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Abstract

Blockchain systems, such as Ethereum, employ an account-
based model, where each account is uniquely identified by an
address. As the fundamental interface for user interaction and
asset security, addresses are critical but also pose significant
risks when misused. In this paper, we systematically reveal
and analyze a class of risks termed Address Misuse, which
includes two categories: Contract Account (CA) Misuse and
Externally Owned Account (EOA) Misuse. Specifically, CA
Misuse arises when users mistakenly treat non-contract ad-
dresses (NCAs) as CAs, while EOA Misuse occurs when
users interact with EOAs whose private keys are exposed. For
each category, we reveal the underlying mechanisms and also
introduce previously undisclosed attack vectors that enable
attackers to exploit these vulnerabilities for profit. To evalu-
ate their prevalence and impacts, we first construct a dataset
from GitHub and Stack Exchange, which contains addresses
of various blockchain networks. This dataset includes 10 mil-
lion candidate addresses for misuse analysis and 16 million
exposed private keys. We then perform a large-scale on-chain
analysis of their associated transactions on Ethereum and
BSC. By combining heuristic rules, transaction pattern anal-
ysis, and symbolic execution, we identify 65,340 high-risk
address instances, with associated asset losses amounting to
about 127k ETH and 17.7k BNB, equivalent to over $574.8M.
We evaluate the accuracy of our detection methods to ensure
the reliability of the results, achieving an overall precision
of 99.11%. Besides, our empirical evaluation also reveals
two novel, previously undisclosed attack vectors, providing
real-world evidence of how attackers actively exploit users’
address misuse for profit.

1 Introduction

Blockchain technology, with its decentralized, transparent,
and immutable nature, has enabled a wide range of applica-
tions [63]. Most blockchains, such as Ethereum [10], adopt an
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account-based model, where each account represents a state
entity on the ledger and is uniquely identified by an address.
These addresses are the core interface for user interaction with
blockchain systems, which serve as unique user identifiers,
asset containers, and entry points for smart contract execu-
tion. Consequently, the correct and secure use of addresses is
critical for ensuring asset protection and interaction validity.

Despite their importance, addresses also constitute a poten-
tial vector for security risks. Due to negligence, misoperation,
or lack of knowledge, users may interact with unsafe or un-
intended addresses, even directly transferring tokens to these
addresses. Such incorrect address interactions, collectively
referred to as Address Misuses in this paper, have caused
prevalent and high-volume loss of assets in the real world.
To systematically understand and measure this risk, our work
conducts the first large-scale measurement of address mis-
uses. We classify address misuses into two types based on
account categories: Externally Owned Accounts (EOAs) and
Contract Accounts (CAs) [16]. EOAs are controlled by pri-
vate keys and mainly used for asset transfer, while CAs are
deployed smart contracts invoked through functions. Misuse
in either case can cause irreversible loss, which highlights the
need for a comprehensive measurement.

The first type, Contract Account (CA) Misuse, occurs when
users mistakenly treat non-contract accounts (NCAs) as CAs.
An NCA refers to an address without deployed contract
code, which includes EOAs and not-yet-deployed contract
addresses. This misuse often arises from address reuse or con-
fusion across different blockchain networks. For example, on
the Sepolia testnet [24], the address 0xC532...008 hosts an
unofficial deployment of the UniswapV2Router02 [58] con-
tract. This address is widely referenced on developer Q&A
platforms such as Stack Exchange [27-29] and is frequently
used for testing purposes. However, on the Ethereum mainnet,
the same address is an NCA. Many users mistakenly send
function call transactions (even with ETH attached) to the
mainnet addresses, under the false assumption that it corre-
sponds to the same contract. As a result, the call is processed
as a simple transfer, and any attached funds become trapped.



The second type, Externally Owned Account (EOA) Mis-
use, arises when users interact with EOAs whose private
keys are exposed. These exposed keys may originate from
test accounts in public code repositories or examples on de-
veloper Q&A platforms. A typical example is the address
0x6273...E£57, a default account in the popular Solidity
contract development suite Truffle [56]. This account is pre-
generated for local testing, with its private key publicly avail-
able in Truffle’s codebase [55]. However, some users unknow-
ingly use this account in real-world blockchain transactions,
unaware that it can be controlled by anyone. Consequently,
any funds sent to this address can be transferred out immedi-
ately by anyone knowing the exposed private key.

To investigate the prevalence and security impact of real-
world address misuses, we present an approach for the detec-
tion. Motivated by a manual examination of real-world misuse
instances, we extract their behavioral features and transaction
patterns. The designed detection framework combines transac-
tion pattern analysis and symbolic execution. Specifically, our
tool first traverses all transactions of candidate addresses and
matches them against predefined misuse patterns. It further
applies symbolic execution to examine whether the involved
contract logic contains malicious transfers. Addresses that sat-
isfy these rules are marked as misuse cases, and the associated
asset losses are recorded.

In the evaluation, we first construct a dataset from GitHub
and Stack Exchange, which contains over 10 million candidate
addresses and 16 million exposed private keys across different
blockchain networks for. Then, using our proposed detection
approach, we analyze the transactions of these addresses on
Ethereum mainnet [21] and BNB Smart Chain (BSC) [9] to
identify misuse instances and quantify associated financial
losses. To ensure the reliability of our evaluation, we manually
validate our approach on a randomly sampled ground truth
dataset, confirming that it achieves an overall precision of
99.11% in detecting address misuses.

The evaluation results demonstrate that both CA Mis-
use and EOA Misuse are widespread and result in sig-
nificant financial losses. From the collected dataset, we
identify 49,344 high-risk addresses related to CA Misuse
with losses of 22,738.41 ETH and 8,681.41 BNB, and
15,996 high-risk addresses related to EOA Misuse with losses
of 104,244.53 ETH and 9,045.29 BNB. In total, all these
65,340 misuse address instances involve 2.5M transactions,
resulting in financial losses of approximately 127k ETH and
17.7k BNB, valued at over $574.8M. These findings high-
light critical and unrecognized security weaknesses in both
user behavior and development practices, demonstrating the
prevalence and severity of Address Misuse.

Furthermore, our empirical evaluation reveals two new at-
tack vectors where real-world attackers actively exploit users’
address misuse to conduct profitable attacks. In CA Mis-
use, we find 469 cases where attackers leverage cross-chain
address reuse by deploying contracts on testnets and later

planting malicious contracts at the same addresses on main-
nets to transfer trapped funds. These attack result in the loss
of 3,446.37 ETH and 431.79 BNB. Among these, 89.76%
of malicious contracts implement direct transfer logic, while
6.82% adopt proxy contract patterns. In EOA Misuse, we
find 17,270 cases where attackers exploit the new EIP-7702
mechanism to delegate control of exposed EOAs to malicious
contracts, allowing them to instantly drain incoming funds.
This vector has led to losses of 25.86 ETH and 33.45 BNB,
exhibiting highly patterned with the top three malicious con-
tracts alone accounting for 78.71% of EIP-7702 delegations.

The main contributions of our work are as follows:

* We conduct the first systematic analysis of address mis-
uses on blockchain and define two types of address mis-
uses based on whether CAs or EOAs are involved.

* We present a tool that combines large-scale off-chain
data mining with on-chain transaction and contract anal-
ysis to detect and measure real-world address misuse.

* Our empirical evaluation demonstrates the prevalence
and security impact of real-world address misuse. The
empirical evaluation identifies 49,344 CA Misuse and
15,996 EOA Misuse instances on Ethereum and BSC,
with total financial losses reaching 127k ETH and 17.7k
BNB, valued at $574.8M.

* Our empirical evaluation reveals two previously undis-
closed attack vectors, providing real-world evidence of
how attackers actively exploit address misuses for profit.
We also provide practical recommendations for develop-
ers and users to mitigate address misuse.

2 Background

2.1 Blockchain Accounts and Addresses

In blockchain, an address is the unique identifier for a user or
smart contract, which can be classified into two types [35]. (1)
Externally Owned Addresses (EOAs), which are controlled
by the private key holder and are the only entity that can sign
and initiate transactions [4]. (2) Contract Addresses (CAs),
which are controlled by a smart contract, not by a private key
directly. CAs are deterministically generated during contract
deployment. EOAs deploy contracts by sending a special
transaction that invokes the CREATE opcode [3].

This study also defines another category called Non-
Contract Address (NCAs), which refers to addresses without
contract code. NCAs include both EOAs and Potential Con-
tract Addresses (PCAs). Since the address of a CA can be
precomputed, any yet-unused address that could host a con-
tract in the future is classified as a PCA. Similarly, a PCA
does not have a corresponding private key to directly control
it. Its control can only be claimed by deploying a contract.



2.2 Contract Address Calculation

Contracts are deployed when an EOA sends a transaction
that invokes the CREATE opcode [45]. Such a transaction
has an empty to field and a data field containing the
contract’s creation bytecode, which includes the compiled
runtime bytecode and initialization code. Upon processing,
the EVM executes the creation bytecode, initializes the
contract’s storage, and records its runtime bytecode at
the newly created CA [37, 38]. The CA is computed as
keccak256 (rlp_encode (deployer_address, nonce)),
where nonce is a transaction counter for the deploying
address [50]. The nonce starts at 0 and increments by one
with each transaction. Thus, the contract address calculation
depends solely on the deployer’s address and its nonce.
Since nonces are maintained independently across different
blockchains, a developer can deliberately adjust the nonce to
deploy distinct contracts on multiple chains (e.g., Ethereum
and BNB Chain) that share the same contract address.

2.3 Calling Smart Contract Functions

Users interact with smart contracts by sending transactions
to their addresses [42]. The transaction’s to field is the target
contract address, and its input data field contains the Func-
tion Selector and the encoded Arguments. The function se-
lector is the first four bytes of the Keccak256 hash of the
function signature. For example, the function selector for
transfer (address,uint256) is 0xa9059cbb. Arguments
encoding follows the ABI specification [17]. The EVM uses
the input data to identify and execute the target function.

A critical but often overlooked mechanism is that when a
transaction containing function call data is sent to a NCA, the
transaction does not fail or revert but executes successfully.
The EVM simply treats it as a regular transfer, ignoring the
input data. Any attached native token, e.g., ETH and BNB, is
still transferred to that address successfully. This is the core
technical cause of financial loss in Address Misuse.

24 EIP-7702

EIP-7702 is a recently introduced Ethereum improvement
proposal (EIP) in Pectra upgrade [20]. It allows EOAs to
authorize a special type of transaction that delegates its execu-
tion rights to a designated smart contract [11]. This effectively
transforms the EOA into a CA. The EOA’s code field is set
to 0xef0100 || address, where 0xef0100 is a fixed iden-
tifier and address denotes the delegate contract’s address. The
code field remains until the EOA revokes the delegation. Al-
though designed to enhance the flexibility of EOAs, EIP-7702
introduces new risks. It provides a more efficient mechanism
for EOA Misuse attacks. An attacker who knows the exposed
private key can use EIP-7702 to delegate the compromised
EOA to a malicious contract, which is pre-designed and pre-
deployed to sweep funds.

3 Address Misuses

3.1 Preliminaries

In our model, the blockchain system is composed of users, ad-
dresses, and transactions. Address types include EOAs, CAs,
and NCAs. Users interact with the system by sending trans-
actions to the addresses. These transactions aim to transfer
assets or invoke contract functions. Within this system, be-
nign users intend to correctly transfer assets or call contract
functions, while malicious users monitor the blockchain to
capture misused funds.

System model. We define Address Misuse as the scenario
where a user interacts with an incorrect or unsafe address.
This threat does not rely on the execution of malicious code.
Instead, it originates from users’ misunderstanding of address
types or neglect of the blockchain’s network context. Address
Misuse occurs when a user sends a transaction under false
assumptions about an address’s type or security state, leading
to irreversible fund loss. In this paper, we focus on CA Misuse
and EOA Misuse, two primary categories of this threat.

3.2 CA Misuse

Normal interactions with CA. In a normal interaction with a
smart contract, a user sends transactions to invoke a function
on a CA, expecting the deterministic execution defined by
its code. Such transactions are either executed correctly, or
reverted to protect user assets from accidental loss.

CA Misuse. CA Misuse occurs when users mistakenly treat
a non-contract address Ayca as their target contract address
Ciarger and sends a function call transaction £x f,, With value
v (e.g., ETH). Since Ayca contains no executable code, EVM-
based blockchains process #x s, as a successful simple trans-
fer instead of reverting it. As a result, the attached value v is
credited to the balance of Aycs and becomes trapped perma-
nently. The critical risk of CA Misuse lies in the silent success
of the transaction: users often do not realize the loss until they
check the expected outcome.

These misused NCAs may include EOAs, typically due to
input errors, or PCAs that arises from user’s confusion about
address reusability across different networks. The core risk
lies in the fact that the same blockchain addresses exhibit en-
tirely different behaviors across networks; users often assume
that a contract deployed on one chain also exists at the same
address on another chain.

Example. We analyze a real-world example about
UniswapV2Router02 [58] contract on the Sepolia testnet [24]
to demonstrate the process of CA Misuse, as shown in the
User part of the green line segment box in Figure 1. The
misused address, 0xC532...4008, appears many times as
an answer in Stack Exchange posts [27-29] with more than
102k views. On the Sepolia testnet, this address' is de-

Ihttps://sepolia.etherscan.io/address/0xC532. ..4008
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Figure 1: CA Misuse and Attack Process on Address

0xC532...4008 (Green line segment box: User-Induced CA
Misuse; Red line segment box: Attacker Exploitation)

ployed with the UniswapV2Router02 contract on May 9,
2023 (block height: 3,448,360). Users call functions like
swapETHForExactTokens, swapExactETHForTokens, and
addLiquidityETH for testing purposes. By the end of August
2025, this address has approximately 158,775 transactions on
Sepolia testnet, indicating its high-frequency use.

However, on Ethereum mainnet, interactions with this same
address” show the CA Misuse. Before October 2024 (mainnet
block height: 20,902,977), the address remained a PCA with
no contract code. Despite this, there were 88 transactions
in which users attempted to initiate function calls to this
address, such as transactions 0x2c2c” and 0x76d2*. These
users intend to interact with the Uniswap V2 Router, calling
the swapETHForExactTokens function and attaching ETH.
Since there is no contract deployed at the address at that time,
any function call to it is processed as a simple transfer. The
transactions do not revert, and the attached ETH becomes
trapped at the address.

3.3 EOA Misuse

Normal interactions with EOA. When transferring funds
to an EOA, the user expects the recipient to be a trusted peer
who exclusively controls the corresponding private key.

EOA Misuse. EOA Misuse occurs when a user sends a trans-
action tx;, transferring assets v to EOA ;054 Whose private
key keyexposea 1s publicly exposed. An exposed private key
means that malicious users can easily obtain it and take full
control of the corresponding address and its assets. They
often use automated programs such as MEV bots to con-
tinuously monitor EOA .xposeq- Upon detecting the incoming
transfer £x;,, they immediately use keyeyposeq tO create, sign,
and broadcast an outgoing transaction tx,,, to steal the funds.
Any funds arriving at EOAxposeq are instantly drained by the

Zhttps://etherscan.io/address/0xC532...4008
3https://etherscan.io/tx/0x2c2c. ..e214
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fastest malicious actors. The victim user’s loss is immediate
and irreversible.

In practice, these private key exposures originate from var-
ious sources, including: (1) Public Code Repositories. Code
hosting platforms like GitHub are a common source for pri-
vate key exposures. For example, some blockchain develop-
ment frameworks such as Truffle [56] or Hardhat [43] provide
a default set of test accounts with hard-coded private keys in
their documentation or source code to facilitate local testing.
Users may mistakenly believe these accounts are randomly
and securely generated by the tool and use them in mainnet
transactions. Additionally, some developers unintentionally
commit configuration files or scripts containing private keys
when uploading projects, resulting in exposure. (2) Online
Q&A Platforms. Developers sometimes provide example pri-
vate keys and addresses when responding to questions on
platforms such as Stack Exchange. These addresses may be
default public test accounts or attacker-controlled addresses.
Inexperienced users may copy and reuse them directly in their
projects, leading to mistaken interactions on the mainnet.
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Figure 2: EOA Misuse and EIP-7702 Attack Process on
Address 0x6273...Ef57 (Green line segment box: User-
Induced EOA Misuse; Red line segment box: Attacker Ex-
ploitation via EIP-7702)

Example. As shown in the User part of the green line segment
box in Figure 2, the address 0x6273. . .E£57 is a well-known
control-exposed address. This address originates from Truf-
fle [56], where this address is included as one of the default ac-
counts pre-generated for testing. Its private keys are exposed
in the Truffle publicly available codebase [55]. Attackers can
easily obtain the key by reading the source code or launching
the Truffle development environment.

Users typically employ this default account for local testing.
However, some mistakenly use it on the Ethereum mainnet’,
either due to confusion about network settings or the false
assumption that the account is securely generated. Once funds
are transferred to this address, any external attacker can use
the exposed private key to take control and withdraw the

Shttps://etherscan.io/address/0x6273...E£57
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assets. On the Ethereum blockchain explorer Etherscan [21],
itis tagged as “Compromised” and includes the warning: “DO
NOT SEND FUNDS TO THIS ACCOUNT! The seed phrase
for this account is widely known, and any funds sent to this
address will be immediately stolen”.

4 New Attacks Exploiting Address Misuse

Our measurement in Section 3 focuses on the phenomenon
of address misuses. In practice, the most common cause of
address misuses is user error, where, in the absence of any
attacks, users mistakenly transfer their funds to incorrect ad-
dresses. While these passive address misuses have led to
widespread and significant consequences, we also find that,
in many cases, address misuses can be actively exploited by
attackers for financial gain, thereby amplifying the security
impact of such misuses. During our measurement study, we
discover two new attack methods of actively exploiting Ad-
dress Misuse to steal user funds, one corresponding to CA
Misuse and the other to EOA Misuse. To the best of our
knowledge, these attacks are not fully disclosed in prior re-
search. Notably, both methods represent only special cases of
Address Misuse, which involves an attacker maliciously lever-
aging mechanisms such as CA calculation or EIP-7702 to set
address “traps” and attract users into interacting with them
during address misuse. While our work focuses on measuring
the impact of Address Misuse, the two new attacks also pro-
vide deeper insights and findings about security implications
of address misuses.

4.1 CA Misuse Attack via CA Calculation

CA Misuse enables a new attack method that has not been
disclosed before. Attackers can register a test version of the
popular contract on the testnet and disseminate it, attracting
users to use it. Then, some users may mistakenly use this
address on the mainnet and experience CA Misuse, leading
to a loss of real funds. Once a sufficient amount of funds
accumulates at this address, the attacker can exploit the CA
calculation mechanism to deploy a carefully crafted malicious
contract at the same address on the mainnet, stealing all the
misused funds.

We continue with the address example in Section 3.2. As
shown in Figure 1, the UniswapV2Router02 contract on the
testnet (0xC532...4008) is highlighted in the "Attacker" sec-
tion of the red line segment box. After a notable amount of
ETH accumulates at the address on the mainnet due to user
CA Misuse, the deployer of the testnet UniswapV2Router02
contract, i.e., the attacker, deploys a malicious contract to the
same mainnet address on October 6, 2024 (mainnet block
height: 20,902,977). The attacker achieves this by exploiting
the deterministic CA derivation mechanism described in Sec-
tion 2.2. As long as the deployer account and its nonce are

the same, the contract address remains identical. We decom-
pile the malicious contract bytecode, and its simplified core
logic is shown in Figure 3. After successfully deploying the
malicious contract, the attacker calls its withdraw function®.
This transaction drains all the previously trapped funds from
the address, totaling 3.78 ETH.

icontract MaliciousWithdraw {
address _withdraw;
function withdraw () public payable {
4 (v0,)=_withdraw.call () .value (this.balance) ;
require (bool (v0)) ;}
6 function withdrawETH (address to, uint256 amount)
public payable {
require (msg.sender == _withdraw,"only owner");
8 (v0,)=to.call() .value(amount) .gas (msg.gas);} }

Figure 3: Decompiled malicious contract at the 0xC532. ..
4008 address on Ethereum

It is worth noting that the official UniswapV2Router02
address on Sepolia testnet provided by the official Uniswap
documentation is 0xeE56. . .CfE3 [59]. This fact further con-
firms that the misused address 0xC532...4008 is likely de-
ployed and propagated by an attacker. It also highlights the
risk of using addresses from unofficial sources without careful
verification against project documentation.

4.2 EOA Misuse Attack via EIP-7702

Recent upgrades on Ethereum and BNB Chain introduce the
EIP-7702 proposal [11], which brings a new attack vector
for EOA Misuse. Attackers can construct EIP-7702 transac-
tions to delegate exposed EOAs to pre-deployed malicious
contracts. Any funds transferred to the EOA subsequently
trigger the delegated malicious contract, which automatically
transfers them out.

The new attack vector introduced by EIP-7702 could make
the EOA Misuse attacks more atomic and profitable. Nor-
mally, to conduct an EOA Misuse attack, the attacker must
monitor on-chain transfer operations to addresses with ex-
posed private keys. Once such incoming transfers are de-
tected, the attacker needs to compete in gas wars, e.g., by
using MEV bots, to withdraw the trapped funds before other
potential attackers do. However, with the new attack vector
introduced by EIP-7702, the transfer-in and transfer-out of
funds occur within a single transaction, avoiding the need to
wait for the user’s deposit transaction to finalize before the
attacker initiating a withdrawal. Additionally, it eliminates the
need to compete in gas wars with other MEV bots, allowing
the attackers to keep the saved gas fees as additional profit.

We continue with the EOA example in Section 3.3, i.e., the
default account from the Truffle (0x6273...E£57), as shown
in the Attacker part of the red line segment box in Figure 2. In

https://etherscan.io/tx/0xbed0. .. 7cae
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its recent transaction history7, we observe this new EIP-7702
based attack. The attackers use its exposed private key to con-
struct, sign, and submit an EIP-7702 transaction, delegating
it to a malicious contract pre-deployed at another address.
As a result, the EOA account becomes fully controlled by
the malicious contract. The core logic of the contract after
decompiling is shown in Figure 4. When users send funds,
it automatically triggers the malicious contract’s receive ()
function, transferring the funds to another address.

icontract CrimeEnjoyor {
address public destination;
receive () external payable {
require (destination != address (0), ’Not
initialized’);
payable (destination) .transfer (msg.value);} }

Figure 4: Malicious contract delegated by 0x6273...Ef57
address via Eip-7702 on Ethereum

S Detecting Real-World Address Misuses

To detect real-world address misuses and evaluate their preva-
lence and security impact, we propose an approach for address
misuse detection, which combines off-chain address data min-
ing and on-chain transaction and contract analysis.

5.1 Overview

As shown in Figure 5, our workflow for detecting address
misuse consists of four main stages. First, we begin by col-
lecting addresses and private keys from mainstream developer
platforms, such as GitHub and Stack Exchange. Then, the on-
chain data fetching component leverages the Etherscan API
to retrieve the complete transaction history and any existing
bytecode of the collected addresses. Next, as the core stage
of the workflow, the misuse analysis component examines
the retrieved on-chain data. Specifically, it iterates through
all transactions for each candidate address, matching them
against predefined misuse patterns. Lightweight symbolic ex-
ecution is also employed to determine whether the associated
smart contract contains malicious logic. Finally, it records all
detected misuse addresses, quantifies the total financial losses,
and outputs the final detection results.

5.2 Data Collection

Our analysis focuses on platforms that may propagate ad-
dresses that can lead to misuse. We collect our candidate
address and private key set from two primary sources: the
code hosting platform GitHub [32] and the programming
Q&A community Stack Exchange [31].

Thttps://etherscan.io/tx/0x808a. ..fadd
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Figure 5: The Overall Workflow for Measuring Address Mis-
use Loss.

Public Code Repositories. We perform large-scale data min-
ing on GitHub. Using blockchain-related keywords such as
“ethereum” and “solidity” as tags, we search and download
repositories created between January 2015 and May 2025
through the GitHub API [33]. To ensure broad coverage, we
apply a snowball sampling strategy, iteratively discovering
new repository tags to expand our search scope. All used tags
are available in our open-source repository.

Online Q&A Communities. We utilize the public data
dump from Stack Exchange. Specifically, we download the
full archive provided by the Internet Archive as of April
2025 [6]. We select data from two sub-sites: Ethereum Stack
Exchange [30] and Stack Overflow [46]. The former is dedi-
cated to Ethereum-related programming questions, while the
latter contains a wide range of technical programming con-
tent, including Ethereum topics. Since both sites are part of
the Stack Exchange network, we collectively refer to their
content as StackExchange posts.

We use regular expressions to extract potential addresses
and private keys from the collected data to build our candidate
set. The specific regular expressions and our validation logic
are detailed in the Appendix A.

5.3 Data Analysis

To develop effective detection rules, we first search for and
manually audit a set of real-world misused addresses to sum-
marize their on-chain behavioral patterns. For CA Misuse,
we examine the official addresses of the top 100 most ac-
tive projects on Ethereum and BSC, as their large user bases
increase the likelihood of user misuse. We analyze whether
these addresses are reused across chains, for example, when
a project address on Ethereum is mistakenly used on BSC,
and summarize the characteristic transaction patterns of such
misuse cases. For EOA Misuse, we get the top 100 GitHub
repositories under the “Solidity” tag, extract all exposed pri-
vate keys, and analyze the transaction histories of their corre-
sponding addresses to summarize typical behavioral patterns.
Specifically, the transaction patterns of CA Misuse addresses
fall into two main categories: (1) function calls to addresses
that have no deployed code, and (2) function calls to addresses
that have code but before its deployment. The characteristics
of EOA Misuse address are that it shows a transaction pair
pattern of rapid fund sweeping caused by the mev bots in its
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transaction history, and has recently been delegated to a mali-
cious EIP-7702 contract. Based on these audited ground-truth
cases, two authors collaboratively formulate rules that capture
the behavioral patterns of misused addresses, which we then
apply to large-scale detection in Section 5.3.1 and 5.3.2.

5.3.1 Identifying CA Misuse

Our methodology for detecting CA Misuse is detailed in Al-
gorithm 1. The process begins by classifying each candidate
address into one of two subtypes based on its on-chain state,
and then applies specific detection rules.

Algorithm 1: Detecting CA Misuse

Input: A, Set of candidate addresses

Input: T, Map of transaction lists for each address

Output: R, List of CA Misuse instances: (addr, subtype, loss)
R0

-

2 Function IsCAMisuseCall (tx, addr):
3 return 7x.t0 = addr A hasFunctionCall(tx.input) A
—isHumanReadable(tx.input) A tx.gas < 30000

4 foreach addr € A do

5 Toaar <+ ']I'[addr]

6 tereate < getContractCreationTxTime(Tyqqr) // Check contract
creation tx to label addr as NCD or PCD.

7 if tcreare is Null then

subtype < "NCD"
// Rule 1: Function Call to No-Code Address
Trisk < {tx € Tyqar | TsCAMisuseCall(rx,addr)};

10 else
11 subtype < "PCD"
// Rule 2: Premature Call to a Code-Present Address
12 Trisk < {tx € Tyqq, | IsCAMisuseCall(tx,addr) Atx.time < tereqe }
13 loss Z,ngm " tx.value
14 if Joss > 0 then
15 ‘ R < RU{(addr,subtype,loss)}
16 return R

We define the two subtypes as follows:

¢ No-Code at Detection (NCD): This indicates the ad-
dress hosts no contract code at the time of our detection.
It could be an EOA or a pre-computed address that has
not yet deployed any contract.

¢ Present Code at Detection (PCD): This indicates that
the address contains deployed contract code at the time
of detection, and misuse occurs prior to deployment. The
subsequently deployed contract may be benign or mali-
ciously planted by attacker. We distinguish this subtype
to enable further analysis of active address misuse at-
tacks involving malicious contract deployment.

For addresses classified as NCD, we apply Rule 1 (Function
Call to No-Code Address). A transaction is flagged as a mis-
use if it contains a function call directed to an address with no
contract creation history. Specifically, the hasFunctionCall
function validates this by determining if the first 4 bytes (8 hex
characters) of the input data, which represent the function
selector, have a corresponding function signature. Further-
more, we filter out cases where the input field is used for
sending messages, i.e., Input Data Messages (IDM) [22]; the

isHumanReadable function performs this check by determin-
ing if the hexadecimal input data can be decoded into a
readable sequence of printable characters.

For addresses classified as PCD, we apply Rule 2 (Prema-
ture Call to a Code-Present Address). It flags transactions that
attempt a function call on a CA before the contract creation
timestamp. This scenario serves as a key precondition for the
new attack based on misuse and is highlighted in our analysis.
Fund-Sweeping Contract Analysis. For the PCD subtype
addresses where contracts are deployed, we perform further
analysis to determine whether these contracts are part of ma-
licious attacks, i.e., they are used to sweep the trapped fund
from the address. The attack follows a three-step pattern: (1)
Users mistakenly send funds to the address in premature calls.
(2) The attacker deploys a malicious contract after funds ac-
cumulate. (3) The attacker invokes the contract to drain all
accumulated assets.

To confirm this, we develop a lightweight symbolic ex-
ecution engine to analyze the bytecode of deployed con-
tracts without relying on the source code. Our tool first dis-
assembles the bytecode, partitions it into basic blocks, and
constructs a Control Flow Graph (CFG). During path ex-
ploration, we prune infeasible paths using a small timeout
(i.e., 1 second) to maximize efficiency. To further optimize
performance, our lightweight engine selectively solves con-
straints only for opcodes related to external calls, which is
sufficient to capture the transfer semantics required to iden-
tify fund-sweeping logic. Our lightweight engine balances
precision and performance by avoiding the semantic unrecog-
nition problems of bytecode pattern matching methods, while
achieving higher efficiency than fully symbolic execution.
For instance, when an execution path reaches a CALL op-
code, the engine retrieves the transfer amount from the main-
tained stack, and compares it with the contract’s entire balance
(address (this) .balance) or symbolic input parameters to
determine whether a full balance drain is occurring, thus mark-
ing the execution path as malicious. To handle proxy patterns,
our tool resolves the implementation address upon encoun-
tering a DELEGATECALL. If the address is hardcoded, we fetch
its bytecode for fund-sweeping analysis; if it is loaded from a
storage slot, we first retrieve the value from that slot and then
fetch the bytecode. The presence of a SELFDESTRUCT opcode
is also considered a definitive indicator of a fund-sweeping
design. If our analysis discovers any of these patterns, we
classify the contract as malicious.

5.3.2 Identifying EOA Misuse

Our method for identifying EOA Misuse consists of two parts:
a direct analysis of known private keys and a pattern-based
analysis of on-chain transactions. This process is demon-
strated in Algorithm 2.

We classify the results into two subtypes:

* KEY (Exposed Private Key): This subtype confirms



Algorithm 2: Detecting EOA Misuse

Input: K44, Set of candidate private keys

Input: A 4,4, Set of candidate addresses

Input: T, Map of transaction lists for each address

Output: R, List of EOA Misuse instances: (addr, subtype, loss)
1 R« 0

// Part 1: Direct Analysis to Private Keys

2 foreach key € K 4,q do

3 addr < deriveAddress(key) if addr € T then

4 loss < Y.{tx.value | tx € T[addr] Atx.to = addr}
5 if Joss > 0 then

6 | R+« RU{(addr,"KEY",loss)}

// Part 2: Pattern-based Analysis to Addresses

7 foreach addr € A ;g do

8 Tin < {tx € Tladdr] | tx.to = addr};

9 loss + 0
10 foreach in € T}, do

// Identify immediate fund-sweeping behavior

11 out < findSweepTxPair(in, T[addr])

12 if our # Null A isEIP7702Malicious(addr) then
13 ‘ loss < loss + in.value;

14 if [oss > 0 then

15 | R« RU{(addr,"ADDR",loss)}
16 return R;

that control is exposed because we have successfully
extracted the private key corresponding to the address.

¢ ADDR (Pattern-based Identified Address): This sub-
type represents a highly suspected exposure case identi-
fied through heuristic rules based on on-chain activity.

The Direct Analysis corresponds to the KEY subtype. For
each private key in our candidate set, we derive its public
address and sum the total value of all its incoming transactions.
This sum represents the confirmed financial loss.

The Pattern-based Analysis corresponds to the ADDR sub-
type and is applied to the address candidate set. This analysis
is necessary because relying solely on directly discovered
private keys is incomplete. Some keys might be removed
from public sources after their initial exposure, or their ex-
posure could be more subtle, e.g., derived from a public
mnemonic phrase or wallet recovery flaws. Therefore, we
apply the summarized heuristic rules to the address candidate
set to identify suspicious activity. As detailed in Algorithm
2, we iterate through the time-sorted transaction list of each
candidate address, first identifying characteristic patterns of
automated fund sweeping via the findSweepTxPair func-
tion. This function searches for pairs of incoming transactions
(in) and subsequent outgoing transactions (out) that satisfy
a set of strict conditions. Such transaction pairs match the
characteristic behavior of MEV bot attacks, where funds are
immediately transferred out after being received. We also
check additional conditions, such as the gasPrice of the
transaction pair and the balance of the address. The specific
logic of findSweepTxPair is provided in Appendix D. We
next apply the 1sEIP7702Malicious function to check if the
address is delegated to a malicious contract through the EIP-
7702 mechanism. This novel exploitation method is widely
adopted in automated attacks against addresses with exposed

private keys. If an address satisfies all the above rules, we
label it as an EOA Misuse case and calculate the fund loss.

EIP-7702-based Attack Analysis. As part of our detection
algorithm, 1sEIP7702Malicious leverages lightweight sym-
bolic execution to identify whether an EIP-7702 delegated
contract exhibits malicious behavior. It first retrieves the code
at the address. As described in Section 2.4, if the returned
bytecode begins with the prefix 0xef0100, it indicates that
the account has delegated its control to a contract via EIP-
7702 mechanisms. We then perform lightweight symbolic
execution on the delegated contract. The analysis focuses
on whether the fallback or receive function implements ma-
licious logic to transfer the contract’s entire balance or the
incoming msg.value, enabling the contract to immediately
transfer funds to an attacker-controlled address upon receipt.

6 Evaluation

We outline the following Research Questions (RQs) to evalu-
ate the impact of Address Misuse and the effectiveness of our
detection methods.

RQ1: Can our approach effectively detect Address Misuse?

RQ2: How prevalent and what impact does Address Misuse
have in real-world on-chain transactions?

RQ3: Can attackers exploit Address Misuses to make profits?

6.1 Dataset Construction

To perform our evaluation, we first conduct a large-scale
data collection from GitHub and Stack Exchange using the
method in Section 5.2. We gather 63,004 GitHub reposito-
ries, from which we extract 10,312,572 unique addresses and
16,305,399 private keys after deduplication. From Stack Ex-
change posts, we collect 15,342 addresses and 75,057 pri-
vate keys. Then, we conduct a large-scale on-chain analysis
on Ethereum and BSC. In the GitHub dataset, we find that
5,018,957 addresses and 4,189 private-key-matched addresses
have transaction records on Ethereum; 2,552,183 addresses
and 12,660 private-key-matched addresses have transactions
on BSC. In the Stack Exchange dataset, 6,044 addresses and
454 private keys are active on Ethereum, and 2,946 addresses
and 668 private keys are active on BSC. The total scale of
our data gathering and analysis reaches 53,416,740 addresses
instances and 5.76 % 10° transactions.

We applied the detection methods in Section 5.3 to these
addresses to identify potential misuse instances. Our frame-
work exhibits high scalability and efficiency, processing ad-
dresses in an average of 0.09 seconds, as 94.56% of them have
fewer than 10,000 transactions. The results are summarized
in Table 3, categorized by misuse type, blockchain, and data
source. We further classify Address Misuses into subtypes as
described in Section 5.3.1 and 5.3.2 to present the loss results.
We use the token price at the time of writing (May 2025) as a
reference, specifically $4,408 per ETH and $847 per BNB.



6.2 RQ1: Precision of our Approach

Before analyzing the specific impact of Address Misuse, we
first perform manual sampling validation to answer RQ1, in
order to assess the precision of Address Misuse instances iden-
tified by our automated analysis workflow. A high-precision
detection result is fundamental to ensuring the reliability of
our quantified financial losses. Since the KEY subtype under
EOA Misuse involves actual leaked private keys, its results
are 100% accurate. Therefore, our manual verification focuses
on the results for CA Misuse and the ADDR subtype under
EOA Misuse.

Evaluation Setup. Following standard practices from prior
work [39,52], we set a 5% confidence interval and a 95% confi-
dence level, performing random sampling stratified by misuse
type and blockchain network. Two authors independently con-
duct a detailed manual analysis of each sampled address. To
ensure the objectivity and reliability of our manual labeling,
we adopt the Kappa coefficient to evaluate inter-rater relia-
bility. The analysis process includes: (1) Tracing the original
context of the address from GitHub or Stack Exchange to de-
termine whether the address is explicitly linked to a specific
blockchain. (2) Checking the tags on Etherscan or Bscscan
that might indicate the address’s identity or flag potential
risks, e.g., “Compromised” or “Warning”. (3) Reviewing the
complete transaction history to evaluate whether the address
behavior aligns with the corresponding misuse definition. (4)
If the address hosts a contract, we decompile and analyze the
bytecode to assess whether its functions are malicious. The
analysis of code is further detailed in RQ3.

Table 1: Sampling and Evaluation Results

recision

Misuse Type Chain Total Sgrirzlsle TP FP P (%)

CA Misuse ETH 27,569 379 370 9 97.62%
BSC 21,775 378 374 4 98.94%

EOA Misuse ETH 3,893 350 350 0 100.00%
-ADDR BSC 4,826 356 356 0 100.00%

Precision. During the labeling process, we classify results
as True Positives (TP) or False Positives (FP) to evaluate de-
tection performance. The two authors compare their results,
achieving a high Kappa score of 0.868, and discuss any con-
flicting cases to reach a consensus. Additionally, we manually
inspect and validate the top 10 addresses and transactions by
loss amount for each misuse type on Ethereum and BSC to
ensure that high-loss cases are genuine. Table | presents the
results of manual validation. Our detection method achieves
an overall precision of 99.11%. For the CA misuse type, the
detection precision reaches 97.62% and 98.94% on ETH and
BSC, respectively. For the ADDR subtype, it reached 100%.

False Positives. During the manual validation, we also
identify a few FPs. These cases stem from transactions that

users send to NCAs. Although the input data field in these
transactions is not empty, it is not a valid function call but
rather custom information or remarks used for specific pur-
poses. While we filter such cases by checking if the input
data is human-readable and whether the function selector
corresponds to a known function signature, a few edge cases
remain. For example, a user sends a transfer with 0xdeadbeaf
as a marker, which our detection misinterprets as a call to the
function CodeIsLawz 95677371 (), resulting in a false misuse
classification.

In Appendix C, we further present two real-world cases for
both CA Misuse and EOA Misuse, each resulting in extremely
significant financial losses. These cases have not been fully
disclosed before, highlighting the severity of Address Misuse
and the effectiveness of our approach.

Table 2: Comparison Between Our Study and [66] on Leaked
Private Keys Extracted from GitHub for Ethereum and BSC

Comparison Metric Our Study Study [66]
All Keys 16,305,399 8,650,000
Active Keys 3,765 1,370
ETH Transactions 432,902 425,000
Value/Loss 103,402.5 ETH ($456M) $7M
Active Keys 3,452 1,484
BSC Transactions 310,445 42,100
Value/Loss  8,521.1 BNB ($7.2M) $590k

Comparison with Existing Results. We further evaluate
our approach by comparing our results with related work.
Since no prior work reveals the CA Misuse phenomenon, our
comparison focuses on the EOA Misuse. The work in [66] is
similar to our analysis of the KEY subtype, examining leaked
private keys from GitHub and their losses on Ethereum and
BSC. The comparison results are shown in Table 2. Our find-
ings uncover more exposed private keys and associated losses.
This may be because our dataset is more up-to-date, covering
more subsequently leaked keys and more transactions, which
indicates that the problem is not being effectively mitigated.
Furthermore, we extend the scope to include CA Misuse and
the ADDR subtype under EOA Misuse, both of which are not
covered in prior studies.

Answer to RQ1: Our detection approach achieves an
overall precision of 99.11%. It validates the effective-
ness of our methods in identifying real-world Address
Misuses and justifies the evaluation results in RQ2.

6.3 RQ2: Prevalence and Impact

To answer RQ2, we quantify the number of addresses and
transactions affected by both types of Address Misuses, as



Table 3: Statistics on addresses, transactions, and losses related to Address Misuse on the Ethereum mainnet and BSC. The Total
column reports deduplicated counts of addresses, transactions, and losses.

Type Chain Source Subtype Instances Transactions Loss Total (dedup.)
GitHub PCD 582 40,100 3,499.85 ETH 27,569
ETH NCD 26,908 694,886 19,229.40 ETH 737,075
PCD 31 12,945 2,706.62 ETH 22,738.41 ETH
CA Stack Exchange 791 189,634 1,01435 ETH
Misuse
GitHub PCD 5 ?76 45,229 1,1?7.09 BNB 21775
BSC NCD ,160 809,773 7,513.66 BNB 856,000
Stack Exch PCD 40 35,638 719.16 BNB 8,681.41 BNB
ack Exchange NCD 856 262,330 714.66 BNB
GitHub KEY 3,765 432,902 103,402.53 ETH 7,699
ETH ADDR 3,852 55,608 532.24 ETH 492,038
KEY 375 165,832 46,390.73 ETH 104,244.53 ETH
EOA Stack Exchange - yhp 56 35152 1,279.06 ETH
Misuse
GitHub KEY 3,452 310,445 8,521.07 BNB 8,297
BSC ADDR 4,796 98,426 391.90 BNB 415372
Stack Exchanee KEY 556 91,957 467.01 BNB 9,045.29 BNB
& ADDR 40 12,778 48.34 BNB

well as the corresponding financial losses, to assess the preva-
lence and security impact of real-world Address Misuses. The
results are summarized in Table 3. The Total column shows
the deduplicated number of misuse addresses, related transac-
tions, and final losses for each misuse category on Ethereum
and BSC.

Overall, we find substantial asset losses due to Address
Misuses. We identify 65,340 high-risk addresses instances,
with 2.5 % 10° related misused transactions, resulting in a total
loss of 126,982.94 ETH and 17,726.7 BNB, equivalent to
over 5.75% 108 USD. The volume of affected addresses and
transactions and the scale of losses confirm that this is not an
isolated incident but a systemic security risk.

6.3.1 Impact Analysis of CA Misuse

The results concerning CA Misuse are presented in the upper
part of Table 3. For clarity, each row in this section provides
statistics for a specific combination of blockchain (Ethereum
or BSC), data source (GitHub or Stack Exchange), and misuse
subtype (PCD or NCD). For instance, the first row shows that
on the Ethereum (ETH) chain, we identified 582 instances
of the PCD subtype from GitHub, which were involved in
40,100 transactions and resulted in a loss of 3,499.85 ETH.
The data shows that CA Misuse is highly prevalent, with
about 49,344 unique risky addresses instances and 1.6 * 10°
related transactions across both chains, resulting in a loss
of 22,738.41 ETH on Ethereum and 8,681.41 BNB on BSC
after deduplication. Among the subtypes, NCD addresses
from GitHub dominate in both scale (26,908 in Ethereum and

21,160 in BSC) and financial impact (19,229.40 ETH and
7,513.66 BNB). This demonstrates that users are highly sus-
ceptible to misusing addresses propagated on GitHub, likely
due to code reuse. In contrast, PCD addresses are fewer in
number, but exhibit a higher average loss per instance (e.g.,
582 Ethereum instances result in 3,499.85 ETH in losses).
A plausible explanation is that these addresses are related
to situations where attackers deploy contracts to drain after
accumulating a significant amount of misused funds, which
allows them to capture a larger value in a single event. While
the number of instances and losses from Stack Exchange are
smaller, they still represent a non-negligible risk vector.

Insight 1: The results reveal the prevalence of CA
misuse. Losses of 22,738.41 ETH and 8,681.41 BNB
highlights the systemic error of users not verifying
the target address and network, which often leads to
mistakenly treating NCAs as CAs.

6.3.2 Impact Analysis of EOA Misuse

The lower part of Table 3 details the findings for EOA Misuse.
As shown in this table, EOA misuse leads to even more severe
losses than CA misuse, affecting about 15,996 addresses and
9.1 % 10’ related transactions, with total losses amounting to
104,244.53 ETH and 9,045.29 BNB after deduplication. The
most alarming finding is the direct impact of KEY subtype
from GitHub. This single misuse vector is responsible for
large losses of 103,402.53 ETH and 8,521.07 BNB, account-
ing for over 95% of all EOA Misuse losses. This highlights a



Table 4: Sampling and Evaluation Results of Malicious Contracts Detection in the PCD Subtype of CA Misuse

Type Chain All Found Sample TP FP TN FN Accuracy Precision Recall F1-Score
CAMisuse ETH 586 273 83 31 6 44 2 90.37% 83.78%  93.94%  88.57%
-PCD BSC 576 196 83 24 3 51 5 90.36% 88.89%  82.76%  85.72%

critical security issue where users are widely interacting with
these addresses that expose private keys, without realizing
that they are insecure. In comparison, the identified ADDR
subtype instances are smaller in scale, but still contribute to
millions of USD in losses.

Insight 2: The findings reveal the prevalence of EOA
Misuse. User interactions with exposed addresses are
common, resulting in losses of about 104,244.53 ETH
and 9,045.29 BNB. This reflects users’ lack of aware-
ness of address security.

- J

Among the 10.3M addresses and 16.3M private keys col-
lected from GitHub, only around 5M addresses on Ethereum
and 2.6M on BSC show transaction activity. This indicates
the presence of millions of dormant addresses. These may
be used on other chains or testnets, or are simply inactive.
Such addresses can be triggered into traps due to incorrect
interactions by users or developers.

Insight 3: Despite detecting prevalent address mis-
uses, over 85% of collected addresses have not yet
attracted any misuse interactions, creating large-scale
and potential risks if triggered by error interactions.

Answer to RQ2: Address Misuse is a prevalent and
systemic security risk. It affects tens of thousands of ad-
dresses and leads to substantial financial losses, totaling
over 126,982.94 ETH and 17,726.7 BNB on Ethereum
and BSC, worth $574.8M.

6.4 RQ3: Real-world Attack Analysis

The PCD subtype under the CA Misuse category indicates
that a contract is currently deployed at the misused address.
These contracts include both normal ones and malicious ones
deployed by attackers. Therefore, we first use symbolic exe-
cution described in Section 5.3.2 to distinguish the malicious
contracts before analyzing their features. To ensure scalability
and effectively mitigate the path explosion problem inherent
in complex contracts, we explicitly configured our execution
engine with strict constraints: a path exploration depth limit of
100, a timeout threshold of 500 seconds, and a loop unrolling
bound of 10. Under these configurations, our tool achieved
an average analysis time of 153.7 seconds per contract. It is

important to note that even if an address now hosts a normal
contract, it is still a CA Misuse instance as long as it meets the
definition in Section 5.3.1, i.e., a function call occurs before
the normal contract deployment. Our detection of malicious
contracts does not affect the economic loss statistics in RQ?2.

Accuracy in Detecting Malicious Contracts. To validate
its accuracy, we perform a random sampling of contracts from
all PCD subtype misuse addresses using a 10% confidence
interval and a 95% confidence level. Two authors indepen-
dently audit each sample by reviewing the decompiled code
and on-chain interaction behavior to determine whether the
contract is indeed used for fund theft. The results are shown
in Table 4.

Our method for identifying malicious CA Misuse contracts
achieves 90.37% accuracy, 83.78% precision, 93.94% recall
and 88.57% F1-Score on Ethereum, and 90.36% accuracy,
88.89% precision, 82.76% recall, and 85.72% F1-Score on
BSC, proving its reliability for subsequent analysis. The FPs
are caused by contracts that are legitimate but implement a
function to withdraw all funds. Our symbolic execution tools
cannot detect such cases which require considering the overall
semantic logic. FNs arise from contracts that extract funds
using indirect methods, such as proportion-based withdrawals
instead of using this.balance or explicit input amounts,
which our current tool does not yet fully capture.

Characteristics of Malicious Contracts After confirming
the set of malicious CA Misuse contracts, we classify their
behavior characteristics to reveal the diverse strategies em-
ployed by attackers.

Table 5: Contract Pattern Distribution on ETH and BSC
Chains

Chain Contract Pattern

Num Percentage

Direct Sweeper 236 86.45%
ETH  Proxy 24 8.79%
Self-Destruct 13 4.76%
Direct Sweeper 185 94.39%
BSC  Proxy 8 4.08%
Self-Destruct 3 1.53%

(1) Direct Sweeper. This is the most common pattern,
accounting for 86.45% of Ethereum and 94.39% of BSC cases.



The attacker deploys a contract with simple withdrawal logic
and calls it immediately after deployment to drain the funds.

(2) Proxy. 8.79% of attacks in Ethereum and 4.08% in BSC
use a proxy pattern. The attacker deploys an open-source
proxy contract as a disguise, which points to a non-open-
source malicious logic contract. This helps evade simple user
checks to gain trust and complicates attack tracing.

(3) Self-Destruct. 4.76% of malicious contracts in
Ethereum and 1.53% in BSC use the SELFDESTRUCT func-
tion to transfer funds, attempting to erase on-chain evidence.

Insight 4: 86.45% malicious CA Misuse contracts
are simple direct sweepers, indicating that attackers
only need minimal contract capabilities to successfully
exploit them.

Official Recovery Contracts vs. Malicious Contracts. No-
tably, during our analysis, we find cases of official project
teams deploying benign recovery contracts. Its purpose is to
help users who mistakenly send assets to that address retrieve
their funds. However, we also find cases of official teams de-
ploying malicious extraction contracts that extract all misused
funds without returning them to users. We discuss these cases
in detail in Appendix C.

Code Clones in Malicious Smart Contracts Furthermore,
our evaluation reveals widespread code cloning practices
in malicious smart contracts, demonstrating how attackers
systematically replicate malicious codes to exploit address
misuses for profit. Specifically, we use the Similar Contract
Search [23] feature provided by Etherscan and BscScan, using
our confirmed malicious contracts as seeds for a search for ex-
act matched contracts. The table 6 in Appendix B lists the top
5 malicious contracts with the largest number of exact code
matches, i.e., clones. We manually inspect each contract and
confirm that they are used for draining funds. For the top 5
malicious contract templates by clone count on each chain, we
uncover 31,542 deployed instances (18,772 on Ethereum and
12,770 on BSC). This finding indicates that attackers reuse
standardized malicious contract templates to systematically
exploit large numbers of CA Misuse.

Insight 5: Our findings uncover 31,542 malicious con-
tracts cloned from just 10 unique templates, revealing
that attackers create and extensively reuse malicious
contracts to exploit CA Misuse at scale.

6.4.1 Contract Features of EOA Misuse Attacks based
on EIP-7702

For EOA misuse attacks based on EIP-7702, we performed
a cluster analysis of 7,824 maliciously delegated EOA ad-

dresses on Ethereum and 9,422 on BSC, along with the EIP-
7702 malicious contracts they point to, observing a high level
of centralization.

As shown in Table 7 in Appendix E, on Ethereum, we
find 7,824 addresses with exposed control are delegated via
EIP-7702 to only 49 unique malicious contracts. On BSC,
9,422 addresses are delegated to only 50 malicious contracts.
The top 3 malicious contract addresses alone receive over
74.66% and 82.07% of all malicious delegations on Ethereum
and BSC, respectively. This clearly demonstrates that a small
number of attackers or groups are using standardized, reusable
malicious contracts to systematically weaponize exposed pri-
vate keys at scale through the EIP-7702 mechanism.

Insight 6: The EOA Misuse attack based on EIP-7702
is highly scalable, with a small number of malicious
contracts controlling most exposed EOAs.

The above analysis indicates that these attacks are not
merely extreme cases of passive misuse; rather, they represent
entirely new attack vectors that pose escalating threats. Specif-
ically, our results show that CA Misuse attacks represent low-
frequency yet high-impact threats, with 273 Ethereum (196
BSC) cases already causing total losses of 3,446.37 ETH
(431.79 BNB). Additionally, although EIP-7702 exploited by
EOA Misuse attacks was only introduced in Ethereum and
BSC several months ago, EOA Misuse attacks have already
emerged as growing risks, manifested in 7,824 Ethereum
(9,422 BSC) cases.

Answer to RQ3: We identify 469 unique malicious con-
tracts that exploit CA Misuse, which have over 31,542
clones deployed on-chain. We also find 99 malicious con-
tracts that control more than 17,246 EOAs via EIP-7702.
This indicates that attackers systematically exploit Ad-
dress Misuse with reusable and standardized malicious
contracts to achieve efficient and large-scale attacks.

7 Discussion

7.1 Limitations

Data Completeness. We use GitHub and Stack Exchange
as our sources for potentially risky addresses and exposed
private keys. We acknowledge that the dissemination of such
data also occurs on instant messaging platforms like Tele-
gram or Discord. However, content on these platforms is
typically ephemeral, private, and sparse, rendering it unsuit-
able for large-scale, reproducible measurement. Therefore,
we prioritize public code repositories and Q&A platforms
to ensure research reproducibility and ethical compliance.
These sources provide sufficient real-world exposure for the
first large-scale analysis. During data collection, some Github



repositories may be missed. To mitigate this, we employ a
snowballing strategy to broaden search tags and maximize
blockchain-related GitHub repository coverage.

Heuristic False Positives. Our heuristic rules for detecting the
EOA Misuse ADDR subtype may misclassify certain special
patterns. For example, some project wallets are managed by
automated scripts whose behavior closely resembles MEV
bots. To reduce such FPs, we introduce constraints such as
requiring the outgoing transaction to drain nearly all funds
and the address balance to remain extremely low. Our manual
sampling validation confirms that FP rate remains low under
the current rules, demonstrating its practicality and scalability.
Scope of Chains and Tokens. Our study currently quantifies
the losses of native tokens (ETH and BNB) on Ethereum
mainnet and BSC. Notably, Address Misuse is not unique to
the EVM. Any account-based blockchain employing the same
deterministic address derivation mechanism (e.g., between
Solana and its testnet) is susceptible to this risk. Furthermore,
both types of Address Misuse and corresponding novel attacks
can also cause other standard tokens losses (e.g., ERC20 and
ERC721). As the first study, we focus on the largest ecosystem
(EVM) and the most widely used native tokens to establish
a lower bound for this risk’s severity. We plan to explore a
broader range of chains and tokens in future work.

Loss Estimation. We quantify financial losses using token
prices as of May 2025 ($4,408 for ETH and $847 for BNB).
While our estimation may differ from historical value at the
exact moment of the transaction due to market volatility, it
provides a standardized metric to assess the current economic
severity of these risks. Our manual validation confirms a detec-
tion precision of 99.11%, ensuring that the identified amount
of ETH and BNB represent actively realized losses with mini-
mal false positives. Nevertheless, there exists a gap between
our observed loss and the total potential loss in the wild, sug-
gesting that our figures represent a conservative lower bound.
This underestimation stems primarily from the previously dis-
cussed limitations regarding Data Completeness and Scope of
Chains and Tokens. Additionally, to ensure high precision, our
heuristic rules prioritize specific, high-confidence patterns,
which inevitably leads to false negatives by omitting subtler
misuse cases or attacks that deviate from typical behaviors.

7.2 Mitigations

Our study reveals key blind spots in users’ understanding of
address security within the blockchain ecosystem. The find-
ings provide warnings for end users, developers, and project
teams. We propose the following recommendations to miti-
gate the problem of Address Misuse.

For Users. (1) Verify the network of an address. Users
need to clearly recognize that the same address may represent
entirely different entities across different networks. Always
confirm that a contract address is valid for the intended chain.
(2) Avoid using addresses from unofficial sources. Contract

addresses should always be obtained from official project
websites or documentation rather than unverified answers on
social media or Q&A platforms. (3) Do not use test or example
addresses in production. Accounts provided in development
tools or sample code are for testing only and never use them
with real assets in a mainnet environment.

For Developers. (1) Properly manage deployer addresses.
Ensure the deployer account is used only for deploying con-
tracts and does not initiate other transactions, thereby pre-
cisely controlling the deployer’s nonce. Use the same de-
ployer to deploy contracts across multiple major chains in
a unified manner. This aims to maintain consistent contract
addresses, reducing the risk of user misuse due to address dis-
crepancies across chains. (2) Deploy Remedy Contracts. For
established projects, teams can proactively deploy a protective
remedy contract at the same address on other major public
chains. This contract can provide refund mechanisms for mis-
taken interactions. (3) Proactively disclose and warn users
about address information. Clearly indicate address—network
mappings in documentation and website UI. Place explicit
restrictions or warnings on the use of test accounts. (4) Prefer
CREATE2 for contract deployment. This allows developers
to redeploy updated contract versions at the same address,
facilitating quick remediation and fund recovery after misuse.
(5) Strengthen private key security management. When pub-
lishing open-source code or documentation, developers must
ensure they remove all hardcoded private keys or mnemonic
phrases. Sensitive information should be handled via environ-
ment variables or secure key management services, and team
members should undergo continuous security training.

For Wallet Providers. Wallets should integrate real-time
warning systems that query known misuse databases (such as
our dataset) before signing transactions. If a user attempts to
send transactions to an address that has no code on the current
chain but exists as a contract on another chain, or interacts
with an address whose private key exposed, the wallet should
trigger a high-severity alert.

For Protocol. To mitigate cross-chain CA Misuse, future
protocol upgrades (EIPs) should consider incorporating the
chain ID into the address derivation formula for contract cre-
ation based on the CREATE opcode. This would ensure that
a contract deployed by the same account with the same nonce
results in unique, non-colliding addresses across different
networks, effectively neutralizing cross-chain CA Misuse.

8 Related work

8.1 Private Key Leakage Detection

Several studies have investigated security risks caused by
private key leakage in the blockchain ecosystem. Brengel
et al. [8] analyze leaked Bitcoin keys on Pastebin. Other
works [1,2,60] explore leakage by guessing or brute-forcing
weak keys and wallet password. Zhou et al. [66] examine



Ethereum key leakage from major websites by matching pri-
vate keys and quantify the resulting asset losses.
Differences. Our research is broader than prior work focused
solely on private key leakage. We introduce and analyze an-
other category of address risk, CA Misuse, which is not cov-
ered by existing literature. Furthermore, even within the scope
of private key leakage which we term EOA Misuse, our work
provides deeper insights: we analyze the typical transaction
patterns of exposed addresses and the behavioral character-
istics of attackers, enabling more effective detection of such
risks. We also reveal a novel attack vector that weaponizes
the EIP-7702, exploring a new frontier of this threat.

8.2 Maximal extractable value (MEYV)

MEV remains a central issue in blockchain security. Sev-
eral prior works [15, 18, 53] focus on front-running types of
MEY activities. Others [7,49,64,65] investigate specific types
of MEYV, such as arbitrage using Automated Market Makers
(AMMs) or flash loans. Qin et al. [48] focus on three MEV
behaviors, including sandwich attacks, liquidations, and ar-
bitrage. Li et al. [41] study DeFi MEV activities under the
Flashbots bundle mechanism.

Differences. We focus on the fund-sweeping pattern of MEV
that occurs within the specific context of EOA Misuse. It has
not been investigated in previous MEV studies.

8.3 Address Poisoning Attacks and Scams

Guan et al. [34] and Tsuchiya et al. [57] study address poi-
soning attacks, which is another type of address interaction
error. It exploit address truncation in wallet Uls and Ethereum
block explorers to create deceptive addresses, polluting vic-
tim’s transaction history and tricking them into sending funds
to similar-looking addresses. In addition, numerous previ-
ous studies [5, 14,36,40,62] investigate other scams target-
ing blockchain users. Scammers obtain users’ private keys
through phishing websites, impersonation of technical sup-
port staff, or social engineering, thereby gaining control of
their assets. Honeypot attacks represent another sophisticated
scam where malicious smart contracts with seemingly ex-
ploitable vulnerabilities trap victims’ funds through hidden
code mechanisms [12, 13, 54].

Differences. Our work is complementary yet distinct from
these studies. Address poisoning and Address Misuse both
stem from user negligence in address interaction, but they
differ fundamentally. Address poisoning misleads users into
interacting with a wrong address on the correct chain, while
Address Misuse involves the correct address used in the wrong
chain network context. The attack method for the latter is
more subtle and complex. Honeypot attacks use complex
contract logic to deceive users, but Address Misuse does not
depend on the contract but the user’s own mistakes. Further-
more, to the best of our knowledge, other scam studies do not

cover scams related to CA Misuse.

9 Conclusions

Address Misuse are a widespread yet often overlooked attack
surface in the Web3 ecosystem. This study systematically
defines and analyzes two main types of Address Misuse, CA
Misuse and EOA Misuse. We reveal their formation mecha-
nisms, manifestations at the transaction level, and how attack-
ers actively exploit user mistakes or inherent address risks to
steal funds. We reveal two novel attack vectors corresponding
to these two misuse types. Through large-scale data analysis
using techniques such as heuristic rules, transaction pattern
analysis, and lightweight symbolic execution, we quantify the
financial losses caused by these misuse on Ethereum and BSC.
Our findings show that their impact is both widespread and
significant. This research not only provides methodologies
and empirical data for identifying and mitigating Address
Misuse but also offers specific and practical security recom-
mendations for users and developers. Our goal is to raise the
community’s awareness of address security and contribute to
building a safer blockchain ecosystem.
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Ethical Considerations

In accordance with the USENIX Security ethics guidelines,
we provide a structured discussion of the ethical implications
of our study and the corresponding mitigation measures taken
for different stakeholders.

Developers and Project Maintainers. Although blockchain
addresses are generally anonymous, we are making a best-
effort attempt to contact the developers of affected projects
(e.g., via GitHub or Etherscan labels) to help them mitigate
further potential harm.

Wallet Providers and Ecosystem Operators. We initiated
a responsible disclosure process, sharing our findings, detec-
tion methods, and feasible misuse mitigations with wallet
developers and exchanges. Our efforts enable them to deploy
large-scale mitigations (e.g., wallet-level warnings) to protect
users. Beyond disclosure, we are also exploring protocol-level



enhancements, e.g., adopting an Ethereum Improvement Pro-
posal that incorporates the chain ID into the address derivation
rule, to further mitigate cross-chain address confusion.

End Users. As the primary victims, users often misunderstand
blockchain addresses and may reuse them across different
chains, thereby risking fund loss. We plan to raise public
awareness of this issue and release mitigation guidelines to
help users avoid such errors.

Potential Attackers. To prevent potential misuse attacks by
malicious attackers, we have omitted all sensitive details (e.g.,
private keys and exploit scripts) from the public release. Fur-
thermore, we will request a publication embargo upon accep-
tance to provide developers with a critical window to deploy
mitigations before our findings are fully disclosed.

Data Source Platforms. Our data collection was restricted to
publicly available sources, including Stack Exchange, GitHub,
and on-chain transactions accessible through public RPCs. We
did not access any private, password-protected, or otherwise
sensitive data, and our collection process caused no harm or
disruption to any platform or user. We also plan to collaborate
with these repository platforms to help them detect and warn
about leaked blockchain credentials. Our study fully com-
plies with institutional ethics requirements and applicable
data privacy laws. No human subjects were involved.
Justice. Our work aims to enhance blockchain security and
reliability for the broader community, rather than targeting
specific individuals or projects. We uphold fairness, responsi-
ble disclosure, and respect for the public interest.

Open Science

Our dataset, analysis source code, and all results are publicly
available at https://zenodo.org/records/17984167.
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A Extracting Private keys and Addresses

To extract addresses and private keys from GitHub repos-
itories and StackExchange posts, we design and imple-
ment pattern-matching scripts based on regular expressions
(regex). An Ethereum address starts with 0x followed by
40 hexadecimal characters. The corresponding regex in
Python is (?:\b|") (0x[a-fA-F0-9]1{40}) (?:\b|$). For
private keys, the regex is (?:\b|") (?:0x|) ([a-£0-9]64)
(?:\b]|$).If amatched address contains mixed-case letters,
we verify its validity against the EIP-55 checksum [61]. If
the address is in all lowercase, we conservatively include it in
the candidate set. For extracted private keys, we compute the
corresponding address and include it as well.

B Code Clones in Malicious Smart Contracts
of CA Misuse

Table 6: Top 5 Identified Malicious Contracts

Chain Identified # Exact
Malicious CA  Matched CAs
Oxac44...760b 17090
0xf8df...bcd2 1130

ETH 0xb07e...4346 438
0x50c7...blb6a 67
0x6448...5113 47
0xe53d...fbad 12259
Oxaea’...998b 177

BSC 0xf%e0...d9d4 169
0x04cl...1£85 92
0x3d8f...1e83 73

C Case Studies

C.1 CA Misuse Cases

Case 1: 0x580D. . . 375c" has the largest total and single-
transaction misuse loss. Upon investigation, this address
corresponds to the Defi Protocol Aave LendingPool con-
tract on the Ethereum Kovan testnet. However, on Ethereum
mainnet, a user 0xd198. . .4FF0 mistakenly interacted with

8https://etherscan.io/address/0x580D. ..375¢c

this address, which leads to a significant misuse loss. On
September 7, 2020, i.e., at block 10815309, the user send
a transaction attempting to call the deposit function, along
with 2,580 ETH °. At that time, this address on mainnet is
merely a PCA with no code deployed. Based on the tech-
nical principles described in Section 2.3, this transaction
does not fail but is instead processed as a normal trans-
fer, trapping the 2,580 ETH at the address. On August 3,
2021, i.e., at block 12950853, address 0x334E...6195 de-
ploysan InitializableAdminUpgradeabilityProxy con-
tract to this location. This proxy contract points to a logic
contract RescueImpl at 0x3aE5. . .370e. Figure 6 shows the
main code of RescueImpl. The deployer then calls the res-
cue function'’, which transfers the funds to a hardcoded ad-
dress 0x2517...7667. We trace the subsequent flow of these
funds and find that they are not returned to the original user
0xd198...4FF0 but are instead moved to cryptocurrency ex-
change addresses.

icontract Rescuelmpl is VersionedInitializable {
address public constant RESCUE_ADMIN = address (0
x334E6291B73e340305f3FC5A65F4BCD3AA816195) ;
address public constant FUNDS_RECEIVER = address
(0x2517C251C8EDA3E6977051e6bb86Cc7876D07667)
’
4+ function rescue () public {
require (msg.sender == RESCUE_ADMIN,
INVALID_CALLER');
6 (bool success, ) = FUNDS_RECEIVER.call.value (
address (this) .balance) .gas (50000) (" ") ;
require (success, ’'FAILED_TRANSFER');}}

’

Figure 6: Contract Code of 0x3aE5. . .370e on Ethereum

Case 2: 0x10ED. . .024E'' is the official PancakeSwap
Router contract on the BSC. However, this address is fre-
quently misused on the Ethereum mainnet. It is labeled
as “Pancakeswap: Router” on Etherscan, and the secu-
rity tool MetaSuites marks it as “Fake Phishing”. Both
of these labels are incorrect, the address is actually an
Address Misuse address. Starting on April 24, 2021, i.e.,
block 12300692, a large number of users cause misuse
by calling functions like swapExactTokensForTokens and
swapExactETHForTokens. Itis not until September 10, 2024,
that a Recovery contract is deployed to the address and the
funds are transferred out '*. Before this recovery, 6,128 mis-
use transactions occur, trapping a total of 94.99 ETH. The
Recovery contract is shown in Figure 7. It can recover all
types of tokens. We trace the subsequent fund flow and find
that the PancakeSwap project team returns all the lost funds
to the users. Furthermore, because the deployment of the
Recovery contract, all future misuse transactions will revert,
preventing any further losses for users.

9https://etherscan.io/tx/0xf58e...37de
Ohttps://etherscan.io/tx/0x4£52...c599
https://etherscan.io/address/0x10ED. ..024E
2https://etherscan.io/tx/0xl4ca. ..eaT4


https://etherscan.io/address/0x580D4Fdc4BF8f9b5ae2fb9225D584fED4AD5375c
https://etherscan.io/tx/0xf58e880e7bc660df9624b55b9e6584934e97fc8c03a308e1b8a4acdd474b37de
https://etherscan.io/tx/0x4f5242dd82afe38e35ee2a057d53c3ee6d6c0c3a9bc650d31d003f1c2ae3c599
https://etherscan.io/address/0x10ED43C718714eb63d5aA57B78B54704E256024E
https://etherscan.io/tx/0x14ca855782fea0b6906b3f6efd3ca003c4d88739f2854872c6c57f90e00cea74

icontract Recovery is Ownable2Step {
function recoverEth () external onlyOwner {
(bool success, ) = payable (msg.sender) .call/{
value: address (this) .balance} ("");}
function recoverERC20 (IERC20[] calldata tokens)
external onlyOwner{...}
5 function recoverERC721 (IERC721[] calldata tokens

, uint256 (][] calldata tokenids) external
onlyOwner{...}

¢ function recoverERC1155(IERC1155[] memory tokens
, uint256[][] memory ids, uint256[][] memory

values) external onlyOwner{...}}

Figure 7: Contract Code of 0x10ED. . .024E on Ethereum

C.2 EOA Misuse Cases

Case 1: 0x00a3. . .EA72" is generated by previous ver-
sions of Parity wallet [47] when an blank recovery phrase
provided. As a result, anyone can easily gain control of this
address [25,51], including malicious attackers. The address
has an accumulated total of 30,940 transactions on Ethereum,
with losses of 5,224.92 ETH. A notable case occurred at block
4,230,203, where a victim transfers 500.2 ETH to the address
14 Just two blocks later at block 4230205, an attacker spends
250.1 ETH in gas fees which worth $862,742.61 to extract
the remaining 250.1 ETH balance '°. Such an enormous gas
fee is clearly not from a normal user-initiated transaction. We
speculate that the attacker’s MEV bot is designed to use half
of the incoming funds as gas and transfer the other half, which
guarantee inclusion in the block. This case also supports our
design choice of setting block interval to 2 in Section 5.3.2,
as such high-value MEV competition leads miners to wait
for higher gas profits. Notably, Etherscan has no warning la-
bel for this address, leaving users without any alert. It has
now been delegated to a malicious contract 0xB678. . .AAR02
named AdvancedCrimeEnjoyor through the EIP-7702 mech-
anism. As shown in its code in Figure 8, the receive and
fallback function ensure that any incoming funds are automat-
ically forwarded to the address 0xA820...921D.

icontract AdvancedCrimeEnjoyor ({
receive () external payable {
0xA8204582£fe8£915b7£423b1450B654FC98£F921D.
call{value: msg.value} (new bytes (0));}
4+ fallback () external payable {
5 0xA8204582£fe8£915b7f423b1450B654FC98£F921D.
call{value: msg.value} (new bytes (0));}
s function transfer (address token, uint256 amount)
public {}
function transferFrom (address token, address
sender, uint256 amount) public {}
s function transferEth (uint256 amount) public {}}

Figure 8: Contract Code of 0xB678. . .2AA02 on Ethereum

Bhttps://etherscan.io/address/0x00a3. . .EAT2
Ynttps://etherscan.io/tx/0x84c7. .. .eTff
Bhttps://etherscan.io/tx/0xe790...051f

Case 2: 0x£39F . . .2266'° is one of the default accounts
generated locally by the popular smart contract development
tool Hardhat [43]. Similar to the Truffle, anyone can obtain
the private key for this default account simply by launching
the Hardhat environment [26] or viewing the code [44]. The
difference is that this address does not yet have any warning
labels on Etherscan. It has 2,265 transactions on Ethereum.
Its largest loss occurs in transactions 0xbff8. ..645¢c ' and
0x3512...198d '®, where 289 ETH are transferred in and
284.2 ETH are extracted with a high gas fee of 4.8 ETH which
worth $16,618.82. This address is currently also delegated
via EIP-7702 to a malicious contract at 0x0E04. . .4647. The
decompiled logic is shown in Figure 9.

icontract MaliciousSweep {
fallback () {
v6=0xe6c9adf066484ee303deacdd0493bc8dal371lc8b.
call () .value (msg.value) .gas (msg.gas) ;

4 require (v6);}}

Figure 9: Decompiled Code of 0x0E04...4647 on Ethereum

D Function findSweepTxPair

Process of findSweepTxPair. As shown in Algorithm 3,
findSweepTxPair takes an incoming transaction in, and a
list of subsequent transactions subsequentTxs as input. Its
purpose is to find a corresponding outgoing transaction out,
which satisfies a set of conditions and exhibits the character-
istics of fund sweeping. The specific parameters settings of
these conditions are discussed later.

Algorithm 3: findSweepTxPair

Input: in, Incoming transaction
Input: 7', Transactions list
Output: out, The matching outgoing transaction or Null
1 foreach out € T do
isOppositeFlow < (out.from == in.to) A\ (out.to # in.to)
isInTimeWindow < (out.block — in.block € [0,2])
isMevGasWar < (out.gasPrice > 1.61 x in.gasPrice)
isDrainingFund < (out.value + out.gasFee > 0.95 x in.value)
isDustLeft < (getBalance(out.from) < 0.0001)
if isOppositeFlow A isInTimeWindow N isMevGasWar \
isDrainingFund N isDustLe ft then
8 | return tx;
9 return Null;

IS NV SRS

The conditions checked by findSweepTxPair are as fol-
lows: (1) The fund-sweeping out occurs within a short time
window after the in. Based on our observations, we conserva-
tively set the time window to within 2 blocks to avoid missing
potential cases (2) The address’s balance remains consistently
near zero due to continuous monitoring and draining. (3) Due
to the MEV bots gas war for the transfer-out opportunity, the

1https://etherscan.io/address/0x£39F. ..2266
https://etherscan.io/tx/0xbff8...645¢
nttps://etherscan.io/tx/0x3512...198d
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gas price of out is significantly higher than that of in. The
1.61x threshold is derived from our observations and the iter-
ative bidding model proposed by Qin et al. [1], representing
the price increase after five rounds of bidding under Geth’s de-
fault 10% price bump rule (1.1° = 1.61). (4) The transferred
value plus gas in out is nearly equal to the value received from
in, leaving only dust ETH/BNB. This means that the mev bot
is trying its best to extract all the value.

Parameters Settings for Rule-based Detection. In the pro-
cess of the findSweepTxPair above, a key parameter is the
block interval between fund incoming and outgoing transac-
tions, which we set to a maximum of 2 blocks. This setting
is based on our observation of ground truth attack data. If
the interval is limited to the same block or just 1 block, some
typical large-value theft cases would be missed. For example,
the 500.2 ETH loss from address 0x00a3. . .ea72 in the Case
Studies C.2 occurs with an interval of 2 blocks. We hypothe-
size that in such large-value attacks, on-chain bidding among
attackers is particularly intense. Blockchain miners or val-
idators may wait longer for the bidding to maximize the gas
fee and consequently, their own profit. Therefore, setting the
upper limit at 2 blocks is an empirical choice that balances the
FP and FN rates. Furthermore, we set the threshold for the gas
price ratio between the outgoing and incoming transactions
to 1.61. This is based on the iterative bidding model proposed
in [48] and the default behavior of the Ethereum Geth client.
Under Geth’s [19] default settings, when a new transaction
attempts to replace an existing one from the same address and
with the same nonce in the Mempool, its gas price must be
at least 10% higher. According to [48], most MEV bidding
wars conclude within five rounds. As a conservative strategy,
we set the threshold to 1.1° = 1.61. Additionally, the Priority
Gas Auctions (PGA) game-theory model in [15] suggests
that mev bots eventually tend toward cooperative equilibrium,
with bids converging around a 12.5% increment, which is
the minimum markup required by the Parity client [47]. It is
worth noting that this gas bidding heuristic is more effective
for Ethereum’s PoW era.

However, our detection parameters still maintain sufficient
effectiveness under the Proposer-Builder Separation (PBS) ar-
chitecture. Although MEV searchers can submit bundles and
bribe builders to prioritize their transactions that sweep funds
from exposed EOA addresses, these bribes can be trivially
converted into increased gas costs. Consequently, competi-
tion through builder bribes converts into competition over gas
prices. Furthermore, the race-to-empty nature of exposed keys
compels MEV searchers to execute transactions in the earliest
possible block, making delayed extraction (>2 blocks) rare.
To further validate our method’s post-PBS robustness, we an-
alyze post-PBS activities of 100 EOA Misuse addresses of
the KEY subtype, whose private keys are explicitly exposed,
serving as ground truth. We find that 85.71% of withdrawal
transactions still meet these detection parameters.

E EIP-7702 Malicious Contract Delegation of
EOA Misuse

Table 7: Top delegated malicious contract addresses.

Chain Delegated Malicious Delegation Percentage

Contract Address Count (%)
0x8938...e704 2407 30.76
0xa03f...60ab 2004 25.61
0x08f5...30f9 1431 18.29
0xb678...aa02 780 9.97
0x68ae...7351 339 4.33

ETH 0x0e04...4647 320 4.09
0x6b78...e933 221 2.82
0x710f...8boe 164 2.10
0x8904...a629 31 0.40
0x7f£7f...44c8 24 0.31
0x15c4...bab3 3154 33.47
0x1c36...763c 2315 24.57
0xc99f...bbda 2264 24.03
0x92fe...87af 634 6.73
0x0610...0f19 414 4.39

BSC 0x1107...b4d6 169 1.79
0x8904...a629 97 1.03
0x289c...8ae9 67 0.71
Ox3ael...2d10 57 0.60
Oxccd8...fbcc 48 0.51

F NOTATION SUMMARY

Table 8: Abbreviation Summary

Abbreviation = Description

EOA Externally Owned Account

CA Contract Account

NCA Non-Contract Address

PCA Potential Contract Address

NCD No-Code at Detection (A subtype of CA Mis-
use)

PCD Present Code at Detection (A subtype of CA
Misuse)

KEY Exposed Private Key (A subtype of EOA Mis-
use)

ADDR Pattern-based Identified Address (A subtype
of EOA Misuse)

BSC BNB Smart Chain

EIP Ethereum Improvement Proposal

EVM Ethereum Virtual Machine

ABI Application Binary Interface

IDM Input Data Messages

PGA Priority Gas Auctions

MEV Maximal extractable value

AMM Automated Market Makers
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