating the impact of programming languages on the
percentage of time spent on program comprehension could
help developers understand their program comprehension
activities better.

(RQ4) Do senior developers spend less percentages of
their time on program comprehension?

The working experience of a developer may impact the
needed time for program comprehension activities. Senior
developers’ behaviors are different from junior developers’
behaviors, which might cause different time spent on pro-
gram comprehension activities. In this research question, we
investigate whether senior developers spend less time on
program comprehension. The answer of this RQ can help
identify the target beneficiary (e.g., senior or junior devel-
opers) for the automated program comprehension tools.

(RQ5) Do different project phases affect the percentage of
time spend on program comprehension?

Different project phases, such as development and main-
tenance, may affect the time needed for program compre-
hension activities. In this research question, we investi-
gate whether projects at different phases require different
amount of program comprehension effort. Similar to RQ4,
the answer of this RQ provide suggestions and references to
tool vendor to design program comprehension tools when
considering project phases.

4 FIELD STUDY RESULTS

In this section, we present the results of our case study with
respect to our five research questions.
(RQ1) How much of developers’ time is spent on program
comprehension? What are some common factors that in-
crease program comprehension time?
Results. Table 5 presents the average percentage of time
developers spend on comprehension, navigation, editing,
and others for the 5 projects. We notice that on average
across the 5 projects, developers spend 57.62% of their
time on program comprehension activities, followed by
navigation (23.96%), others (13.40%), and editing (5.02%).
Figure 5 presents the percentage of program comprehension
time for the 5 projects. From the figure, we notice developers
in different projects spend various time on program com-
prehension activities, which vary from 51.80% (G) - 64.05%
(F). Our finding is consistent with the results reported by
previous studies [12], [13], [21], [28], [53].
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Fig. 5: Percentage of program comprehension time.

To further investigate why developers spent so much
time on program comprehension, we randomly choose 200
sessions where developers spent more than 20 minutes on
program comprehension from our collected data. By using
the snapshots and the events provided by ActivitySpace,
the first two authors can trace back and replay on what
developers did during these sessions. We found that in the
200 long program comprehension sessions, developers used
IDEs, web browsers, and text editors in 144, 171, and 120
sessions, respectively. Next, the first two authors manually
concluded the root causes on why these sessions have a long
program comprehension time. To do so, for each session,
the two authors use one or two sentences to describe the
root causes independently. Then, they worked together to
discuss the root causes to make agreements. The first two
authors agreed on the root causes of 170 sessions (i.e.,
85% agreement), and for the sessions they cannot make the
agreements, we invited another Ph.D students who has 5
years of professional experience to make the judgement.
Finally, we made agreement on all of the 200 sessions.

After we concluded the root causes for each session, we
grouped the sessions with the same root causes together.
To do so, the first two authors manually extracted key
phrases from the sentences of root causes in each session,
and constructed the categories based on the key phrases.
Then, we grouped sentences in the same category. Some
sentences can be assigned to multiple categories since they
say more than one root causes, we also broke them down
into multiple categories. Table 6 presents the root causes for
the 200 long program comprehension sessions. Since there
might be more than one root causes from the long program
comprehension time, the sum of the number of sessions for
the 8 root causes is more than 200. We discussed with the
8 root causes with 10 interviewees, and we also invited
them speak freely on other root causes of long program
comprehension time.
1. None or insufficient comments. A lot of code we
inspected has no comment or insufficient comments among
the 200 sessions. For example, in Java projects, we notice a
lot of comments are “TODO Auto-generated method stub”
(the default comments when automatically generating a
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class/method in Eclipse), or “To be added”. Moreover, we
also noticed that in 30 sessions, developers finally added the
comments to the class/method after they spent a long time
to comprehend a piece of source code.

In our interview, all of the ten interviewees agree that
insufficient comments cause program comprehension diffi-
culties. Developers “cannot understand the source code if there
are insufficient comments, especially when the source code is a
bit complex” (P6). In practice, without comments, developers
have to look at the code and use bottom-up comprehension,
which will cause difficulties in program comprehension.
Also, sometimes comments are not updated along with
the code, which in turn cause the difficulties on program
comprehension. This is especially true for projects with high
turnover rates; P1 stated: “My project is in the maintenance
phase, developers always leave the team to work in other new
projects. Due to the lack of comments, whenever we are asked
to implement a new function or fix a bug, we have to read
and understand the relevant source code, which may take a
long time”. Previous studies showed the turnover rate in
IT companies varied from 20% - 35% [14], [50], [18], which
increase the maintenance cost on program comprehension
due to insufficient comments.

2. Meaningless classes/methods/variables names. Develop-
ers might need to spend more time to understand the source
code if there are many meaningless classes/methods/vari-
able names. For example, in the 200 sessions we analyzed,
we notice one method “readHistory” needs to open 5 files,
and the code simply name 5 “ BufferedReader” instances
as “br1” to “br5”. When a developer comprehended this
method, we noticed he frequently traced back to the def-
inition statement of “br1” to “br5” whenever he saw the
operation on these 5 files.

In our interview, nine out of the ten interviewees agree
that meaningless classes or methods or variables will cause
program comprehension difficulties, since it will cause the
difficulty to understand the semantic meanings of class-
es/methods/variables, as P8 stated “Some developers name a
variable casually, such as int a, double b, which make the program
hard to understand and maintain”.

3. Large number of LOC in a class/method. Some class-
es/methods are extremely long, e.g., more than 500 LOCs. In
our interview, four out of ten interviewees mentioned large
classes or methods would cause the difficulty to understand
the logic since the code is complex. For example, in the 200
sessions we analyzed, one class named “StockMarketOp-
eration”, which provided the stock buying, selling, buying
on margin, and selling shortly functionalities, even has
more than 2,000 LOCs. A developer spent 30 minutes to
comprehend this class when he was trying to locate a bug
in this file.

4. Inconsistent coding styles. Due to the evolution of
a software system and lack of strict style guideline, the
coding styles of a project, a class, and even a method can
be different. Among the 200 sessions we analyzed, 21%
sessions which needed long program comprehension time
are due to inconsistent coding styles. For example, class
“EmailSending” has been revised by different developers
to add more functionalities, and different developers have
different coding styles, which cause a number of simi-

lar variables, e.g., “user name”, “UserName”, “userName”,
and “User Name”. Some of these variables are defined as
public variables, and some are defined inside a method. A
developer needed to trace back multiple times to under-
stand the meaning of the variable user name.

In our interviewee, nine out of the ten interviewees
agree that inconsistent coding styles (e.g., camelCase or
under score) [8], [39] will cause program comprehension
difficulties. A number of project teams do not have strict
coding styles nor naming conventions; for example, a de-
veloper can name a method in the format of “helloWorld()”,
while others use the following formats: “Hello World()”
or “HelloWorld()”. If the source code follows multiple naming
conventions, the source code is hard to understand (P4). Some
studies on program comprehension also argued whether
camelCase is superior to under score in practice [8], [39].
For example, Binkley et al. performed an eye tracking study
on 135 programmers and non-programmers to understand
the impact of identifier style on code readability, and they
found camelCase is superior to under score [8]. Later, Sharif
and Maletic performed a replication study on Binkley et al.’s
eye tracking study, and the difference between these two
studies were that the participants were trained mainly in
the underscore style and were all programmers [39]. They
found there is no difference in accuracy between the two
styles, participants recognize identifiers in the under score
style more quickly. Thus, in practice, we recommend project
teams to strictly follow only one type of coding styles and
naming conventions.

5. Navigating multiple times. Abstraction is one of the
most important features for object-oriented programming
languages. Sometimes abstraction causes additional pro-
gram comprehension time since developers might navigate
multiple times to find the relevant source code. For example,
in our collected data, there is an abstract class named “S-
tockExchange”, and a number of classes inherit this abstract
class, such as “StockExchangeChina”, “StockExchangeUS”,
“StockExchangeIndia”, and “StockExchangeSingapore”. S-
ince the project used factory design pattern to wrap the
implementation of detailed classes, to locate the buggy
method in the one of inherited classes, a developer needed
to comprehend the method in abstract class, and navigate
and comprehend to each of the inherited methods in inher-
ited classes, and finally located the buggy method.

In our interview, seven out of the ten interviewees men-
tion that the high-level abstractions in source code might
cause the multiple navigation times. P7 stated: “Abstraction
can help to reuse the APIs in the source code, but it will also lead
to difficulties in understanding the behavior of source code. For
example, if class A and B are both inherited from the abstraction
class C. When we are asked to write a new class D which is also
inherited from C, we need to read the source code in A, B, and C to
get hints on how to write class D. The process can be extremely dif-
ficult if there are a number of abstractions in the source code”. We
note that all of the seven developers who share this difficulty
have only worked less than 5 years. Experienced developers
among our interviewees (P1, P2, and P6) however mention
that they do not have this problem in understanding source
code. Different from the first 3 reasons which are common
to all the types of developers, the program comprehension
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difficulty due to high-level abstraction can be relieved when
developers gain more experience, and involve more design
and development activities.

6. Query Refinement, and browse a number of search
results/links. When developers search online to compre-
hend an exception/error/bug or an API, they might need
to refine the queries multiple times to find a desired results.
For example, in our collected data, a developer needed to
comprehend an exception on database connection, and since
he has limited experience on database connection, he input
this query“how to connect database using Java” in Google.
After reading and comprehending top several results, none
of them are relevant. But he noticed a new word “JDBC”,
and refine the query as “Java Database Connection JDBC”,
but after reading comprehending the source code provided
in the top results, none of them are relevant. Finally, he
refined the query as “Java Database Connection JDBC pool”,
and found a relevant answer in Stack Overflow.

In our interview, only three out of ten interviewees
agreed that query refinement is one of the root cause on
long program comprehension time. All of these three inter-
viewees are junior developers who worked less than 2 years.
As P1 stated: “I think with the increase of experience, it would
be easy to find the suitable queries when search online”.

7. Lack of documents, and ambiguous/Incomplete docu-
ment content. From our study, we noticed the some doc-
ument contents are either ambiguous or incomplete, which
cause developers spend long time to comprehend these doc-
uments. For example, in one design documents, description
of one key functionality on the logic funding transfer rules
is too short and not clear, a developer spent a long time
to comprehend this functionality, and finally he decided to
send emails to other colleagues.

In our interview, nine out of the ten interviewees agreed
that lack of documentation, and ambiguous/Incomplete
document content often leads to long program compre-
hension time. In our study, documentation refers to the
requirement, design, and API documents. P1 and P2 who
have led a project on reengineering of legacy systems told
us that “legacy systems always have no or limited documents; the
first step is to manually read and understand the source code to
generate documentations. We find that this process is extremely
hard for the developers, and they need to spend more than 90% of
their time on program comprehension”.

Nowadays, agile software development methodology is
one of the most popular development methods. Paetsch
et al. found in agile software development, it is infeasible
to create complete and consistent requirements documents,
which might cause long-term problems for agile teams [32].
And the Agile manifesto [7] also pointed out: Working
software [is valued] over comprehensive documentation.
Unfortunately, a limited focus on documentation in agile
development will increase the program comprehension cost.
P5 stated: “Agile can increase the productivity of a developer,
however, it will increase the program comprehension time when
some new developers join the project team since there are limited
documents to which they can refer.”

TABLE 6: Root causes for the 200 long program comprehension
sessions.

Application Root Cause # Sessions

IDE

None or insufficient comments 92 (46%)
Meaningless classes/methods/vari-
ables names

75 (38%)

Large number of LOC in a
class/method

63 (32%)

Inconsistent coding styles 42 (21%)
Navigating inheritance hierarchy 38 (19%)
Unfamiliarity with business logic 0 (0%)

Web Browser Query refinement, and browse a num-
ber of search results/links

83 (42%)

Text Editor Ambiguous/Incomplete document
description

79 (40%)

Search for the relevant documents 12 (6%)

In practice, developers love to write code more than
documents7, thus lack of documentation is problematic in
every development process, which cause the difficulties in
program comprehension.

8. Search for the relevant documents. In project C, we
noticed they have different types of documents, e.g., require-
ment documents, design documents, API usage documents,
and test case documents. And each type of documents have
multiple versions. We found that in 12 sessions, developers
spent long comprehension time on documentations since
they needed to browse multiple versions of documents to
find the description of a specific function implementation or
a specific test case. In our interview, only one interviewee
(P4) mentioned that too much documents will cause diffi-
culty to program comprehension, since he is from project
C.

Besides the 8 root causes, during the interview, we also
found one more root cause on long program comprehension
time, i.e., unfamiliarity with Business Logic.

9. Unfamiliarity with Business Logic. Five out of the
ten interviewees mention that unfamiliarity with business
logic also causes program comprehension difficulties. P1
stated: “unfamiliarity with the business logic is very common
for developers who just join a new project. For these developers,
they need to read the source code and relevant documents first
to understand the whole project”. Program comprehension
difficulty due to unfamiliarity with business logic is one of
the common problem that a newcomer meet, and it can be
relieved when the newcomer stay longer in the project team,
or he/she gain more experience on software development.

Implications. In RQ1, we find that developers spend∼ 58%
of time on program comprehension, which validates the
well-known assumption (i.e., program comprehension takes
much of developer time) that drives the line of work on
improving program comprehension [12], [13], [21], [28], [53].
Our results also show that the efforts of previous studies on
program comprehension are necessary, and we should still
need to develop more advanced program comprehension
tools to improve the performance on program comprehen-
sion. Here, we list some potential tools by mining the logs
from our collected data, and interviews:

7http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=
show&ixPost=35336
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Code and Documentation Quality Control. From our study and
interviews, we found none or insufficient comments, mean-
ingless classes/methods/variables names, large number of
LOC in a class/method, inconsistent coding styles, lack
of documentation, and ambiguous/Incomplete document
content are all important root causes which lead to more
time spent on program comprehension activities. However,
an automated tool which assess the quality of code and
documentation in a project could help reduce the effort
on program comprehension. In our interview, four out of
ten interviewees pointed out the need to assess the quality
of code and its documentation. P1 stated: “I spend a long
time on program comprehension just because the code quality is
low. I think if we have better code control, such as strict code
review, then I can save more time on program comprehension”.
Currently, to catch deadlines, project teams often do not
pay much attention to documentation. There is a need for
tools that can automatically extract useful documentation,
beyond simple UML diagrams or Javadocs, from source
code, to substantially reduce program comprehension effort.

Comments and Documentation Generation. In our study, we
found none or insufficient comments, and lack of documen-
tation are two root causes which lead to more time spent on
program comprehension activities. In software engineering
community, many studies are proposed to automatically
generate comments [51], [44], [43], [30], and automatically
generate documents [27], [20]. Our findings support these
existing research studies, it would be interesting to deploy
these tools into practice to improve the efficiency of program
comprehension.

Automated Generation and Refinement of Search Queries. From
our study, we noticed sometimes developers need to re-
fine their queries multiple times and browse a number
of search results/links to find the relevant results, which
leads to more time spent on program comprehension activ-
ities. Thus, automatically generate and refine search queries
based on the context in which a developer is working
(e.g., by monitoring the state of his/her IDE) would help
developers improve their performance of program compre-
hension. Some related research tools have been proposed in
the literature to reformulate search queries for text retrieval
in software engineering (e.g., [17]). For example, Haiduc
et al proposed Refoqus which refines a user query based
on the top-k (e.g., k=10) documents that retrieved by this
query [17]. However, in practice, it would be possible that
all top-k documents are irrelevant to the query, and for such
cases, there is a need to investigate other ways to refine user
queries. Thus, we still need more work to build a solution
that can effectively help developers with online searching.

On average across the 7 projects, developers spend 57.62% of
their time on program comprehension activities.

(RQ2) Which applications do developers use during pro-
gram comprehension activities? How much time do they
spend inside these applications during their program
comprehension activities?

Results. In this RQ, we investigate program comprehension
activities that are performed outside IDEs, the percentages
of time developers spend inside various applications dur-
ing these activities, and how developers switch between

TABLE 7: The average percentage of time developers spent on
program comprehension activities when they use IDEs, web
browsers, and document editors.

Project IDEs Web Browsers Document Editors
ALL 19.95% 27.26% 10.38%

A 36.76% 23.71% 2.91%
B 14.03% 31.26% 10.05%
C 14.04% 36.13% 8.68%
D 18.39% 34.23% 0.70%
E 16.08% 28.08% 10.45%
F 32.22% 24.13% 7.70%
G 8.58% 26.50% 16.72%

applications during program comprehension sessions. We
calculate the lengths of time that developers spend on
various applications during their program comprehension
activities, and analyze the frequent sequences returned by
ActivitySpace.

Table 7 presents the average percentages of time that
developers spend when using IDEs, web browsers, and
document editors to perform program comprehension ac-
tivities for each of the 7 projects. On average across the
7 projects, the percentages of the time that developers
use IDEs, web browsers, and document editors to do
program comprehension activities are 19.95%, 27.26%, and
10.38%, respectively. Since we consider three groups (i.e.,
percentage of time developers spend when using IDEs, web
browsers, and text editors during their program comprehen-
sion activities), and the distributions of percentage of time
developers spend when using IDEs, web browsers, and text
editors during their program comprehension activities are
normally distributed as shown by the results of the Shapiro-
Wilk test [38] (i.e., p-value is large than 0.05), we apply one-
way analysis of variance (ANOVA) to determine whether
there are any statistically significant differences between the
means of these groups [45]. Table 8 presents the results for
a one-way ANOVA test for the percentage of time that de-
velopers spend when performing program comprehension
activities.using IDEs, web browsers, and document editors
to/Since the F-value of the one-way ANOVA is 32.4, and the
P-value is less than 0.001, we conclude that the difference
between the different applications used to perform program
comprehension activities is statistical significant.

Next, we also apply a pairwise t-test with Bonferroni
Correlation [9] and Cohen’s d [11]8 to determine whether
the difference between different groups is statistically sig-
nificant and the effect sizes are substantial. Table 9 presents
Cohen’s d and p-values for comparison of percentage of
time that developers spend when using IDEs, web browsers,
and document editors to perform program comprehension
activities. We have the following observations:

1) Developers spend least time on program compre-
hension activities when using text editors, and the
effect sizes are small and large when compared
with the time that they spend using IDEs and web
browsers, respectively.

2) Developers spend most time on program compre-
hension activities when using web browsers, and

8Cohen defines a D of between 0.01 to 0.20, between 0.20 and 0.50,
between 0.50 and 0.80, above 0.80 as negligible, small, medium, and
large effect size [11], respectively.
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TABLE 8: One-way ANOVA test for percentage of time that
developers spend when using different applications to perform
program comprehension activities. DF = Degrees of Freedom.
Sum Sq. = Sum of Square. Mean Sq. = Mean of Square.

Factor DF Sum Sq. Mean Sq. F Value P Value
Application 2 11,323 5,662 32.4 3.9e−13***
Residuals 234 40,940 175 – –

***p<0.001, **p<0.01, *p<0.05

TABLE 9: Cohen’s D and P-values for comparison of percentage
of time that developers spend when using different applications
to perform program comprehension activities.

Application IDE Web Browser
Web Browser -0.49 (Small)*** –

Text Editor 0.70 (Medium)** 1.55 (Large)***
***p<0.001, **p<0.01, *p<0.05

the effect sizes are large when compared with the
time using IDEs and text editors.

Table 10 presents the top-5 frequent sequences and the
percentage of program comprehension time for each se-
quence. We notice developers frequently switch between
IDEs and web browsers. For example, the frequent se-
quence “IDE⇒Web Browser” and “Web Browser⇒IDE”
correspond to 10.55% and 9.15% of the total effective
working time of developers. Moreover, the frequency of
switching between IDEs and document editors is much
lesser. Among the top-5 frequent sequences, only “Web
Browser⇒IDE⇒Document” captures the switching among
web browsers, IDEs, and document editors, which corre-
sponds to 3.35% of developers’ total effective working time.

We also investigate what kinds of tasks lead to web
browser use, see Table ??. We use open card sorting [42] to
group the tasks from the websites in our collected data. Our
card sort process consists of two phases: In the preparation
phase, we create one card for each web page. In the execu-
tion phase, cards are sorted into meaningful groups with a
descriptive title. Our card sort was open, meaning we had
no predefined groups; instead, we let the groups emerge and
evolve during the sorting process. The first author and the
other two graduate students of Zheiang University jointly
sorted the card. Finally, we categorize six kinds tasks that
lead to web browser use: Communication, Project/Company
Management, Debugging/Testing, Learning, Search for Solutions,
and others. We also count the number of web page that
the developers open and calculate the percentage of web
pages that belong to each task, see the last column in
Table ??. We find that the most frequent browser use is
belong to Search for solution. Developers often need search
online when they encounter some problems during software
development. The search process is usually like this: First,

TABLE 10: Top-5 frequent sequences and the percentage of
program comprehension time for each sequence.

Frequent Sequence Percentage
IDE⇒Web Browser 10.55%
Web Browser⇒IDE 9.15%

IDE⇒Web Browser⇒IDE 5.35%
Web Browser⇒IDE⇒Web Browser 4.65%

Web Browser⇒IDE⇒Document 3.35%

a developer encounters a problem in IDE, e.g. an exception;
then he/she switches to browser, opens the search engine
and input a query; he/she open several web pages, e.g. a
post in Stack Overflow, a technical blog, etc; Finally, he/she
finds a solution and switch back to IDE to fix the problem.
During this process, developers need to perform a lot of
comprehension activities to understand the knowledge on
these web pages. Anther import Another important reason
that lead developers to use web browser is Debugging/Test-
ing. There is at least one web application in all the studied
projects and developers usually need to switch between
IDE and browser frequently when they are debugging or
testing the web application. These above two tasks might
cause very frequent switchings between IDEs and browsers,
which make developers perform programming comprehen-
sion more difficult. This is because the developers working
context change fast and frequently during the switchings
with across applications [4]. This suggests that effective
techniques are required to track the information that flows
implicitly during the context switching. Sometimes, devel-
opers use web browser to communicate with others, such
as email, online forum. Developers also need to perform
some Project/Company Management tasks through internal
company websites. For instance, developers in Hengtian
submit their daily and monthly task reports to manager in
the task tracking system. Moreover, developers need learn
programming skill and background knowledge related to
project by online tutorial and company sharepoint.

Interview Findings. From our interviews, all of the ten
interviewees confirm that they frequently use a web browser
to perform program comprehension activities. P6 stated: “I
will use web browser to search for something I cannot understand
from the source code. For example, I just simply copy the piece
of source code I do not understand into Bing9, and I will find
something useful from the search results. It really helps me and I
think the time to use web browser to do program comprehension
takes half of my total time on program comprehension.” From
Table 7, we notice on average across the 7 projects, the
percentages of the time developers use web browsers to
do program comprehension activities is 27.26%, while the
percentages of the time developers use IDEs and document
editors to do program comprehension activities is 30.33%.
P6’s comments are consistent with our findings in Table 7.

Also, eight out of the ten interviewees complain that
the frequent switching among web browsers, IDEs, and
document editors may adversely impact productivity, since
they may forget what they really want to do after the switch,
and they need to spend some time to recall something (P1). P10
stated: “although web browser and documents can help to do
program comprehension, I still need to do the search process.
Sometimes I cannot find the solutions that I want, so I keep on
searching. Then after several tries, I may forget what I really want
to do, and maybe go to visit some news in the web browser”. In
practice, Mylyn10 [19], an Eclipse plugin, can help reduce
the side effect due to task switch, and improve productivity
by reducing searching, scrolling, and navigation.

9In China, Google is blocked so developers use Bing more to search
for things.

10http://www.tasktop.com/mylyn/resources
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TABLE 11: The summary of web browser use

Task Description Website Example Task Example Perc.
Email Developers write emails to ask something to colleagues.Communication Developers use some online tools in Web browser to

communicate with others Online Forum Developers discuss some interesting topics in company forum. 6.5%

Project/Company
Management

Currently, many project/company management systems
(e.g., task tracking system, code quality management system)
are web application

Intracompany
Website Developers submit their monthly reports in task tracking system. 14.2%

Debugging/Testing
If a developer works for a web application (e.g., J2EE),
he usually need to visit the related web page when he is
testing/debugging one certain function.

Project-related
Website

After developers receive a bug report, they open the related web
page of the project to debug/test the related function 24.3%

Learning
Developers learn some kinds of knowledge from online
resources, such as technical tutorial, online company
documentation.

Tutorial Developers learn project-related business knowledge through the
documents on the company sharepoint. 8.5%

Search engines To solve some technical problems, developers usually use Baidu/Bing
to search for solutions.

Q&A websites Developers often visit Stack Overflow to find some code examples
or solutions.

API documentation Developers often visit the official API documentation (e.g., Java API)
to know the usage of one certain APISearch for Solutions

During software development, developers often encounter
lots of problems (e.g., runtime exception, configuration
error) or are required to implement some kinds of code.
They usually use search engines to navigate some websites
and get some anwsers from the target websites. Code hosting Developers find some popular repositories in Github to get a

similar technical solution

42.8%

Others Some websites that are unrelated to developers’ work Entertainment When developers have a rest, they view news or visit social
network websites. 3.7%

Notice that in Table 7, time spent for program com-
prehension activities performed inside document editors is
much lower than time spent inside IDEs and web browsers.
We also check this observation with the interviewees, and
seven of them agree that suitable documents are not always
available or comprehensive enough. Thus, they prefer to
use IDEs and web browsers more during their program
comprehension activities (P1, P3, P5, P6, P7, P9, P10). P1
stated: “due to the tight project schedule, most of the projects do
not leave enough documentation. The help from the documentation
is rather limited, reading the source code more or searching from
the Internet can be more helpful”.

Implications. Based on the findings of RQ2, we have the
following implications:

Integrating Multiple Applications into IDE. We notice that
developers frequently switch between their IDEs and web
browsers. Also, the percentage of time that a developer uses
a web browser to perform program comprehension activi-
ties is ∼27%, which is more than the percentage of time that
is spent on program comprehension activities performed
inside IDEs or document editors. To reduce the time wasted
due to switching among multiple applications, it will be
worthwhile to integrate multiple relevant applications into
IDEs, e.g., integrate web search functionalities into IDEs.
Past studies (e.g., [34], [36]) also investigate how to integrate
search engines or Stack Overflow into IDEs. Our findings
support these existing research studies.

Search Engines. From RQ1, we found that query refinement
might cause more time spent on program comprehension
activities. From RQ2, in Table ??, we found developers fre-
quently search for solutions online. Thus, investigating what
developers search and how they perform search activities
could help understand how developers perform program
comprehension activities better. In software engineering re-
search, many previous studies (e.g., [1], [2], [24], [3], [25])
tried to develop domain-specific search engines (e.g., code
search engines) to help developers to improve their search
efficiency. However, it is still not clear whether domain-
specific search engines can help developers improve their
performance on program comprehension. Also, there are
other open questions which are not answered: what do
developers search online? Whether general search engines
such as Google is enough to solve software engineering
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Fig. 6: Percentages of program comprehension time for different
programming languages.

problems? Since these research questions are out of the
scope of our paper, we plan to investigate them in the future.

Aside from IDEs, developers use web browsers and document
editors in their program comprehension activities. On average
across the 5 projects, the percentages of time when developers
use IDEs, web browsers, and document editors to do program
comprehension activities are 19.95%, 27.26%, and 10.38%.
Moreover, developers frequently switch between IDEs and web
browsers, and the help gained from reading documents is
limited.

(RQ3) Do different programming languages affect the
percentage of time spent on program comprehension?

Results. In this research question, we investigate whether
developers working on projects written in different pro-
gramming languages spend different percentages of time
on program comprehension. To address RQ3, we divide the
7 projects with two groups, i.e., Java and C#. The Java group
consists of A, C, D, and F, and the C# group consists of B, E,
and G.

One-way ANOVA Analysis. Figure 6 presents the percentages
of program comprehension time for Java and C# projects.
We notice that on average, developers working in the Java
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TABLE 12: One-way ANOVA test for percentage of time that
developers spend on program comprehension when working
on Java and C# projects.

Factor DF Sum Sq. Mean Sq. F Value P Value
Language 1 1,492 1,492 18.7 4.6e−5***
Residuals 77 6,158 80 – –

***p<0.001, **p<0.01, *p<0.05

and C# projects spend 63.22% and 53.54% of their time
on program comprehension activities. Similar to RQ2, we
apply one-way analysis of variance (ANOVA) to determine
whether there are any statistically significant differences
between the means of the two groups [45]. Table 12 presents
the results for one-way ANOVA test for percentage of time
that developers spend on program comprehension when
working on Java and C# projects. Since F value of one-
way ANOVA is 18.7, and the P-value is less than 0.001,
we conclude that there is statistical significance for the time
developers spent on program comprehension in Java and
C# projects.

Next, we also apply pairwise T-test with Bonferroni
Correlation and Cohen’s d to test whether the difference
between these two groups (Java and C#) are statistically
significant and the effect sizes are substantial. The P-value is
less than 0.001, and Cohen’s D is 0.97, which corresponds to
large effect size. Thus, we conclude that developers working
on Java projects spend more time on program comprehen-
sion than these working on C# projects.

Two-way ANOVA Analysis. In RQ2, we investigate the per-
centages of time that developers spend when using IDEs,
web browsers, and document editors to perform program
comprehension activities. Here, we would like to investi-
gate the interaction effects of the programming language
of projects and the applications used for program compre-
hension. For example, we would like to investigate that
whether developers in C# projects spend more time on
comprehension in the web browsers than these in Java
projects. To do so, we apply two-way ANOVA [9] to test the
statistical significant. Two-way ANOVA extended one-way
ANOVA by examining the influence of two different cat-
egorical independent variables (in our case, programming
languages, and applications) on one continuous dependent
variable (in our case, percentage of time on programming
comprehension). Table 13 presents the results of two-way
ANOVA test for the interaction effects of the programming
language of projects and the applications used for program
comprehension. We find that programming language of
projects, applications used for program comprehension, and
the interactions of these two factors all have the statistically
significant impact on the percentage of time spent on pro-
gram comprehension.

Next, we also apply pairwise T-test with Bonferroni
Correlation and Cohens d to test whether the difference
between these two factors (i.e., programming languages,
and applications) are statistically significant and the effect
sizes are substantial. Table 14 presents the Cohen’s D and
P-values for the interactions of programming languages of
projects and applications used for program comprehension,
we have the following conclusions:

TABLE 13: Two-way ANOVA test for the interaction effects
of the programming language of projects and the applications
used for program comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Language 1 497 497.4 3.3 0.0488*

Application 2 11,323 5661.6 38.0 5.2e−15***
Lang:Appl 2 6,066 3,033 20.4 7.1e−9***
Residuals 231 34,377 148.8 – –

***p<0.001, **p<0.01, *p<0.05

1) Developers in C# projects spend more time on
program comprehension inside the web browsers
than these in C# projects using IDEs or text editors,
respectively, and the effect size are large. However,
there is negligible effect size and non statistical
significance when comparing the time on program
comprehension by using IDEs and text editors in C#
projects.

2) Developers in Java projects spend less time on pro-
gram comprehension inside the text editors than
these in Java projects using IDEs or web browsers,
respectively, and the effect size are large. However,
there is negligible effect size and non statistical
significance when comparing the time on program
comprehension by using IDEs and web browsers in
Java projects.

3) Developers in Java projects spend more time on
program comprehension inside the IDEs than these
in C# projects using IDEs. However, there is non
statistical significance when comparing the time on
program comprehension by using web browsers or
text editors in C# and Java projects.

From Table 14, we also find that the main difference
of time spent on program comprehension in Java and C#
projects are due to difference of time spent on program
comprehension inside IDEs, and we find that on average
developers in Java projects spend a higher percentage of
their time performing program comprehension activities
inside IDEs than their counterparts that work on C# projects
(28.72% vs. 11.82%).

Interview Findings. We also interview developers to better
understand why Java projects need more program compre-
hension time. One possible reason is that Java projects often
extensively use third party libraries. P5 stated: “Different
from C# projects, Java projects often use a number of third
party open source libraries. These libraries lead quite often to an
increased need for additional program comprehension effort, since
we need to understand what is in these libraries”. To further
analyze whether the number of third party libraries will
affect the time spent on program comprehension, we also
count the number of third party libraries used in these 7
projects by analyzing their build files (e.g., build.xml in Ant,
pom.xml in Maven, or MSBuild in C#). Table 15 presents
the number of third party libraries to the percentage of
time spent on program comprehension. We notice Java
projects will use much more third party libraries than C#
projects. We use the Spearman correlation coefficient [52] to
measure how much correlated two variables are C in our
case, number of libraries used in the seven projects, and
program comprehension time. The Spearman correlation
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TABLE 14: Cohen’s D and P-values for the interactions of programming languages of projects and applications used for program
comprehension.

Lang.(Appl.) C# (IDE) C# (Web) C# (Text) Java (IDE) Java (Web) Java (Text)
C# (IDE) – 1.20 (Large)*** 0.16 (Negligible) 1.14 (Large)*** 1.23 (Large)*** -0.46 (Small)
C# (Web) -1.20 (Large)*** – -1.21 (Large)*** 0.05(Negligible) -0.12(Negligible) -1.86 (Large)***
C# (Text) -0.16 (Negligible) 1.21 (Large)*** – 1.13 (Large)*** 1.29 (Large)*** -0.77 (Medium)

Java (IDE) -1.14 (Large)*** -0.05(Negligible) -1.13 (Large)*** – -0.16 (Negligible) -1.70 (Large)***
Java (Web) -1.23 (Large)*** 0.12(Negligible) -1.29 (Large)*** 0.16 (Negligible) – -2.12 (Large)***
Java (Text) 0.46 (Small) 1.86 (Large)*** 0.77 (Medium) 1.70 (Large)*** 2.12 (Large)*** –

***p<0.001, **p<0.01, *p<0.05

TABLE 16: Spearman’s rho and P-value for the number of
libraries and program comprehension time. Statistically signifi-
cance is in bold.

Factors Spearman’s rho p-value
Overall Compre. Time 0.88 0.008

IDE Compre. Time 0.81 0.027
Web Browser Compre. Time -0.31 0.504
Text Editor Compre. Time -0.74 0.058

TABLE 17: Spearman’s rho and P-value for the number of
months and program comprehension time. Statistically signifi-
cance is in bold.

Factors Spearman’s rho p-value
Overall Compre. Time 0.09 0.85

IDE Compre. Time 0.04 0.94
Web Browser Compre. Time -0.04 0.94
Text Editor Compre. Time 0.16 0.73

coefficient ranges from -1 to 1, where -1 and 1 correspond
to perfect negative and positive relationships respectively,
and 0 means that the variables are independent of each
other. Table 16 presents Spearman’s rho and P-value for the
number of libraries and program comprehension time. We
notice that there are high positive and statistically signifi-
cant correlations between the number of libraries, and the
overall program comprehension time and the time spent
on program comprehension inside IDEs. Thus, the increase
number of libraries can increase the number of time spent
on program comprehension, especially the time spent on
program comprehension inside IDEs.

Besides, one interviewee mentioned that the difference
of time spent on program comprehension for Java and C#
projects might be that Java projects have been existed for
longer time than C# projects, since Java has been popular
used for around 25 years, while C# appeared around 15
years. Since all of the seven projects are still active until
April, 2017, we count the number of the months passed from
the start date of the seven projects to April, 2017, as shown
in Table 15. We also use the Spearman correlation coefficient
to measure how much correlated two variables are C in our
case, number of months passed for the seven projects, and
program comprehension time. Table 17 presents Spearman’s
rho and P-value for the number of months and program
comprehension time. We notice there are no statistically
significant correlations between the number of months, and
the overall program comprehension time, and the time spent
on program comprehension inside IDEs, Web browses, or
text editors. Thus, the number of time a project existed has
limited effect to time spent on program comprehension.

TABLE 18: Two-way ANCOVA test for the interaction effects of
the programming language of projects and the number of used
libraries for program comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Language 1 1492.3 1492.3 19.4 3.5e−5***

Lib 1 377.1 377.1 4.9 0.03*
Lang:Lib 1 0.5 0.5 0.007 0.935
Residuals 75 5779.9 77.06 – –

***p<0.001, **p<0.01, *p<0.05

Here, we also investigate the interaction effects of the
programming language of projects and the number of li-
braries used in these projects to the percentage of time spent
on program comprehension. Since we have a continuous
independent variable (i.e., the number of libraries), and a
categorical independent variable (i.e., the programming lan-
guage of projects), we use a two-way ANCOVA (Analysis of
covariance) [9] test to check whether the interaction effects
of programming languagee and the number of used libraries
have the statistically significant impact on the time spent
on program comprehension. Table 18 presents the two-way
ANCOVA test for the interaction effects of the programming
language of projects and the number of used libraries for
program comprehension. We find that programming lan-
guages of projects, and the number of used libraries have
statistically significant impact on the percentage of time
that is spent on program comprehension. However, the the
interactions of these two factors does not have statistically
significant impact on the percentage of time that is spent on
program comprehension.

Another reason is that many developers find that Visual
Studio (IDE for C# projects) provides a better support for
program comprehension activities than Eclipse (IDE for Java
projects). Among the ten interviewees, six of them have
experience on both Java and C#, and all of them agreed
that the difference between the IDEs play a major role in
the difference in program comprehension time. They agreed
that Visual Studio provides better search and navigation
functions than Eclipse.

Implications. Based on the findings of RQ3, we have the
following implications:

Library Usage. Different from C# which is owned by Mi-
crosoft, Java is one kinds of open source programming lan-
guages. One advantage of Java is that there are many third-
party libraries, and textbooks on software engineering [35],
[15] often encouraged developers to reuse the existing code
instead of writing new code, in order to reduce development
time. From our study, we found that using more third-party
libraries would increase the time on program comprehen-
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TABLE 15: Number of third party libraries and number of months to the percentage of time spent on program comprehension.

Project Language #No. Libs #No. Months % Compre. % IDE % Web % Text
A Java 22 68 63.37% 36.76% 23.71% 2.91%
C Java 18 35 58.86% 14.04% 36.13% 8.68%
D Java 14 18 53.32% 18.39% 34.23% 0.70%
F Java 25 14 64.05% 32.22% 24.13% 7.70%
B C# 4 58 55.80% 14.03% 31.26% 10.05%
E C# 6 50 56.15% 16.08% 28.08% 10.45%
G C# 2 22 51.80% 8.58% 26.50% 16.72%

sion. Thus, it would be interesting to investigate whether
the decreased time on development is equal, larger, or
smaller than the increased time on program comprehension.
Moreover, considering there are a large number of third
party libraries, and some are of high quality, while others
are of low quality. Thus, recommending suitable libraries for
software development would be useful. A previous study
by Thung et al. recommended third party libraries for new
software projects [47]. Our findings support their study.

Better Design of IDE. In RQ1, we found that navigating
multiple times in IDEs would also lead to more time spent
on program comprehension. And in RQ3, we found that
the main difference of time spent on program compre-
hension in Java and C# projects are due to difference of
time spent on program comprehension inside IDEs. In our
interview, five out of ten interviewees mentioned IDEs like
Eclipse do not provide sufficient support for developers to
fully understand and navigate through relationships (e.g.,
containment, inheritance, invocations, etc.) between code
elements spread in multiple source code files. Some tools are
proposed to improve IDE according to developers’ typical
behavior [22], [10]. Ko and Myers proposed a debugging
tool Whyline, which allows programmers to ask ”Why
did” and ”Why didn’t” questions about their program’s
output [22]. Bragdon et al. proposed Code Bubbles to help
developers define and use working sets, where working sets
refer to the group of functions, documentation, notes, and
other information that a programmer needs to accomplish a
particular programming task (e.g., feature implementation
or bug fixing) [10]. Moreover, as shown from our interview
findings, Eclipse community might also draw lessons from
some interesting design ideas and functionalities from Vi-
sual Studio. In the future, we plan to performance another
study on the difference between Eclipse and Visual Studio,
and how the difference affect the performance on program
comprehension.

Developers in the Java projects spend more percentages of
their time on program comprehension than developers in the
C# projects.

(RQ4) Do senior developers spend less percentages of
their time on program comprehension?

Results. To address RQ4, we first divide the working expe-
rience of developers into 3 groups according to the number
of years of professional experience, i.e., low experience (less
than 3 years of professional experience), medium ( 3 to 5
years of professional experience), and high (more than 5
years of professional experience).

One-way ANOVA Analysis. Figure 7 presents the percent-
ages of program comprehension time for developers with
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Fig. 7: Percentages of program comprehension time for devel-
opers with different professional experience.

different professional experience. We notice that on av-
erage, developers of low, medium, and high experience
spend 66.37%, 55.97%, and 44.43% of their time on program
comprehension activities. Similar to previous RQs, we ap-
ply one-way analysis of variance (ANOVA) to determine
whether there are any statistically significant differences
between the means of the three groups. Table 19 presents the
results for one-way ANOVA test for percentage of time that
developers with difference professional experience spend on
program comprehension. Since F value of one-way ANOVA
is 79.4, and the P-value is less than 0.001, we conclude
that there is statistical significance for the time developers
with different professional experience spent on program
comprehension. Table 20 presents Cohen’s D and p-values
for comparison of percentage of time that developers with
low, medium, and high professional experience spend to
perform program comprehension activities. We have the
following conclusions:

1) Developers of low professional experience spend
more time on program comprehension activities
compared with these with medium and high pro-
fessional experience, and the effect sizes are large.

2) Developers of medium professional experience
spend more time on program comprehension activ-
ities than these of high professional experience, and
the effect size is large.

Two-way ANOVA Analysis. Here, we would like to investi-
gate the interaction effects of professional experience and
the applications used for program comprehension, and we
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TABLE 19: One-way ANOVA test for percentage of time that
developers with different professional experience spend on
program comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Language 2 5174 2587.1 79.4 <2.2e−16***
Residuals 76 2476 32.6 – –

***p<0.001, **p<0.01, *p<0.05

TABLE 20: Cohen’s D and P-values for comparison of percent-
age of time that developers with low, medium, and high pro-
fessional experience spend to perform program comprehension
activities.

Exp Low Medium
Medium 1.80 (Large)*** –

High 3.99 (Large)*** 1.98 (Large)***
***p<0.001, **p<0.01, *p<0.05

apply two-way ANOVA to test the statistical significant.
Table 21 presents the results of two-way ANOVA test for
the interaction effects of professional experience and the
applications used for program comprehension. We find
that professional experience, applications used for program
comprehension, and the interactions of these two factors all
have the statistically significant impact on the percentage of
time spent on program comprehension.

Next, we also apply pairwise T-test with Bonferroni
Correlation and Cohens d to test whether the difference
between these two factors (i.e., professional experience, and
applications) are statistically significant and the effect sizes
are substantial. Table 22 presents the Cohen’s D and P-
values for the interactions of professional experience and
applications used for program comprehension, we have the
following conclusions:

1) Developers of low and medium experience spend
less time on program comprehension inside text
editors than these inside IDEs or web browsers, and
the effect sizes are large.

2) Different from developers of low and medium ex-
perience, developers of high experience spend less
time on program comprehension inside IDEs than
these inside text editors or web browsers, and the
effect sizes are large.

3) Developers of low and medium experience spend
more time on program comprehension inside IDEs
than these of high experience, and the effect size is
large. However, there is non-statistical significance
between developers of low experience and medium
experience on time spent on program comprehen-
sion inside IDEs.

4) There is non-statistical significance among devel-
opers of low, medium, and high experience on
time spent on program comprehension inside web
browsers or text editors, although the effect sizes
are small or medium.

Interview Findings. All of the ten interviewees agree that
the more senior a developer is the more likely he/she spend-
s less time on program comprehension. Senior developers
accumulate enough software development experience, and
some of them have done a number of similar projects
before. In an IT company, to better allocate human resources,

TABLE 21: Two-way ANOVA test for the interaction effects of
professional experience and the applications used for program
comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Experience 2 1,725 862.4 5.5 0.005**
Application 2 11,323 5661.6 36.2 2.3e−14***

Exp:Appl 4 3,523 880.7 5.6 0.0002***
Residuals 228 35,693 156.5 – –

***p<0.001, **p<0.01, *p<0.05

typically developers are required to do projects in the same
domain. For example, P6 has done 5 projects which are all
related to financial systems. The accumulated experience
can help to reduce the time spent on program compre-
hension activities. P1 who is a senior developer stated: “I
have worked more than 7 years, and done more than 20 projects.
Currently, given a requirement document, I can even know how
the source code will be written since most of these projects are
similar. However, if I come to a new project which I have never
done before, such as a Matlab project, I will still spend a lot of
time on program comprehension”.
Implications. Based on the findings of RQ4, we have the
following implications:
Program Comprehension Behavior Learning. We manually
checked and compared behaviors of senior and junior de-
velopers during program comprehension activities, and we
noted some interesting observations. For example, when
switching between an IDE and a web browser, some se-
nior developers will first copied some code from the web
browser to the IDE, and then compared the differences
between the copied code and the original code in the IDE.
In this way, they can reduce the time to switch between
IDE and web browser multiple times. However, for some
junior developers, they just simply switched between IDE
and web browser multiple times, which required more
time. Thus, it would be interesting to develop a tool which
can automatically monitor developers’ behaviors when they
perform program comprehension activities, and recommend
good behaviors to developers to help them reduce program
comprehension time. The good behaviors can possibly be
learnt automatically by mining behavior patterns from ac-
tivities of senior developers.

Senior developers spend less time on program comprehension
activities than novices/less experienced developers.

(RQ5) Do different project phases affect the percentage of
time spend on program comprehension?
Results. To address RQ5, we divide the 7 projects into two
groups, i.e., development phase and maintenance phase.
The development phase group contains C, D, E, and G, and
the maintenance phase group contains A, B, and F.
One-way ANOVA Analysis. Figure 8 presents the percentage
of time spent on program comprehension activities for
projects in the development and maintenance phases. We
notice that on average, developers of projects in the devel-
opment phase and those in the maintenance phase spend
53.54% and 63.22% of their time on program comprehension
activities. Table 23 presents the results for one-way ANOVA
test for percentage of time that developers in projects of
maintenance and development phases spend on program
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TABLE 22: Cohen’s D and P-values for the interactions of professional experience and applications used for program comprehen-
sion.

Exp(Appl) Low(IDE) Low(Web) Low(Text) Med(IDE) Med(Web) Med(Text) High(IDE) High(Web) High(Text)
Low(IDE) – 0.18 (Neg) -1.00(Lar)*** -0.36(Sma) 0.15(Neg) -1.37(Lar)*** -1.13(Lar)*** -0.31(Sma) -0.63(Med)
Low(Web) -0.18 (Neg) – -1.67(Lar)*** -0.68(Med) -0.05(Neg) -2.39(Lar)*** -1.95(Lar)*** -0.69(Med) -1.19(Lar)*
Low(Text) 1.00(Lar)*** 1.67(Lar)*** – 0.73(Med) 1.56(Lar)*** -0.45(Sma) -0.33(Sma) 0.91(Lar) -0.47(Sma)
Med(IDE) 0.36(Sma) 0.68(Med) -0.73(Med) – -0.06(Neg) -0.33(Sma)** -0.95(Lar)* 0.06(Neg) -0.33(Sma)
Med(Web) -0.15(Neg) 0.05(Neg) -1.56(Lar)*** 0.06(Neg) – -2.21(Lar)*** -1.82(Lar)*** -0.62(Med) -1.09(Lar)*
Med(Text) 1.37(Lar)*** 2.39(Lar)*** 0.45(Sma) 0.33(Sma)** 2.21(Lar)*** – -0.06(Neg) 1.58(Lar)* 1.1(Lar)
High(IDE) 1.13(Lar)*** 1.95(Lar)*** 0.33(Sma) 0.95(Lar)* 1.82(Lar)*** 0.06(Neg) – 1.18(Lar) -0.80(Med)
High(Web) 0.31(Sma) 0.69(Med) -0.91(Lar) -0.06(Neg) 0.62(Med) -1.58(Lar)* -1.18(Lar) – -0.45(Sma)
High(Text) 0.63(Med) 1.19(Lar)* -0.47(Sma) 0.33(Sma) 1.09(Lar)* -1.1(Lar) -0.80(Med) 0.45(Sma) –

***p<0.001, **p<0.01, *p<0.05
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Fig. 8: Percentages of program comprehension time for projects
in different phases.

TABLE 23: One-way ANOVA test for percentage of time that
developers in projects of maintenance and development phases
spend on program comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Phase 1 1,802 1,802 23.7 5.8e−6***

Residuals 77 5,847 75.9 – –
***p<0.001, **p<0.01, *p<0.05

comprehension. Since F value of one-way ANOVA is 23.7,
and the P-value is less than 0.001, we conclude that there
is statistical significance for the time developers spent on
program comprehension in projects of maintenance and
development phase.

Next, we also apply pairwise T-test with Bonferroni
Correlation and Cohen’s d to test whether the difference
between these two groups (maintenance and development)
are statistically significant and the effect sizes are substan-
tial. The P-value is less than 0.001, and Cohen’s D is 1.11,
which corresponds to large effect size. Thus, we conclude
that developers working on maintenance projects spend
more time on program comprehension than these working
on development projects.
Two-way ANOVA Analysis. Here, we would like to inves-
tigate the interaction effects of the project phases and the
applications used for program comprehension, and we
apply two-way ANOVA to test the statistical significant.
Table 24 presents the results of two-way ANOVA test for

TABLE 24: Two-way ANOVA test for the interaction effects
of the project phases and the applications used for program
comprehension.

Factor DF Sum Sq. Mean Sq. F Value P Value
Phase 1 601 601 4.4 0.0372*

Application 2 11,323 5661.6 41.3 4.5e−16***
Phase:Appl 2 8,701 4354.8 31.8 6.3e−13***
Residuals 231 31,630 136.9 – –

***p<0.001, **p<0.01, *p<0.05

the interaction effects of project phases and the applications
used for program comprehension. We find that project phas-
es, applications used for program comprehension, and the
interactions of these two factors all have the statistically sig-
nificant impact on the percentage of time spent on program
comprehension.

Next, we also apply pairwise T-test with Bonferroni Cor-
relation and Cohens d to test whether the difference between
these two factors (i.e., project phases and applications) are
statistically significant and the effect sizes are substantial.
Table 25 presents the Cohen’s D and P-values for the inter-
actions of project phases and applications used for program
comprehension, we have the following conclusions:

1) Developers in development projects spend more
time on program comprehension inside the web
browsers than these in development projects using
IDEs or text editors, respectively, and the effect size
are large. However, there is small effect size and
non statistical significance when comparing the time
on program comprehension by using IDEs and text
editors in development projects.

2) Developers in maintenance projects spend less time
on program comprehension inside the text editors
than these in maintenance projects using IDEs or
web browsers, respectively, and the effect size are
large. However, there is small effect size and non
statistical significance when comparing the time on
program comprehension by using IDEs and web
browsers in maintenance projects.

3) Developers in maintenance projects spend more
time on program comprehension inside the IDEs
than these in development projects using IDEs
(28.72% vs. 11.46%). And Developers in mainte-
nance projects spend less time on program com-
prehension inside the text editors than these in
development projects using text editors (5.71% vs.
13.72%). However, there is small effect size and non
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TABLE 25: Cohen’s D and P-values for the interactions of project phases and applications used for program comprehension.

Lang (Appl) Dev (IDE) Dev(Web) Dev(Text) Main (IDE) Main (Web) Main (Text)
Dev(IDE) – 1.28 (Large)*** 0.20 (Small) 1.48 (Large)*** 1.21 (Large)*** -0.53 (Medium)
Dev(Web) -1.28 (Large)*** – -1.27 (Large)*** 0.24(Small) -0.21(Small) -1.98 (Large)***
Dev(Text) -0.20 (Small) 1.27 (Large)*** – 1.52 (Large)*** 1.25 (Large)*** -0.94 (Large)*

Main (IDE) -1.48 (Large)*** -0.24(Small) -1.52 (Large)*** – -0.47 (Small) -2.20 (Large)***
Main (Web) -1.21 (Large)*** 0.21(Small) -1.25 (Large)*** 0.47 (Small) – -2.24 (Large)***
Main (Text) 0.53 (Medium) 1.98 (Large)*** 0.94 (Large)* 2.20 (Large)*** 2.24 (Large)*** –

statistical significance when comparing the time on
program comprehension by using web browsers in
maintenance and development projects.

Interview Findings. There are several reasons for the dif-
ference in the percentages of program comprehension time
for developers of projects in development phase and main-
tenance phase. First, in the development phase, the project
team is relatively stable, but in the maintenance phase, some
developers will leave and some new developers will join the
project team. P6 stated: “The high turnover rate for project in
the maintenance phase causes the long program comprehension
time. Sometimes, even 50% of the developers will leave my team.
The newcomers need to spend more time to understand the source
code”.

Second, in the development phase, developers focus
on understanding requirements; while in the maintenance
phase, developers focus on understanding the source code.
P3 stated: “In the development phase, we spend more time on
understanding the requirements but less time on the source code.
Understanding requirements is high level, while understanding
code is low level, which will take much more time”.

Third, the lines of code (LOCs) of projects in the develop-
ment phase are much less than the LOCs in the maintenance
phase. Thus, the workload to understand the source code
in the development phase is much less than that in the
maintenance phase. P9 stated: “the search space for projects
in the development phase and maintenance phase is different.
The larger number of LOCs for projects in the maintenance
phase translates to the need to put more effort to searching for
relevant source code, and hence lead to more time on program
comprehension activities.”.

Implications. Based on the findings of RQ5, we have the
following implications:

Code Search. In RQ5, we found one important reason that
developers in maintenance projects spend more time on
program comprehension is the increasement of source code
and relevant documentation. So, a effective code search tool
can help developers find the target information quickly.
Furthermore, if such code search tool can link the source
code to other materials during software development and
maintenance, this will make developers understand source
code more effectively.

Developer Turnover Management. We also found the high
developer turnover rate in maintenance phase make de-
veloper spend more time on programming comprehension.
Many researchers have studied developer turnover. For
example, Mockus finds that only leavers have relationship
with software quality since the loss of knowledge and
experience [29]. On the contrary, Foucault et al. find that
newcomers have a relationship with quality and leavers do

not have such relationship [14]. Understanding developer
turnover can help the company retain talented developers
and reduce the loss due to developers departure. The talent-
ed developers who remain in the project can spend less time
on programming comprehension. This is one very important
factor that makes the project success.

Developers of projects in the maintenance phase on aver-
age spend a higher percentage of their time on program
comprehension activities than developers of projects in the
development phase. A statistical test shows that the difference
is significant.

5 DISCUSSION

5.1 Different Settings of Reaction Time (RT)
In this study, we set reaction time (RT) value to 1 when com-
puting programming comprehension time. This might be a
threat to validity. The range of RT value is usually from 0.5
to 1.5 seconds, which depends on different human factors
(e.g. personality, age, etc.) and the task on the hand [49].
Hence, we also try different RT values ([0.5, 0.8, 1, 1.2, 1.5])
to investigate the effects on our findings. Table 26 shows
the average percentage of time developers spend on com-
prehension, navigation, editing, and others in different RT
values. We find that the larger the RT value is, the less
the percentage of comprehension time is. On the other hand,
the percentage of navigation time become larger as the RT
value increases. This result makes sense because all inter-
vals that is larger than RT among developers’ interactions
are computed as comprehension in our study. However, we
think these results in different RT values do not affect
our findings. In all results, the comprehension activities
take more than half of developers’ working time, which is
consistent with previous studies [12], [13], [21], [28], [53].
Furthermore, the results of all individual developers in our
study is consistent with the average results in Table 26. So,
the different RT values do not affect our findings about
the effect of program language, developer experience, and
project phase on program comprehension. Moreover, as we
shown in Section 3.2.6, when we set RT to be 1 second,
our approach shows similar results as manual annotations.
Thus, in this paper, we set RT as 1 second.

5.2 Cross-Company Analysis
Our study collect data from two companies Hengtian and
IGS. Projects A and G are fom IGS, and projects B to F are
from Hengtian. Here, we would like to investigate whether
the developers in these two companies spend similar time
on program comprehension. The answer of this question
will affect the generalizability of our study, e.g., if we
find that developers in different companies spend different
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TABLE 26: The average percentage of time developers spend
on comprehension (Compre.), navigation, editing, and others
in different RT values.

RT Compre. Navigation Editing Others
0.5 61.05% 17.01% 5.70% 16.24%
0.8 59.15% 21.38% 5.50% 13.97%
1.0 58.87% 24.83% 6.36% 9.94%
1.2 56.78% 25.85% 4.95% 12.42%
1.5 53.03% 31.28% 4.45% 11.23%
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Fig. 9: Percentages of program comprehension time for devel-
opers in Hengtian and IGS.

time on program comprehension, company will become a
dominant factor to affect time on program comprehension.
One-way ANOVA Analysis. Figure 9 presents the percentage
of time spent on program comprehension activities for de-
velopers in Hengtian and IGS. We notice that on average,
developers in Hengtian and IGS spend 57.49% and 57.68%
of their time on program comprehension activities. Table 27
presents the results for one-way ANOVA test for percentage
of time that developers in projects of maintenance and de-
velopment phases spend on program comprehension. Since
P-value is larger than 0.05, we conclude that there is non-
statistical significance for the time developers in the two
companies spent on program comprehension.
Two-way ANOVA Analysis. We would like to investigate the
interaction effects of the companies and the applications
used for program comprehension, and we apply two-way
ANOVA to test the statistical significant. Table 28 presents
the results of two-way ANOVA test for the interaction
effects of companies and the applications used for program
comprehension. We find that the interaction of these two
factors has the non-statistically significant impact on the
percentage of time spent on program comprehension.

TABLE 27: One-way ANOVA test for percentage of time that
developers Hengtian and IGS spend on program comprehen-
sion.

Factor DF Sum Sq. Mean Sq. F Value P Value
Company 1 0.7 0.7 0.007 0.9338
Residuals 77 7649 99.3 – –

***p<0.001, **p<0.01, *p<0.05

TABLE 28: Two-way ANOVA test for the interaction effects of
companies and the applications used for program comprehen-
sion.

Factor DF Sum Sq. Mean Sq. F Value P Value
Company 1 0 0.2 0.0001 0.9711

Appl 2 11,323 5661.6 37.4 4.0e−16***
Comp:Appl 2 547 273 1.6 0.2117
Residuals 231 40,393 174.9 – –

***p<0.001, **p<0.01, *p<0.05

From the above analysis, we conclude that developers
in these two companies spend similar time on program
comprehension, thus our results can be generabilized to
other companies.

5.3 Feedback from Participants
After completing our paper, we have also sent the results
section to the interviewees, and asked them to validate
the findings. All of them agree that our observations and
writing are consistent with their raised intents during the
interviews. Some comments we collected are:

• I really like the (nine) root causes concluded by
the authors. I will ask my team members to write
comments in source code, to reduce the difficulty in
program comprehension.

• It is interesting to note (that) developers spend most
of the time on program comprehension inside Web
browser. Although I know I use web search fre-
quently, I never notice that I even spent more time
inside Web browsers than inside IDEs. Yes, I agree
context switch will cause an increase of time spent
on program comprehension.

• Java and C# are two most popular programming
languages, and I have experience on both of the two
programming languages. From my experience, when
I develop Java projects, I spent more time on code
understanding, since we would use a large amount
of external code. I also agree that third-party library
usage might be the cause of the difference of the time
spent on program comprehension between Java and
C#.

• With the development experience increased, the time
spent on program comprehension will be decreased.
It is a useful finding, since we can encourage devel-
opers work hard when they are young, so when they
become senior, they can have more time to relax.

• As an outsourcing company, there are many projects
in the maintenance phases. Sometimes, the boss think
maintaining a project is much easier than developing
a project, and thus we should deliver a maintenance
project on time. However, we (developers) do not
agree with that. The finding of the paper provides us
the evidence, and we will use it to argue with our
boss next time.

5.4 Limitations

Threats to Construct Validity. One of the threats to con-
struct validity relates to the ability of ActivitySpace to accu-
rately infer program comprehension activities. There could
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be activities that are wrongly labelled. Still, we have done
many steps to minimize errors, e.g., detecting and removing
idle time, ignoring accesses to websites which are irrelevant
to software development, etc.

Another threat relates to wrong conclusions that we
draw about participant’s perceptions from their comments.
To minimize this threat, we have recorded our interviews
and listened to it several times. Also, the first two authors
work together to ensure that the results are accurate. After
completing our paper, we have also sent it to the intervie-
wees, and asked them to validate the findings. All of them
agree that our findings are consistent with their interviews.
Threats on External Validity. The number of participants
that we monitor and interview is limited. In total, we
monitor 79 developers for a total of 3,244 working hours
and interview 10 of them. All these developers come from
2 companies. Although these numbers may limit the gen-
eralizability of our study, the number of developers we
interview are on par with other interview-based studies [31],
[16], and the number of developers we monitor are more
than other studies that also monitor developers, e.g., [21],
[28]. Furthermore, many of our participants have worked
in many other companies before, and have experience with
developing projects in various programming languages and
sizes. Besides, our study is setup in two companies, and
our cross-company analysis shows that the time spent on
program comprehension on these two companies are non-
statistically significant, however, it is still not clear whether
our conclusions are still held if we analyze the time spent
on program comprehension for more developers from more
companies. In the future, we plan to reduce these threats
further by monitoring and interviewing an even larger
number of developers across more companies over a longer
period of time.

.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a large-scale field study on how
program comprehension is performed in practice. We record
the activities of 79 developers working on 7 real industrial
projects spanning a period totaling of 3,244 working hours.
We analyze this recorded data, and we find that on average,
developers spend up to ∼58% of their time on program
comprehension, and they frequently use web browsers and
document editors to perform program comprehension ac-
tivities. Our findings are validated through relatively exten-
sive empirical data long-held assumptions about program
comprehension, including that senior developers spend less
time on program comprehension, more time on program
comprehension is required in the maintenance phase, and
that program comprehension activities occupy a non-trivial
amount of a developer’s day.

In the future, we plan to send out a survey to study prac-
titioners’ perception on program comprehension to better
understand the conclusion of our study, and design better
program comprehension tools to help developers improve
their productivity, e.g., we plan to integrate online resources
into IDEs. We also plan to mine historical expert/senior
developers’ program comprehension behaviors to recom-
mend good behaviors to novice/junior developers. More-

over, we plan to conduct an even larger field study with
more projects and developers to further reduce the threats
to validity and more precisely quantify the effect of different
factors on program comprehension.
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[40] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg.
Measuring and modeling programming experience. Empirical
Software Engineering, 19(5):1299–1334, 2014.

[41] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting
navigation in software. In Program Comprehension, 2005. IWPC
2005. Proceedings. 13th International Workshop on, pages 173–175.
IEEE, 2005.

[42] D. Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[43] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker. Towards automatically generating summary comments
for java methods. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 43–52. ACM,
2010.

[44] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Automatically
detecting and describing high level actions within methods. In
Proceedings of the 33rd International Conference on Software Engineer-
ing, pages 101–110. ACM, 2011.

[45] B. G. Tabachnick, L. S. Fidell, and S. J. Osterlind. Using multivari-
ate statistics. 2001.

[46] B. E. Teasley. The effects of naming style and expertise on program
comprehension. International Journal of Human-Computer Studies,
40(5):757–770, 1994.

[47] F. Thung, L. David, and J. Lawall. Automated library recommen-
dation. In 2013 20th Working Conference on Reverse Engineering
(WCRE 2013): Proceedings: Koblenz, Germany, 14-17 October 2013,
pages 182–191, 2013.

[48] A. Von Mayrhauser and A. M. Vans. Program comprehension
during software maintenance and evolution. Computer, 28(8):44–
55, 1995.

[49] G. M. Weinberg. The psychology of computer programming. 1998.
[50] A. Whitaker. What causes it workers to leave. Management Review,

88(9):8, 1999.
[51] E. Wong, J. Yang, and L. Tan. Autocomment: Mining question

and answer sites for automatic comment generation. In Automat-
ed Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 562–567. IEEE, 2013.

[52] J. H. Zar. Significance testing of the spearman rank correlation co-
efficient. Journal of the American Statistical Association, 67(339):578–
580, 1972.

[53] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon. Principles of software
engineering and design. Prentice-Hall Englewood Cliffs, 1979.


