
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Enhancing Bug-Inducing Commit Identification:
A Fine-Grained Semantic Analysis Approach

Lingxiao Tang*, Chao Ni, Qiao Huang, Lingfeng Bao*

Abstract— The SZZ algorithm and its variants have been extensively utilized for identifying bug-inducing commits based on bug-fixing
commits. However, these algorithms face challenges when there are no deletion lines in the bug-fixing commit. Previous studies have
attempted to address this issue by tracing back all lines in the block that encapsulates the added lines. However, this method is too
coarse-grained and suffers from low precision.
To address this issue, we propose a novel method in this paper called SEM-SZZ, which is based on fine-grained semantic analysis.
Initially, we observe that a significant number of bug-inducing commits can be identified by tracing back the unmodified lines near added
lines, resulting in improved precision and F1-score. Building on this observation, we conduct a more fine-grained semantic analysis.
We begin by performing program slicing to extract the program part near the added lines. Subsequently, we compare the program’s
states between the previous version and the current version, focusing on data flow and control flow differences based on the extracted
program part. Finally, we extract statements contributing to the bug based on these differences and utilize them to locate bug-inducing
commits. We also extend our approach to fit the scenario where the bug-fixing commits contain deleted lines. Experimental results
demonstrate that SEM-SZZ outperforms the state-of-the-art methods in identifying bug-inducing commits, regardless of whether the
bug-fixing commit contains deleted lines.

Index Terms—SZZ algorithm, Data Flow Analysis, Control Flow Analysis.

✦

1 INTRODUCTION

Modern software development evolves through a series
of commits. When developers make commits, they save
changes made to a set of files within a repository. Each
commit captures the state of the repository as a snapshot at a
specific moment. To facilitate the management of commits,
version control systems such as Git have been developed.
Among various types of commits, bug-inducing commits [1]
hold particular significance, as they provide essential in-
sights into the origins and evolution of bugs. Consequently,
researchers have devoted additional attention to them. Prior
studies have been conducted to understand the character-
istics of bug-inducing commits [2]–[5] and introduced nu-
merous techniques to identify them [6]–[9]. Building upon
these identified bug-inducing commits, researchers have
also proposed methods for Just-in-Time defect detection [9]–
[12] and automatic program repair [13], [14]. They have also
worked on analyzing factors for software quality [15], [16],
and pinpointing affected software versions of a vulnerabil-
ity [17].

• Lingxiao Tang, Chao Ni, and Lingfeng Bao are with the State Key Labo-
ratory of Blockchain and Data Security, Zhejiang University, Hangzhou,
China.
E-mail: {12421037, chaoni, lingfengbao}@zju.edu.cn

• Qiao Huang is with the School of Computer Science and Technology,
Zhejiang Gongshang University
E-mail: qiaohuang@zjgsu.edu.cn

• Lingfeng Bao is the corresponding author.

• *Also with Hangzhou High-Tech Zone (Binjiang) Blockchain and Data
Security Research Institute

Currently, the primary approaches for identifying bug-
inducing commits are the original SZZ algorithm [6] and
its variants. The original SZZ algorithm was introduced
by Sliwerski, Zimmermann, and Zeller in 2005 [6]. They
assume that the deleted lines in the bug-fixing commit intro-
duce the bug. Thus, the algorithm operates by tracing back
the deleted lines within bug-fixing commits. This tracing
process aims to identify the commits that last modified those
deleted lines. These identified commits are then marked
as bug-inducing commits. Although the original SZZ algo-
rithm has achieved great success, it suffers from low pre-
cision because bug-fixing commits may contain noise (e.g.,
blank lines, comments, and meta-changes) that is unrelated
to bug fixes. To address this issue, numerous variants have
been introduced [7]–[9]. Typically, these variants make use
of static methods to filter out noise in bug-fixing commits.
Additionally, deep learning methods have also been ex-
plored to further improve precision [18].

However, previous research shows that the abovemen-
tioned methods fail to address the challenge posed by bug-
fixing commits with only added lines [19]. When it happens,
tools like git blame or annotate cannot identify deleted lines
to link them with bug-inducing commits. Recent research
has highlighted the prevalence of these kinds of commits
in datasets, which significantly impacts the recall of SZZ
algorithms. For instance, a dataset collected by Rezk et
al. [19], containing 12 Apache projects, revealed that the
highest percentage of such instances reached 11.72%. Fur-
ther investigations, such as the study conducted by Lyu
et al. [20], have demonstrated even higher occurrences of
bug-fixing commits only containing added lines. Lyu et
al.’s dataset reported that 17.46% of bug-fixing commits are
solely comprised of added lines, indicating that these kinds

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

of commits are more prevalent than previous findings.
Despite the prevalence of such commits and their neg-

ative impact on SZZ algorithms, few methods have been
proposed to mitigate this issue, let alone evaluating them
with a developer-informed oracle. To the best of our knowl-
edge, the A-SZZ algorithm, proposed by Sahal et al. [21],
is the main method intended to address this challenge.
This algorithm operates by first identifying added lines,
then locating the block encompassing these additions, and
finally tracing back all lines within the block. However, our
experimental results reveal that this algorithm suffers from
significantly low precision, rendering it impractical for real-
world use. Researchers [19] have proposed enhancements
to the A-SZZ algorithm. However, these improvements are
constrained to specific scenarios, such as method override,
logging operations, and class expansions, limiting their
applicability. Furthermore, they have not been evaluated
under a developer-informed oracle and their evaluation
lacks reliability.

In this paper, we present a novel approach called SEM-
SZZ to tackle this issue. We conducted a study to explore
the position of unmodified lines that could be traced back
to identify bug-inducing commits. The results of this study
revealed that in most cases if a bug-inducing commit could
be found by tracing back unmodified lines within a function,
it could typically be identified by tracing back only the two
unmodified lines nearest the added lines, rather than tracing
back the entire block encapsulating the added lines.

Building upon these findings, we further refined our
approach by incorporating techniques from previous stud-
ies [7], [8] to filter out noise in the unmodified lines, such
as blank lines, comments, and meta-changes. Despite these
refinements that resulted in significantly higher precision
compared to the A-SZZ algorithm, they still suffered from
low precision.

To further enhance precision, we conduct a more fine-
grained analysis. We begin by performing static program
slicing to extract program parts relevant to the bug. Then,
we collect and compare the states of the two versions of the
program. One version is the most recent commit previous
to the bug-fixing commit, while the other is the bug-fixing
commit itself. This process incorporates data flow analysis
and control flow analysis. Based on this analysis, we aim
to identify which set of statements in the previous version
contributed to the bug. Subsequently, when locating the
bug-inducing commit, we traced back from the bug-fixing
commit to identify the earliest commit that contains all
these buggy statements, designating it as the bug-inducing
commit.

Compared to previous methods, SEM-SZZ has two ad-
vantages. Firstly, it improves precision by more fine-grained
analysis. Secondly, our method can be applied to all sce-
narios. Note that we can also adopt our approach to bug-
fixing commits with deleted lines since the core idea of our
approach is to compare the states of the two versions of
the program and identify the statements contributing to the
bug. Thus, based on the core idea, we can apply SEM-SZZ
in all scenarios, regardless of whether they contain deleted
lines.

To evaluate our approach, we utilize the dataset pro-
posed by Lyu et al. [20]. Among all available datasets, we

select this one for two primary reasons. Firstly, the dataset is
annotated by the project’s developers, ensuring its accuracy
and reliability. Secondly, it contains the largest number
of bug-fixing commits with only added lines compared
to other datasets. This dataset, built on the Linux kernel,
contains over ten thousand bug-fixing commits without
deleted lines. Thus, it is much more reliable than previous
datasets, which are manually annotated and small-scale. We
assess our approach by attempting to address the following
questions:
RQ1: How effective is our approach in identifying bug-
inducing commits from bug-fixing commits with only
added lines?

In this research question (RQ), we first compare SEM-
SZZ with our proposed baselines and A-SZZ across all
bug-fixing commits with only added lines. We also notice
that some bug-inducing commits cannot be found even by
tracing back all lines in the function and some bug-fixing
commits do not contain changed lines within functions. All
methods mentioned above cannot identify the first type of
bug-inducing commits and SEM-SZZ is not designed to
handle the second type of bug-fix commits. Thus, we re-
move these redundant test cases and then evaluate all meth-
ods. The results demonstrate that our proposed baselines
significantly outperform A-SZZ, and SEM-SZZ surpasses
all baselines significantly, with an improvement from 17%
to 19% in F1-score.
RQ2: How effective is SEM-SZZ in identifying bug-
inducing commits from bug-fixing commits with deleted
lines?

In this research question (RQ), we compare our method
with baselines to identify bug-inducing commits from bug-
fixing commits with deleted lines. Our goal is to deter-
mine whether SEM-SZZ can effectively handle bug-fixing
commits with deleted lines. The result demonstrates that
SEM-SZZ enhances precision by 7% and F1-score by 7%,
respectively.
RQ3: How effective are the key components of SEM-SZZ?

In this research question (RQ), we conduct an ablation
experiment to verify the effectiveness of each key compo-
nent. The result shows that each key design, including data
flow comparison, path constraint comparison, the method
to locate the bug-inducing commit and the line similarity
threshold, contributes to the overall performance.
RQ4: How effective is SEM-SZZ in terms of time cost?

An approach that consumes too much time is impractical
for deployment in real-world scenarios. In this RQ, we
want to investigate the time efficiency of our approach. The
result shows that our approach takes approximately 1.95
seconds to handle a fixing commit from scratch, which can
be deployed in practice.

In summary, our contributions can be summarized as
follows:

• We provide a new insight on how to find bug-inducing
commits based on bug-fixing commits with only added
lines. Our study reveals that most bug-inducing commits
can be identified by tracing back nearby unmodified lines
of the added lines.

• We introduce a novel approach for pointing out state-
ments contributing to the bug from bug-fixing commits,

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

1 static void irq_work_run_list(struct
2 llist_head *list) {
3 struct irq_work *work, *tmp;
4 struct llist_node *llnode;
5 BUG_ON(!irqs_disabled());
6 if (llist_empty(list))
7 return;
8 llnode = llist_del_all(list);
9 llist_for_each_entry_safe(work, tmp, llnode,
10 lnode) {
11 int flags;

12 flags = atomic_fetch_andnot(IRQ_WORK_PENDING,
13 &work->flags);
14 work->func(work);

15 + flags &= ~IRQ_WORK_PENDING;
16 (void)atomic_cmpxchg(&work->flags, flags,
17 flags & ~IRQ_WORK_BUSY);

}
}

Fixing Commit: e9838bd5116 in Linux
atomic_cmpxchg() expects the value of the flags with the pending bit
cleared as the old value. However by mistake the value of the flags
is passed without clearing the pending bit first.
Fixes: feb4a51
irq_work.c

Fig. 1: A Motivation Example

which compares the program’s state between two ver-
sions. This approach can be applied to all scenarios, re-
gardless of whether the bug-fixing commit contains added
lines.

• We introduce a new method for locating bug-inducing
commits by identifying the earliest commit that intro-
duces all these buggy statements and designating it as
the bug-inducing commit.

• Our experimental results demonstrate that SEM-SZZ out-
performs all other baselines in all scenarios.

2 MOTIVATION

In this section, we present a motivation example to illustrate
the need for an alternative approach.

Figure 1 illustrates our motivation example, showing a
bug-fixing commit in the Linux kernel [22]. Due to space
constraints, only the most significant part of the patch
is displayed. The commit message clearly indicates the
reason behind the evolution of the bug. Specifically, the
previous version of the program fails to clear the pending
bit of the variable flags before passing it to the function
atomic cmpxchg. The developer addresses this issue by
introducing a clear-bit operation through an add-and-assign
operation at line 15.

The previous approach, the A-SZZ algorithm [21], iden-
tifies the block that encompasses the added lines. In this
example, it covers lines ranging from line 11 to 17. While
it successfully identifies the bug-inducing commit, it also

introduces significant noise. For instance, we can easily
observe that the variable definition statement at line 11 is
unrelated to the bug. The problem worsens when the block
contains numerous lines. Most of these lines are unrelated
to the bug.

From the motivation example, we can make the follow-
ing observations:

Observation 1. Most of the bug-inducing commits can
be found by tracing back the unmodified lines near the
added lines. For instance, in this example, the bug-inducing
commit can be located by tracing back to line 13, which
is only two lines away from the added lines. Therefore,
there is no need to trace back the entire block. In fact,
subsequent experiments reveal that by tracing back only the
two nearest unmodified lines adjacent to the added lines,
we can identify 85% of bug-inducing commits with a much
higher precision than the A-SZZ algorithm.

Observation 2. To improve precision, we need to
perform a more fine-grained analysis. Although tracing
back the unmodified lines near the added lines is effective
in locating bug-inducing commits, it still suffers from low
precision. For example, line 14 is unrelated to the variable
flags and therefore unrelated to the bug. A more fine-
grained analysis can resolve this issue. By conducting a data
flow analysis on two versions of the program, one for the
buggy version and one for the fixed version, we can observe
that the sole difference lies in the data flow of the flags
variable. In the previous version, the data flow of flags
extends from line 12 to line 16. In the current version, it
flows from lines 12, and 15 to 16, with a new add-and-assign
operation at line 15. Thus, we can exclude the irrelevant line
14.

Observation 3. The bug arises from the combined
impact of multiple statements, each of which is indis-
pensable for its occurrence. From the commit message, it is
obvious that the bug requires two specific conditions. First,
the variable flags must be assigned without clearing the
pending bit (lines 12-13). Secondly, the variable flag must
be passed to the function atomic cmpxchg (lines 16-17). It’s
the interaction between these statements that triggers the
bug. Thus, when pinpointing bug-inducing commits, it’s
essential to ensure that both statements are present within
the identified commit, rather than just one of them.

3 APPROACH

Building on the motivation example, our proposed method
aims to effectively identify all statements contributing to
the appearance of the bug. The architecture of SEM-SZZ is
shown in Figure 2.

Observation 1 leads our approach to focusing on pro-
gram segments near the added lines. Thus, we begin by
performing program slicing [23], [24] to extract relevant
program parts close to the additions. Based on Observation
2, after slicing the program, we delve into a more detailed
analysis. This involves comparing the states of both ver-
sions of the program, one with the added lines and one
without. Through thorough comparison and analysis, we
identify specific statements associated with the added lines,
pinpointing them as the triggers for the bug. Drawing on
Observation 3, we proceed to locate bug-inducing commits

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

begin

a

bc

d end

Program
slice

c

d

end

Sliced program

begin

a

Collect

constraints

Collect

dataflow

Compare

dataflow

Compare

constraints

Program states Buggy statements

… …

C1 C2 C𝑖𝑖

…

Original program

C𝑗𝑗
Point of interest

Relevant blocksc

d

b Irrelevant blocks

Candidate commits

Locating bug-inducing
commits

State
collection

State
comparison

Git
blame

Bug-inducing commit

CFG edges

Fig. 2: Overview of SEM-SZZ

block lines
a 1-6
b 7
c 8-10
d 11-17

c d

end

begin a

bc

d end

program slice with N=3

Original program Sliced programLine ranges

begin a

v a r i a b l e d a t a f l o w
list 6, 8

llnode 4, 8 , 9

work 3 , 9 , 1 3 , 1 4 , 1 6

tmp 3, 9

f l a g s 1 1 - 1 2 , 1 5 , 1 6 - 1 7

Const ra in t Not llist_empty(list)
c d

end

begin a

Point of interest

Relevant blocksc

d

b Irrelevant blocks

CFG edges

Fig. 3: An Example of Program Slice

by finding the earliest commit that contains all buggy state-
ments.

3.1 Program Slicing

In this section, we present the program slicing process.
The goal of this process is to pick out specific parts of the
program that are relevant to the bug.

Firstly, we extract the function from the fixed version
containing the added lines. Then, we adapt the approach
similar to the previous research [25] for an intraprocedural
program slicing. During the program slicing process, we
initially identify the point of interest, which in this case
is the basic block containing added lines. Subsequently,
we conduct both forward and backward program slicing
centered around this point. In this way, we can avoid the
noise introduced by the irrelevant lines.

In detail, we initially construct the control flow
graph [26] for the function, splitting the function into a set of
basic blocks. Then we pick out the basic block containing the
added line as the point of interest. Finally, we use the depth-
first-search algorithm to search its N nearest predecessors
and successors. Here, the parameter N is the maximum
search step, indicating the search scope of our program.
When the search step reaches N , we save all the basic blocks
encountered during the searching process and exclude all
other parts of the program.

Here, our slice criterion is based on basic blocks with
added code statements instead of variables. We do this for
two reasons. Firstly, there may be many changed statements

in a function, resulting in many changed variables. Han-
dling them one by one is time-consuming. By dealing with
changed basic blocks, we can address many code statements
and variables once at a time. Secondly, slicing based on
variables may introduce lines far from the added lines,
which can introduce noise. Instead, by slicing only the basic
blocks near the changed basic blocks, we can avoid this
issue.

Figure 3 illustrates an example of program slicing, based
on the function depicted in the motivation example. As
depicted in the figure, the original function is divided into
six basic blocks, with line ranges also indicated. The added
line number is 15. Thus, the basic block d contains the added
line and we designate it as the interesting point. Here we set
N to 3. We begin to search its three nearest predecessors (in
this case, blocks c, a and begin). Subsequently, we explore
its three nearest successors. Note that each block is visited
only once throughout the process. Thus, we identify the end
block as the only successor. As a result, our slicing result
contains basic blocks begin, a, c, d, and end.

3.2 State Collection
Having isolated the part of the program relevant to the
bug, our next step is to collect the states of the program
within this portion. We borrow the concept program’s state
from symbolic execution [27], [28]. In symbolic execution,
the execution engine maintains the program’s states (σ, π)
for each execution path, where σ represents a table that
maps each variable to its corresponding symbolic value αi,
and pi denotes the path constraints, signifying all branch

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Candidate Constraint

𝒑𝒑𝟏𝟏′ Not llist_empty(list)

𝒑𝒑𝟐𝟐′ llist_empty(list)

𝒑𝒑𝟏𝟏′

begin’ a’

b’c’

d’

end’

begin’

a’ c’

d’ end’

begin’ a’

b’ end’

Candidates
extraction

Constraint
extraction

c

d

end

begina

Current execution path

map

map

Previous CFG 𝒑𝒑𝟐𝟐′ Corresponding path

c

End’ Mapped blocks CFG edges

c’Current blocks Previous blocks

𝒑𝒑𝟏𝟏′

Fig. 4: Candidate Selection

Algorithm 1: obtaining the program’s state after
executing the path.

Input : path, the input path
Output: state, the program’s state for the execution

path.
1 for statement in path do
2 if statement.type in {while, if, switch, for} then
3 state.constraints.add(statement)

4 if statement.type in {expression} then
5 variables←− extractVars(statement)
6 for variable in variables do
7 state.variable.dataflow.append(statement)

8 return state

conditions taken to reach each statement in the path. Given
that our goal is to discern the differences between the states
of the two versions of the program—the bug-fixed version
and the buggy version, there is no imperative need for the
symbolic value of each variable. Instead, we collect each
variable’s data flow for simplicity.

As shown above, in order to collect the program’s state,
we first construct its execution paths. We start from the basic
blocks without predecessors and then traverse recursively
through all their successors. When we reach basic blocks
with no successors, we mark all statements encountered
in sequential order as an execution path. For example, in
the sliced program illustrated in Figure 3, we start from the
begin block and traverse its successors, including blocks a,
c, d, until we arrive at the end block, which has no further
successors. During the process, we add each statement
encountered to the execution path.

Following path extraction, we proceed to generate the
program’s state for the execution path. Algorithm 1 outlines
the process. We iterate through the statements in the execu-
tion path. If the statement type belongs to path constraints
(line 2), we include the statement in the path constraints.
Otherwise, we extract the variables from the statement and
incorporate them into the data flow of these variables (lines
4-7).

Figure 5 illustrates the program’s state for the previously
collected execution path in the motivation example. Upon

block lines
a 1-6
b 7
c 8-10
d 11-17

c d

end

begin a

bc

d end

program slice with N=3

Original program Sliced programLine ranges

begin a

var iable dataf low
list 6, 8

llnode 4 , 8 , 9

work 3 , 9 , 1 3 , 1 4 , 1 6

tmp 3 , 9

f l a g s 1 1 - 1 2 , 1 5 , 1 6 - 1 7

Constraint Not llist_empty(list)
c d

end

begin a

Point of interest

Relevant blocksc

d

b Irrelevant blocks

CFG edges

Fig. 5: A Program State Example

𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 𝑪𝑪𝒊𝒊 𝑪𝑪𝟑𝟑

a

𝑺𝑺𝒊𝒊 𝑺𝑺𝒊𝒊+𝟏𝟏

Point of interest

Relevant blocksc

d

b Irrelevant blocks

CFG edges

𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐

𝑺𝑺𝒊𝒊 𝑺𝑺𝒊𝒊+𝟏𝟏

𝑪𝑪𝟑𝟑

𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐

𝑺𝑺𝒊𝒊 𝑺𝑺𝒊𝒊+𝟏𝟏

𝑪𝑪𝟑𝟑𝑪𝑪new

Previous path Current path

Fig. 6: Constraint Comparison Example

encountering the statement at line 3, we extract the variables
work and tmp from the statement. Consequently, we add
line number 3 to their data flow, as depicted in the figure.
Additionally, upon reaching line 6, we easily identify it as
an if statement related to path constraint. Since our path
executes from block c to d, and it does not satisfy the
condition, we negate the condition and store it in the path
constraint, as shown in Figure 5.

3.3 State Comparison
After collecting the states, our subsequent step involves
comparing the states of the execution paths from the current
version with those from the previous version. This com-
parison enables us to identify discrepancies in their states,
ultimately helping us determine the unmodified statements
contributing to the bug.

For each execution path in the current version, our
objective is to discover how the added lines affect the path,
making its state different from the previous version. To
enable the comparison, the first step involves identifying
the corresponding execution path in the previous version
and obtaining its state.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Our goal is to find an execution path in the previous
version that most closely resembles the one in the current
version. Thus, we can capture the differences in their states
more precisely. To get such a corresponding path, we begin
by mapping the first and last basic blocks in the current
execution path to their counterparts in the previous version
of the program. Subsequently, we traverse from the first
block in the previous version, endeavoring to find a path to
the last block. It is important to note that we may encounter
multiple candidates during this step. For each candidate
in the previous version, we initially prioritize the one that
shares the highest number of constraints with the current
execution path. If there are multiple candidates, preference
is given to the one with the most common lines.

To illustrate this, we use the extracted execution path p
from the motivation example. To derive its corresponding
path in the previous version, we initially map its first and
last basic blocks to their counterparts in the previous ver-
sion. These correspond to the begin’ block and the end’
block, respectively, as illustrated in orange in Figure 4.

Next, we attempt to find out paths from the first mapped
block to the last mapped block in the previous version. In
this case, we aim to find paths from the begin’ block to
the end’ block in the previous version of the program. We
use the depth-first-search algorithm to find out candidates.
As depicted in the figure, we encounter two candidates: p′1
and p′2. After comparing their constraints, we observe that
candidate p′1 shares more constraints with p, leading us to
designate it as the corresponding path.

After path matching, each path p with the state s in
the current version has been paired with a corresponding
path p′ with the state s′ from the previous version. Now,
we initially compare the two states and proceed to find
out which unmodified statements in the previous version
contribute to the occurrence of the bug.

The detailed algorithm is outlined in Algorithm 2. Ini-
tially, we compare the constraints in two program states.
If the constraints in the previous path are not identical to
those in the current path, we first identify the index i where
the constraint preCons[i] in the previous version is different
from the constraint curCons[i] in the current version(lines
1-3). In case of a conflict condition, we assume that the
previous version of the program may neglect the condition
curCons[i] from the statement Si to the statement Si+1,
where Si is the last statement before curCons[i] and Si+1

is the first statement after curCons[i]. Consequently, we
utilize the function extractStmts to extract Si and Si+1,
subsequently mapping them to the previous version and
adding them to the buggy statements (lines 4-5).

We provide a constraint comparison example in figure 6.
In the previous version, the path executes from Si to Si+1

without a condition check while in the current version,
it needs to satisfy Cnew. The newly added constraint is
highlighted in green while the original constraints are high-
lighted in red. Here the constraints in the previous version
are C1, C2, and C3. The current version of the program has
constraints C1, C2, Cnew and C3. We compare all constraints
in sequential order and find that C3 is conflicted with Cnew

at index 2. Thus, we extract the last statement Si before Cnew

and the first statement Si+1 after Cnew. We map these two
statements to the previous version and add them to buggy

statements.
For each variable in the previous path, we compare

its data flow with that in the current path (lines 10-11).
Again, we first locate the conflict index. Then, we add the
conflicting index and its preceding index’s corresponding
statements to the buggy statements (lines 12-13). Note that
a variable’s data flow is the sequence of code statements
that define, assign, modify, or use the variable in the path.
Additionally, when we compare the data flow of a variable,
we do not consider the control flow.

In the case of the motivation example, we first examine
the constraints and identify no differences. Subsequently,
we analyze the data flow of each variable. Upon inspection,
we observe that the data flow of the variable flags in the
previous version encompasses two statements 11-12, 16-17,
while in the current version, it comprises three statements
11-12, 15, 16-17. Consequently, a conflict arises at index 1, as
we illustrate in green in Figure 5. As a result, we include the
statements 11-12, 16-17 as the statements contributing to the
bug.

Algorithm 2: obtain the buggy statements.
Input : s, state of the current path.

s′, state of the previous path.
Output: bStmts, the obtained buggy statements.
i←− 0
preCons←− s′.constraints
curCons←− s.constraints

1 for i < curCons.size() and i < preCons.size() do
2 if curCons[i] ̸= preCons[i] then
3 break

i←− i+ 1

4 if i ̸= curCons.size() then
5 bStmts.add(extractStmts (curCons [i],s))

6 for var in s′.vars do
i←− 0

7 preData←− s′.var.data
8 curData←− s.var.data
9 for i < curData.size() and i < preData.size()

do
10 if curData[i] ̸= preData[i] then
11 break

i←− i+ 1

12 if i ̸= curData.size() then
13 bStmts.add(preData [i-1],preData [i])

3.4 Locating bug-inducing commits

After identifying all buggy statements, the subsequent step
involves tracing back the commit history to pinpoint the
bug-inducing commit. We adopt an approach similar to
the “perfect test” model proposed by Rodrı́guez-Pérez et
al. [29]. The model consists of two parts. The first part
involves determining whether a commit is buggy. They
assume there exists a “perfect test” to accomplish this. If a
commit can pass the test, it is considered correct; otherwise,
it is deemed buggy. The second part involves locating the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

1 - flags = work->flags & ~IRQ_WORK_PENDING;
2 - xchg(&work->flags, flags);
3 + flags = atomic_read(&work->flags) & ~IRQ_WORK_PENDING;
4 + atomic_xchg(&work->flags, flags);

5 work->func(work);
6 - (void)cmpxchg(&work->flags, flags, flags
- & ~IRQ_WORK_BUSY);

7 + (void)atomic_cmpxchg(&work->flags, flags, flags
+ & ~IRQ_WORK_BUSY);

1 + int flags;
2 - flags = atomic_read(&work->flags) &
- ~IRQ_WORK_PENDING;

3 + atomic_xchg(&work->flags, flags);
4 + flags = atomic_fetch_andnot(IRQ_WORK_PENDING,
5 + &work->flags);

6 work->func(work);
7 (void)atomic_cmpxchg(&work->flags, flags, flags &
8 ~IRQ_WORK_BUSY);

1. flags = atomic_fetch_andnot(IRQ_WORK_PENDING, &work->flags);
2. (void)atomic_cmpxchg(&work->flags, flags, flags & ~IRQ_WORK_BUSY);

Buggy statements

153bedbac2e feb4a51323b

match match

Fig. 7: locating bug-inducing commits

bug-inducing commit. They trace back from the bug-fixing
commit until encountering the earliest commit that fails
the ”perfect test,” marking it as the bug-inducing commit.
However, in practice, there is always no applicable “perfect
test” available. Therefore, they replace it with manually
designed tests based on bug reports.

Based on the model mentioned above, our method to
locate the bug-inducing commits also consists of two parts.
To determine whether a commit is buggy, we replace the
“perfect test” with the buggy statements collected above. As
we mentioned above, each buggy statement is indispensable
to the occurrence of the bug. Thus, we consider the commit
as buggy only when it contains all buggy statements or
it contains statements with the same semantic meaning as
all buggy statements. To determine whether two statements
have the same semantic meaning, we leverage the method-
ology proposed by V-SZZ [17] . If two statements have a line
similarity beyond a threshold, we believe that they have the
same semantic meaning. Here, we also use the same method
to compute line similarity and set the similarity threshold to
0.75 as V-SZZ.

Suppose that we have two strings S1 and S2. We first
calculate the sum of the length of S1 and S2 as in formula 1.
Then we calculate the line similarity shown in formula 2,
where the levenshteinDistance function is used to calcu-
late the Levenshtein edit distance [30] of the two strings.
Line similarity ranges from 0 to 1. Higher values indicate a
greater likelihood that two code statements share the same
semantic meaning.

L = len(S1) + len(S2) (1)

S = (L− levenshteinDistance(S1, S2))/L (2)

To locate the bug-inducing commits, we trace back all
buggy statements, generating a set of candidate commits.
Subsequently, we scrutinize these candidates to identify the
earliest buggy commit and designate it as the bug-inducing
commit, which is the same as the model above.

Figure 7 illustrates the process of locating bug-inducing
commits. After obtaining statements contributing to the
bug, we first use the git blame tool on the statements
and obtain two candidates: commit 153bedbac2e and
commit feb4a51323b. Then we begin to check which commit
first introduces all buggy statements. We first check the
earliest commit 153bedbac2e and find that no statement has
a line similarity over 0.75 with the statement flags
= atomic_fetch_andnot(IRQ_WORK_PENDING,
&work->flags). The most closely related statement
is line 3, but its similarity is still under 0.75. Thus,
153bedbac2e is not the bug-inducing commit. Then, we
check commit feb4a51323b and find that it contains all
statements in the buggy statements. Thus, we designate it
as the final bug-inducing commit, which is the same as the
developers’ message in Figure 1.

3.5 Extending SEM-SZZ to bug-fixing commits with
deleted lines
While our method is primarily designed for bug-fixing
commits with only added lines, the approach of comparing
program states and identifying buggy statements can also
be applied to commits with deleted lines. However, some
adjustments are necessary for this scenario, particularly
with respect to deleted lines.

First, during program slicing, we mark the basic block
containing deleted lines as the point of interest and search
its nearest N predecessors and successors. Second, when
comparing program states, we focus more on deleted lines.
Specifically, if we find differences in path constraints be-
tween the previous and current versions, we identify the
deleted lines related to those constraints and mark them as
buggy statements. Similarly, when comparing the data flow
of each variable, if there’s a difference between versions,
we identify and mark the related deleted lines as buggy
statements.

Figure 8 illustrates why comparing paths is necessary.
If we blamed all deleted lines, lines 3 and 17 would be
included. However, line 3 is simply replaced by line 4 and

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fixing Commit: 83ab7dad06b in Linux
rtc: pcf2123: Add missing error code assignment before test.

1 static ssize_t pcf2123_store(struct device *dev, struct
2 device_attribute *attr,
3 - const char *buffer, size_t count) {
4 + const char *buffer, size_t count)
5 {
6 struct pcf2123_sysfs_reg *r;
7 unsigned long reg;
8 unsigned long val;
9 int ret;
10 r = container_of(attr, struct pcf2123_sysfs_reg, attr);
11 ret = kstrtoul(r->name, 16, ®);
12 if (ret)
13 return ret;
14 ret = kstrtoul(buffer, 10, &val);
15 if (ret)
16 return ret;
17 - pcf2123_write_reg(dev, reg, val);
18 + ret = pcf2123_write_reg(dev, reg, val);
19 if (ret < 0)
20 return -EIO;
21 return count;
22 }

Fig. 8: An example of handling bug-fixing commits with
deleted lines

does not affect the program’s state. By comparing paths, we
can see that the data flow of variables buffer and count is
not affected, allowing us to exclude line 3 and reduce noise.

4 EXPERIMENT SETUP

4.1 Expriment Setting
The experiment was conducted on a server equipped with
an Intel(R) Xeon(R) Gold 6226R CPU, running the Ubuntu
operating system. We utilized gitpython to extract source
files from both the previous and current versions of the
program. The control flow graph was constructed based on
the AST generated by the tree-sitter parser [31]. Following
the V-SZZ algorithm, we set the line similarity threshold as
0.75. Notably, we set the maximum search step parameter N
to three. Further details on the impact of various maximum
search steps will be discussed in the subsequent section.
Moreover, we implement all baselines based on tools pro-
vided by Lenarduzzi et al. [32].

4.2 Data preparation
To evaluate our method, we require a high-quality dataset.
While several researchers [33], [34] have introduced datasets
containing bug-inducing and bug-fixing commits, a com-
mon challenge is the lack of annotations by project devel-
opers, potentially leading to inaccuracies. Recently, some
datasets [35], [36] with developers’ annotations have been
proposed, but all of them have very limited examples of
bug-fixing commits with no deleted lines. For example, after
filtering, the dataset proposed by Rosa et al. [35] contains
only about 20 bug-fixing commits only with added lines.
Considering these factors, we opted to utilize the dataset
proposed by Lyu et al. [20], which is constructed based on
the Linux kernel and contains 79,649 bug-fixing commits.
There are several reasons for this choice. Firstly, it is anno-
tated by developers, ensuring its accuracy. The developers

Original dataset

DATASET-FA

DATASET-A DATASET-D

Fig. 9: datasets relationship

Fixing Commit: b0138364da1 in Linux
module_param_named() requires linux/moduleparam.h

1 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
2 SOFTWARE.
3 */
4 + #include <linux/moduleparam.h>
5 #include <drm/ttm/ttm_execbuf_util.h>
6 #include "virtgpu_drv.h"

Fig. 10: A bug-fixing commit involving no changes within
functions

TABLE 1: The statistics of the bugs and corresponding
bug-fixing commits in three datasets

DATASET #Bug-Fixing #Bug-Inducing #SMALL #LARGE

DATASET-A
DATASET-FA
DATASET-D

6,233
11,426
48,736

6,419
11,829
50,978

7,959
4,394

16,615

3,467
1,839

25,975

leave the link to the bug-inducing commit in the commit
message of the bug-fixing commit. Secondly, it contains a
significant number of bug-fixing commits without any dele-
tion lines. To evaluate our method, we partition the original
dataset into multiple datasets, as illustrated in Figure 9.

We initially pick out bug-fixing commits containing c
files with only added lines from the original dataset, yield-
ing 11,426 commits, which we call DATASET-A. Here,
the suffix ”A” means added lines. To better demonstrate
the effectiveness of SEM-SZZ, we filter out two types of
commits from DATASET-A. The first type of commits does
not involve changes within functions. These commits often
only involve changes to header file includes, struct defi-
nitions, or global variable declarations. We have provided
an example in Figure 10. The commit fixes the bug only
by adding a new header file. The second type involves
changes within functions, but even by tracing all lines in
the changed functions, we still cannot identify the bug-
inducing commits. Our approach is not designed for the first
type, and no approaches, including baselines, can handle
the second type. Thus, we filter out these two types of
commits from DATASET-A and get DATASET-FA, which
contains 6,233 bug-fixing commits. Here, the suffix ”FA”
stands for the filtered bug-fixing commits with only added
lines. Finally, to evaluate our method’s effectiveness in
identifying bug-inducing commits from bug-fixing commits
with deleted lines, we extract bug-fixing commits containing
c files with deleted lines and changes in functions, resulting
in 48,736 test cases, forming the DATASET-D. Here, the
suffix ”D” means the deleted lines. Note that as long as a
bug-fixing commit contains deleted lines, it can be included
in DATASET-D. Thus, DATASET-D includes bug-fixing
commits with only deleted lines and bug-fixing commits
with both added and deleted lines.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Table 1 presents the statistics of our three datasets. We
categorize the bug-fixing commits following previous re-
search [17], [18]. Notice that if a bug-fixing commit contains
fewer than five changed lines, we categorize it as a small
bug-fixing commit; otherwise, we categorize it as large.
From the table, we can see that all three datasets contain
multiple large bug-fixing commits. This is helpful when we
want to demonstrate that our approach can scale to large
bug-fixing commits. Moreover, we can also see that one bug-
fixing commit may correspond to multiple bug-inducing
commits.

4.3 Baselines

Few previous research studies have proposed methods to
identify bug-inducing commits that involve only added
lines. To enhance the evaluation of our approach, we in-
troduce a new set of baselines of our own, complementing
the existing approaches. All the following baselines have
the prefix ”A”. Here, the ”A” stands for ”added lines,”
indicating that these baselines are designed to handle bug-
fixing commits with only added lines.

• A-SZZ. A-SZZ, proposed by Sahal et al. [21], is an
approach that initially identifies the added lines, then
locates the block encapsulating the new code change,
and finally utilizes the git blame tool to trace back the
historical changes of the code block.

• AB-SZZ. Building on the concept of B-SZZ [6], we in-
troduce an additional baseline named AB-SZZ. Similar
to the B-SZZ algorithm, which utilizes the git blame
tool on each deletion line, our variant also aims to find
lines for each added line to trace back. In contrast to
the relatively coarse scope of A-SZZ, which covers the
whole code block, our approach only selects the two
nearest unmodified lines above and below each added
line. In this way, we can guarantee that each added line
has unmodified lines to trace back.

Our study also adopts the concept of B-SZZ variants,
such as AG-SZZ, MA-SZZ, R-SZZ and L-SZZ to introduce
baselines, which is the same as three previous studies [17],
[20], [37]. Note that we exclude the RA-SZZ algorithm [9],
because there are no existing tools to identify refactors in
the C programming language.

• AAG-SZZ. The original AG-SZZ algorithm, proposed
by Kim et al. [7], enhances the B-SZZ algorithm by
filtering out non-semantic lines, such as blank lines,
comment lines, and format modifications. Additionally,
they leverage the annotation graph to gather more
information than the annotate command. Given that
the git blame tool already leverages the annotation
graph, the AAG-SZZ algorithm only needs to filter out
non-semantic lines identified in the AB-SZZ algorithm.

• AMA-SZZ. The original MA-SZZ algorithm is pro-
posed by Da Costa et al [8]. They notice that the exis-
tence of meta-changes introduces noise in the identified
bug-inducing commits. Meta-changes refer to changes
that do not alter the semantics of code, such as branch
changes, merge changes, and property file changes.
To implement AMA-SZZ, we need to filter out meta-
changes based on the AAG-SZZ algorithm.

TABLE 2: The performance comparisons between all
methods for finding all bug-inducing commits

Approach Precision Recall F1-score

A-SZZ
AB-SZZ
AAG-SZZ
AMA-SZZ
AR-SZZ
AL-SZZ

0.07
0.26
0.28
0.28
0.39
0.37

0.64
0.56
0.52
0.52
0.38
0.36

0.13
0.36
0.36
0.36
0.37
0.36

SEM-SZZ * 0.45 0.43 0.44

• AR-SZZ and AL-SZZ. The original R-SZZ and L-SZZ
algorithms were proposed by Davies et al. [33]. The
R-SZZ algorithm selects the most recent commit from
the AG-SZZ algorithm results, while the L-SZZ selects
the commit that changed the most lines. In the AR-SZZ
and AL-SZZ algorithms, we adopt the same selection
strategy as the R-SZZ and L-SZZ algorithms to select
the final commit from the results produced by the AAG-
SZZ algorithm.

To evaluate our approach in scenarios where the bug-
fixing commit contains deleted lines, we adopt the ap-
proaches B-SZZ, AG-SZZ, MA-SZZ, L-SZZ and R-SZZ as
in previous studies [17], [20], [37].

4.4 Metrics

Following previous research practices [17], [18], [20], we
adopt three widely used metrics (i.e., Precision, Recall, and
F1-score) to assess the performance of our approach and
other baselines.

Precision Precision gauges the accuracy of positive pre-
dictions made by the SZZ algorithm. In this context, we
define IT as the SZZ algorithm’s correctly identified true
bug-inducing commits and IF as the falsely identified bug-
inducing commits. Therefore, precision can be calculated as
follows:

P =
IT

IT + IF
(3)

Recall is a measure of the SZZ algorithm’s ability of cap-
turing true bug-inducing commits among all bug-inducing
commits. Here IT is defined as the SZZ algorithm’s correctly
identified true bug-inducing commits and M is the number
of all bug-inducing commits. Thus, recall can be calculated
as follows:

R =
IT
M

(4)

F1-score is the harmonic mean of precision and recall.
It provides a balance between these two metrics, taking
both false positives and false negatives into account. After
obtaining P as the precision and R as the recall, the F1-score
can be calculated as follows:

F1 =
2PR

P +R
(5)

5 EXPERIMENT

This section presents the experiment results of our research
questions.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE 3: The performance comparisons between all
methods for finding filtered bug-inducing commits

Approach Precision Recall F1-score

A-SZZ
AB-SZZ
AAG-SZZ
AMA-SZZ
AR-SZZ
AL-SZZ

0.11
0.42
0.44
0.44
0.58
0.57

0.96
0.84
0.79
0.79
0.56
0.55

0.20
0.56
0.57
0.57
0.57
0.56

SEM-SZZ 0.68 0.66 0.67

5.1 Effectiveness of our method in identifying bug-
inducing commits from bug-fixing commits with only
added lines

In this research question, we focus on two experimental set-
tings: all bug-inducing commits and filtered bug-inducing
commits. In the first setting, we concentrate on locating bug-
inducing commits in DATASET-A. In the second setting, we
focus on locating bug-inducing commits in DATASET-FA.

In DATASET-A, there are 2,411 commits that involve no
changes within functions, accounting for 21% of the total
test cases. Thus, when handling test cases in DATASET-A,
we first check whether the current commit contains added
lines in functions. If it does, we use SEM-SZZ to produce
the result. If it does not, we use the AR-SZZ algorithm. This
approach gives us the experimental results shown in the
row SEM-SZZ * in Table 2.

Table 2 presents the results of our approach and base-
lines for identifying all bug-inducing commits. Notably, the
precision of some baselines, especially the A-SZZ algorithm,
is relatively low, with a precision of less than 0.1. The best
baseline AR-SZZ has a precision equal to 0.39, which is
still lower than SEM-SZZ *. Thus, our approach improves
precision by 22% compared to the best baseline AR-SZZ.

As shown in Table 2, A-SZZ performs the worst in F1-
score due to a high number of false positives. Our proposed
baselines outperform A-SZZ significantly. The best baselines
AAG-SZZ and AMA-SZZ outperform A-SZZ by 200% in
F1-score. This indicates the effectiveness of tracing back the
neighboring unmodified lines of added lines. Furthermore,
we observe that the AB-SZZ algorithm and its variants
perform almost the same, resembling findings from prior
research [20] where B-SZZ, AG-SZZ, MA-SZZ , L-SZZ and
R-SZZ demonstrated similar performance. Notably, the idea
of filtering out meta-changes appears to have no effect in
this context. In Table 2, SEM-SZZ * also demonstrates the
best balance between precision and recall, improving F1-
score by 19% compared to the best baseline AR-SZZ.

We then re-run all methods on DATASET-FA, and the
results are documented in Table 3. Table 3 demonstrates a
significant improvement in the performance of all methods.
However, some baselines continue to struggle with low
precision. Notably, the precision of the A-SZZ algorithm is
still quite low, with only a slight improvement from 0.07
to 0.11. After filtering out certain commits, the precisions
of the AB-SZZ, AAG-SZZ and MA-SZZ algorithms remain
below 0.50, despite an improvement of around 0.16. From
the table, it’s evident that SEM-SZZ continues to outperform
all baselines in precision, outperforming the best baseline
AR-SZZ by 17%.

TABLE 4: The performance comparisons for finding
bug-inducing commits from bug-fixing commits with

deleted lines

Approach Precision Recall F1-score

B-SZZ
AG-SZZ
MA-SZZ
R-SZZ
L-SZZ

0.42
0.48
0.48
0.58
0.56

0.71
0.65
0.65
0.55
0.52

0.53
0.55
0.55
0.56
0.54

SEM-SZZ 0.62 0.59 0.60

From Table 3, we can also see that the unmodified lines,
which can be traced back to find bug-inducing commits,
mostly lie near the added lines. This is evident from the
recall of the baselines, where they find most of the bug-
inducing commits successfully. This corresponds to the in-
troduction and the motivation example, where we claim that
most of the bug-inducing commits can be found by tracing
back the unmodified lines near the added lines.

Compared to all baselines, SEM-SZZ also achieves the
best balance between precision and recall. This is evident
in the F1-score, where SEM-SZZ achieves an F1-score of
0.67. It outperforms the best baselines by 18%, respectively.
Therefore, we believe that SEM-SZZ is more effective in
identifying bug-inducing commits which can be found by
tracing back all lines within the function.

RQ-1: SEM-SZZ is more precise in identifying bug-inducing
commits compared to all baselines, increasing precision by
22%. Furthermore, SEM-SZZ achieves a notable improvement
of 19% in F1-score compared to the best baseline.

5.2 Effectiveness of our method in identifying bug-
inducing commits from bug-fixing commits with deleted
lines

Table 4 presents the results of SEM-SZZ and baselines on
identifying bug-inducing commits from bug-fixing commits
in DATASET-D. The results indicate that all baselines per-
form similarly. The AG-SZZ, MA-SZZ, R-SZZ and L-SZZ
algorithms improve the precision compared to B-SZZ, but
their F1-scores are almost the same. Notably, the recall of B-
SZZ is relatively high. This implies that if there are deleted
lines, it is very likely that we can find the bug-inducing
commits by tracing back the deleted lines. This explains
why we need to modify the approach when dealing with
bug-fixing commits with deleted lines and why we need to
pay more attention to deleted lines when they exist.

Additionally, from the table, we can observe that SEM-
SZZ also outperforms all baselines. It improves the pre-
cision by 7%, compared to the best baseline R-SZZ. Our
method also demonstrates a notable improvement in F1-
score, surpassing the best baseline by 7%.

RQ-3: SEM-SZZ outperforms all baselines in identifying bug-
inducing commits from bug-fixing commits with deleted lines.
It enhances precision by 7% and F1-score by 7% compared to
the best baseline.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE 5: The performance comparisons in ablation study

Similarity Precision Recall F1-score

SEM-SZZ-c
SEM-SZZ-d
SEM-SZZ-l

0.69
0.67
0.65

0.31
0.36
0.64

0.47
0.42
0.64

SEM-SZZ 0.68 0.66 0.67

0.664
0.665
0.666
0.667
0.668
0.669
0.670
0.671
0.672
0.673

S= 0.65 S = 0.70 S = 0.75 S = 0.80 S = 0.85

F1-score

Fig. 11: The impact of line similarity threshold

5.3 Effectiveness of key designs in SEM-SZZ

In this research question, we aim to evaluate the effective-
ness of the key components in our approach. SEM-SZZ
incorporates two primary designs for identifying buggy
statements and one for pinpointing bug-inducing commits.

The first design involves comparing path constraints
between the previous and current versions of the program.
Here, the previous version refers to the first commit preced-
ing the bug-fixing commit, while the current version refers
to the bug-fixing commit itself. The second design involves
comparing the data flow of each variable in both versions.
In the third design, we utilize line similarity comparison to
identify the earliest commit that introduces the statements
contributing to the bug, marking it as the bug-inducing
commit.

To do the ablation study, we first use DATASET-FA
and compare SEM-SZZ with three of its variants: SEM-
SZZ-c, SEM-SZZ-d, and SEM-SZZ-l, each missing one key
component. Then we change the line similarity threshold
and evaluate its impact on the SEM-SZZ’s performance. In
SEM-SZZ-c, we only compare the constraints and drop the
comparison of data flow. Similarly, SEM-SZZ-d only focuses
on comparing the data flow and drops the comparison of
constraints. Both variants would cause fewer buggy state-
ments to be identified. In SEM-SZZ-l, we do not use the line
similarity comparison to identify bug-inducing commits,
instead following V-SZZ’s approach by selecting the earliest
one.

From Table 5, it’s evident that SEM-SZZ achieves the
highest F1-score compared to all of its variants. While SEM-
SZZ-c demonstrates the best precision among all methods,
dropping data flow comparison results in a significant de-
crease in recall. Similarly, dropping constraint comparison
has a substantial negative impact on recall performance.
Both constraint and data flow comparisons contribute al-
most equally to recall. Moreover, our method of locating
bug-inducing commits enhances the method’s ability to
point out bug-inducing commits, improving all metrics. It
improves precision by 5%, recall by 3%, and F1-score by 5%
compared to SEM-SZZ-l. Figure 11 shows that the choice
of line similarity threshold also influences the performance.
When the line similarity threshold rises from 0.65 to 0.75,

1 INIT_LIST_HEAD(&drv->list);
2 + iwl_load_fw_dbg_tlv(drv->trans->dev, drv->trans);
3 ret = iwl_request_firmware(drv, true);
4 if (ret) {
5 IWL_ERR(trans, "Couldn't request the fw\n");
6 goto err_fw;
7 }

Fixing Commit: 072b30642f9 in Linux
ini debug mode should work even if debug override is not defined.
Fixes: 68f6f49

Fig. 12: A failing example

the F1-score also increases. However, when the threshold
increases from 0.75 to 0.85, the F1-score drops. This shows
that 0.75 is an appropriate value for the line similarity
threshold.

RQ-2: Table 5 illustrates that each of our key designs con-
tributes to the performance in identifying bug-inducing com-
mits. Both constraint comparison and data flow comparison
contribute equally to recall. Additionally, our method of locat-
ing bug-inducing commits enhances the performance across all
metrics and 0.75 is the appropriate value for the line similarity
threshold.

5.4 Time efficiency
In this section, our objective is to assess the time consump-
tion of our approach during program analysis. We compare
the performance of our SEM-SZZ with the baseline A-SZZ,
both of which involve analyzing the program’s structure.

The outcome reveals that it takes approximately three
hours and fifty minutes to process all examples in
DATASET-A, equating to an average of 1.95 seconds per
test case. Compared to A-SZZ, our approach takes approx-
imately three times longer. This is attributed to the fact
that our method involves analyzing both the previous and
current versions of the program, whereas A-SZZ only needs
to focus on the current version. Additionally, our approach
requires collecting states and comparing them between two
program versions. Despite the increased time overhead, we
believe our approach remains practical and applicable in
real-world scenarios.

RQ-3: SEM-SZZ takes approximately 1.95 seconds to handle a
fixing commit from scratch. This duration includes tasks such
as extracting the source files, collecting and comparing states,
and locating bug-inducing commits.

6 DISCUSSION

6.1 Analysis for the failure case
In this section, we aim to analyze the reasons behind the
failures observed in some cases. We randomly select 100
cases to analyze the reasons for the failures. After analysis,
the failed reasons can be summarized as follows:
Line similarity fails to determine whether a commit is
buggy. Out of the 100 cases analyzed, 28 cases fail because
SEM-SZZ fails to determine whether a commit is buggy.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Fixing Commit: bfab7c8ff89 in Linux
add missing fwnode_handle_put() in dwapb_gpio_get_pdata() …

1 device_for_each_child_node(dev, fwnode) {
2 pp = &pdata->properties[i++];
3 pp->fwnode = fwnode;
4 if (fwnode_property_read_u32(fwnode, "reg", &pp->idx) ||
5 pp->idx >= DWAPB_MAX_PORTS) {
6 dev_err(dev,
7 "missing/invalid port index for port%d\n", i);
8 + fwnode_handle_put(fwnode);
9 return ERR_PTR(-EINVAL);
10 }

Fig. 13: An example to show the effectiveness of program
slicing

The main reason for this is the line similarity matching
protocol used in our method. In our approach, for each state-
ment contributing to the bug, if there all exists a line with
string similarity beyond a threshold, we assume that the
commit is influenced by the buggy. However, this method
sometimes fails to accurately identify the bug-inducing com-
mits. For instance, consider the commit 15273ffd7ef [38],
which adds a new line ret = 0;. Our method generates
two buggy statements: if (!ret) and return ret;.
However, when locating the bug-inducing commit, the
method encounters many statements like if (ret), which
exhibit high line similarity but have completely different
semantic meanings. This can lead to incorrect judgments
and result in finding false bug-inducing commits. This issue
is particularly prevalent when the buggy statements contain
many short statements.

Failing to point out buggy statements correctly. Another
main reason for the failure is that our method fails to point
out buggy statements correctly. This issue is responsible for
most of the remaining failing cases. For instance, while the
added line may influence the variable’s data flow, analyz-
ing the affected variable’s data flow may not yield correct
results.

Consider the commit 072b30642f9 [39], illustrated in
Figure 12. This commit introduces a new code line at line 2,
highlighted in green, impacting the data flow of the variable
drv. Our method, accordingly, compares its data flow with
the previous version and identifies lines 1 and 3 as buggy
statements. However, tracing back these unmodified lines
does not lead us to the bug-inducing commit, resulting in
the failure of our method in this scenario.

After carefully analyzing the bug-fixing commit and the
bug-inducing commit, we find that the bug occurs because
the bug-inducing commit attempts to introduce a new func-
tion in the program but forgets to use it. Specifically, it
creates the iwl_load_fw_dbg_tlv function. However, the
bug-inducing commit only defines the function and forgets
to use it. Consequently, the bug-fixing commit fixes the bug
by using the iwl_load_fw_dbg_tlv function in line 2.
Therefore, we can conclude that the bug has nothing to do
with the data flow of the drv variable. As a result, SEM-SZZ
fails to identify the bug-inducing commit in this case.

62
63
64
65
66
67
68
69

0.660
0.662
0.664
0.666
0.668
0.670
0.672
0.674

N = 1 N = 2 N = 3 N = 4 N = 5

F1-score Time(minute)

Fig. 14: The impact of parameter N

6.2 Effectiveness of program slicing in finding bug-
inducing commits

Although tracing back the unmodified lines near the added
lines is an effective approach for finding bug-inducing com-
mits if we do not consider precision, there are still some bug-
inducing commits that cannot be found in this way. In this
section, we discuss whether program slicing, which explores
N basic blocks near the added lines, helps find more bug-
inducing commits that the baselines cannot detect.

In the experiment, we try to find bug-inducing commits
that SEM-SZZ can detect but baselines can not. The experi-
mental result shows that SEM-SZZ does find bug-inducing
commits that the baselines cannot detect, accounting for
1.4% of the total test cases. One typical example is the
commit bfab7c8ff89 [40], shown in Figure 13. In this case,
the bug occurs because the previous version of the program
does not call the fwnode_handle_put function before
returning. If we trace back the two nearest lines between
the added line, we cannot find the bug-inducing commit.
However, by comparing the differences in the data flow of
the variable fwnode, we can locate lines 1 and 3. Tracing
back from these lines allows us to successfully identify the
bug-inducing commit.

6.3 Impact of the maximum search step

In this section, we aim to investigate the impact of the
maximum search step parameter N. As mentioned earlier,
given that most bug-inducing commits can be identified by
tracing back nearby lines, we set the maximum search step
parameter N to three. This parameter dictates that for each
added line, we search three basic blocks above and below it.

In this section, we vary the parameter N from 1 to 5 to
assess the performance of SEM-SZZ under different settings.
Our evaluation focuses on key aspects such as F1-score and
time efficiency. Here, to show the influence of the maximum
search step on time efficiency more clearly, we exclude the
time of extracting source files.

Figure 14 presents the results of the experiment. It is
evident that varying the number of the maximum search
step does not significantly impact time efficiency. While
there is a slight increase in time cost as the number of
maximum search steps grows, the increase is not substantial.
Similarly, varying the number of the maximum search steps
does not significantly impact the F1-score. It increases from
a maximum search step of 1 to 3, then decreases from 4 to
5. The reason for growth is pretty easy to understand. As

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE 6: The performance comparisons between SEM-SZZ
and BUGNNINGS

Approach Precision Recall F1-score

BUGNNINGS
BUGNNINGS*

0.51
0.51

0.35
0.50

0.41
0.50

SEM-SZZ 0.68 0.66 0.67

Fixing Commit: 7090abd6ad0 in Linux

Configure DMA to use 16B burst size with Elkhart Lake. This makes the
bus use more efficient …

1 static int ehl_serial_setup(struct lpss8250 *lpss,
2 struct uart_port *port)
3 {
4 struct uart_8250_dma *dma = &lpss->data.dma;
5 struct uart_8250_port *up = up_to_u8250p(port);
6 up->dma = dma;
7 + lpss->dma_maxburst = 16;
8 port->set_termios = dw8250_do_set_termios;
9 return 0;
10 }

Fig. 15: A failing example of the BUGNNINGS approach

the number of the maximum search step grows, SEM-SZZ
can expand the search scope and analyze more basic blocks.
However, as mentioned earlier, most bug-inducing commits
can be identified by tracing back nearby lines. Therefore,
we can assume that if a basic block is far from the added
lines, it is unlikely to contain lines that can be traced back to
find bug-inducing commits. Consequently, if the parameter
N is set too large and the search scope is too broad, there is
a high probability of including irrelevant statements in the
identified buggy statements, even if these statements have
data flow or control flow relationships with the added lines.
Finally, the inclusion of irrelevant statements in the identi-
fied buggy statements can adversely affect the bug-inducing
commit localization process, resulting in false results.

A typical example is commit 5574d329044 [41]. When the
parameter N is set to 3, SEM-SZZ successfully identifies the
correct bug-inducing commit. However, when the parame-
ter N is increased to 5, SEM-SZZ fails to find the correct bug-
inducing commit. This failure occurs because, with N set to
5, the search scope becomes too large and includes the state-
ment struct device *dev = &priv->udev->dev; as
one of the statements contributing to the bug. This state-
ment, located over 100 lines away from the added line, is
unrelated to the bug, despite its data flow relation with the
added line.

6.4 comparison with another semantic-based ap-
proach

In this section, we compare SEM-SZZ with another
semantic-based approach called BUGNNINGS [42]. This
method first builds program dependence graphs for both
the bug-fixing version and the version preceding the bug-
fixing commit. It then computes the differences between
these two versions of the program dependence graph. This

helps identify the code statements that have a dependent
relationship with the code changes in the bug-fixing commit.
Finally, the method traverses the commit history to identify
the earliest version that introduced all code statements with
a dependence relationship to the changes in the bug-fixing
commit.

The original implementation of BUGNNINGS is based
on WALA, a Java program analysis infrastructure, and
requires compiling the program. However, compiling and
analyzing a large program, such as the Linux kernel, takes
a very long time. Considering that our dataset contains tens
of thousands of bug-fixing commits, strictly following the
implementation in the paper would result in unacceptable
time consumption.

To address this, we utilize a tool called Joern [43], which
can build the program dependence graph (PDG) from the
abstract syntax tree (AST). We first extract the file content
of the two program versions and use Joern to build the
PDG based on this content. Then, we compare the PDGs
of the two versions to identify code statements that have a
dependence relationship with the changes in the bug-fixing
commit.

The experimental result is shown in Table 6. The original
result can be seen in the second row of the table. How-
ever, during implementation, we found that Joern failed to
generate PDGs for some test cases. Therefore, we filtered
out these test cases and obtained the result labeled BUGN-
NINGS*. According to the table, SEM-SZZ outperforms
BUGNNINGS in both precision and recall.

The fundamental reason for this is that comparing the
differences in PDGs is not suitable in this scenario. For ex-
ample, consider the commit 7090abd6ad0 [44] in Figure 15.
According to the commit message, the bug occurs because
the bug-inducing commit introduces the dma variable but
does not set the burst size. In SEM-SZZ, the data flow of the
lpss variable is compared, which correctly locates line 4,
highlighted in yellow. Conversely, BUGNNINGS incorrectly
locates the place where lpss is defined, which is line 1.

In fact, BUGNNINGS often tends to locate line numbers
far from the added lines based on PDGs. As mentioned
earlier, most bug-inducing commits can be found by trac-
ing back the lines near the added lines. This is the one
main reason for its poor performance. Another reason is its
analysis of control flow dependence. For instance, a newly
added if statement can have the control flow dependent
relationship with many lines in the program, often including
many irrelevant lines.

6.5 Threats to Validity
Internal Validity. Threats to internal validity refer to causal-
ity, bias, and errors in the experiment. One potential threat
is that we do not compile the entire source code of the pro-
gram. Instead, we utilize the tree-sitter parser to implement
fuzzy parsing [45], allowing us to analyze only part of the
program. However, fuzzy parsing may not accurately reflect
the behavior of the program, especially when the program
contains many macros. This could potentially lead to errors
when creating datasets and undermine the effectiveness of
SEM-SZZ in comparison. Our implementation of BUGN-
NINGS faces the same issue, as we build program depen-
dence graphs directly from abstract syntax trees. Another

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

threat is the analysis of failure cases in the discussion. We
only randomly selected a subset of failure cases for analysis
which could also result in bias.
External Validity. Threats to external validity refer to the
applicability of our approach to other scenarios. One poten-
tial threat is that we only implemented and evaluated our
approach on the projects in the C programming language.
This limitation arises due to the lack of ghost commits in
other programming languages. This raises concerns about
the portability of our approach to other programming lan-
guages. To enhance generalization, we evaluate our ap-
proach on a larger dataset than those used in previous stud-
ies. Another threat is that, in our dataset, each bug-fixing
commit typically corresponds to only one bug-inducing
commit, which may not reflect real-world scenarios. In the
future, we plan to extend our approach to more program-
ming languages and collect additional datasets to address
these issues.
Construct Validity. Threats to construct validity refer to the
accuracy of the measures used to represent the concepts
in the study. Our approach might not perfectly encapsu-
late the complexities of real-world software development.
For example, SEM-SZZ cannot handle test cases without
changed lines in functions. Therefore, it is not applicable
to the entire dataset. To mitigate this threat, we power a
baseline with SEM-SZZ and apply it on the whole dataset
when evaluating SEM-SZZ’s effectiveness.
Conclusion Validity. Threats to conclusion validity refers
to the accuracy of the conclusions drawn from the data. In
our study, we draw conclusions based on a dataset from the
Linux kernel, which may not fully represent other software
development scenarios. Although we have analyzed the
dataset and found that it includes both small and large com-
mits, similar to those found in other development contexts,
there may still be limitations in generalizing our findings.
To address this, we plan to extend our approach to include
other programming languages and projects in the future.

7 RELATED WORK

SZZ algorithm Evaluation. The SZZ algorithm and its
variants have been the foundation in numerous software
engineering studies, leading to extensive evaluations by
researchers [33], [34]. Initially, evaluations often involved
manual annotation, where researchers like Davies et al. [33]
manually annotated 174 bugs across three repositories.
However, manual annotation is time-consuming and may
not always yield accurate results, as annotators may lack an
in-depth understanding of the projects. Recognizing these
challenges, many researchers have proposed developer-
informed oracles as an alternative. For instance, Wen et
al. [36] collected bug-inducing commits based on bug re-
ports, while Rosa et al. [35] relied on commit messages for
identification. Despite these advancements, one persistent
issue has been the limited size of available datasets. Most ex-
isting datasets are relatively small, capturing only a fraction
of the bug-inducing commits present in real-world projects.
To address this limitation, Lyu et al. [20] collect a large
dataset based on commit messages from the Linux kernel.
This dataset, being considerably larger in scale, provides a

more comprehensive view of bug-inducing commits in a
real-world context.
SZZ algorithm Application. The original SZZ algorithm
and its variants are widely used by researchers in vari-
ous empirical studies within software engineering. These
algorithms have been applied to investigate developer col-
laboration [46], code reviews [47], [48], technical debt [49],
software vulnerability [17] and software quality [50]. For
instance, Palomba et al. [51] employed the SZZ algorithm
to explore the correlation between smelly code and code
that introduces faults. Similarly, Bavota et al. [47] delved
into the impact of the code review process on the likelihood
of introducing a bug. Furthermore, the SZZ algorithm has
also been used to determine the correct versions affected by
a vulnerability in the National Vulnerability Database [17].
Another broad application of the SZZ algorithm is in just-
in-time defect detection [52], where researchers aim to deter-
mine whether a commit introduces a defect. Datasets [37],
[53], [54] used for just-in-time defect detection are often
collected using the SZZ algorithm. Based on these datasets,
many researchers have proposed models and evaluated
their effectiveness. For instance, Kamei et al. [52] utilized
the B-SZZ algorithm to identify bug-inducing commits and
collected a large dataset for their study. Similarly, Fan et
al. [37] investigated the impacts of different variants of the
SZZ algorithm on defect detection.
Factors leading to buggy commits. Researchers have exten-
sively explored the characteristics of bug-inducing commits,
with a particular emphasis on the factors contributing to
their production [2], [4], [6], [55], [56]. For instance, Śliwerski
et al. [6] analyzed the time factor and discovered that com-
mits made on Fridays are more prone to introducing bugs.
Other studies have delved into the developer factor, includ-
ing developers’ coding habits and experience. Eyolfson et
al. [55] found that developers who commit code daily are
less likely to introduce bugs, while Bernardi et al. [56] dis-
covered that developers who communicate frequently with
their colleagues tend to produce fewer bugs. Additionally,
Rahman et al. [4] identified that developers with experience
in the target file are less likely to introduce buggy commits.

8 CONCLUSION AND FUTURE WORK

In this study, we observe that the majority of bug-inducing
commits for bug-fixing commits with only added lines
can be effectively located by tracing back the nearby lines
of the unmodified lines. To further enhance precision, we
introduce our approach, SEM-SZZ. Our approach leverages
data flow analysis and control flow analysis to compare the
states between the two versions of the program, identifying
their difference and generating the statements contributing
to the bug. Subsequently, we trace back the buggy state-
ments to identify candidate commits. Finally, we employ
line similarity comparison to pinpoint the commit that ini-
tially introduced all the buggy statements, marking it as the
bug-inducing commit. The result shows that our proposed
method significantly improves the precision and F1-score
of the baselines in all scenarios, regardless of whether the
bug-fixing commit contains deleted lines. In the future, we
plan to extend our work to other programming languages
and collect more high-quality datasets. Additionally, current

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

methods overlook commit messages when locating bug-
inducing commits. We intend to leverage large language
models to interpret commit messages and code changes, us-
ing this information to filter out irrelevant lines detected by
baselines such as A-SZZ. Furthermore, our current approach
relies on line similarity to identify buggy commits. We aim
to replace this with large language models. We hope this can
maintain the high recall of A-SZZ while gaining SEM-SZZ’s
high precision.

9 ACKNOWLEDGEMENT

This research is supported by the National Key Research
and Development Program of China (No. 2021YFB2701102),
the National Science Foundation of China (No.62372398,
No.62302447, No.62202419, No.72342025, and U20A20173),
the Fundamental Research Funds for the Central Universi-
ties (No. 226-2022-00064), and Zhejiang Provincial Natural
Science Foundation of China (No. LY24F020008).

DATA AVAILABILITY

The replication package, which includes the source code,
datasets, and prediction results, can be found at https://
figshare.com/s/a25207be10150e2f0177

REFERENCES

[1] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Transactions on software engineer-
ing, vol. 34, no. 2, pp. 181–196, 2008.

[2] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto,
and O. Strollo, “When does a refactoring induce bugs? an empir-
ical study,” in 2012 IEEE 12th International Working Conference on
Source Code Analysis and Manipulation. IEEE, 2012, pp. 104–113.

[3] S. Kim and E. J. Whitehead Jr, “How long did it take to fix bugs?”
in Proceedings of the 2006 international workshop on Mining software
repositories, 2006, pp. 173–174.

[4] F. Rahman and P. Devanbu, “Ownership, experience and defects:
a fine-grained study of authorship,” in Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 491–500.

[5] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “How long
does a bug survive? an empirical study,” in 2011 18th Working
Conference on Reverse Engineering. IEEE, 2011, pp. 191–200.

[6] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4,
pp. 1–5, 2005.

[7] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic
identification of bug-introducing changes,” in 21st IEEE/ACM
international conference on automated software engineering (ASE’06).
IEEE, 2006, pp. 81–90.

[8] D. A. Da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho,
and A. E. Hassan, “A framework for evaluating the results of
the szz approach for identifying bug-introducing changes,” IEEE
Transactions on Software Engineering, vol. 43, no. 7, pp. 641–657,
2016.

[9] E. C. Neto, D. A. Da Costa, and U. Kulesza, “The impact of
refactoring changes on the szz algorithm: An empirical study,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2018, pp. 380–390.

[10] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction
for imbalanced data,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 99–108.

[11] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-in-
time defect prediction,” Journal of Systems and Software, vol. 150,
pp. 22–36, 2019.

[12] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on
fine-grained module histories,” in 2012 34th international conference
on software engineering (ICSE). IEEE, 2012, pp. 200–210.

[13] R.-M. Karampatsis and C. Sutton, “How often do single-statement
bugs occur? the manysstubs4j dataset,” in Proceedings of the 17th
International Conference on Mining Software Repositories, 2020, pp.
573–577.

[14] G. An and S. Yoo, “Reducing the search space of bug inducing
commits using failure coverage,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, 2021, pp. 1459–
1462.

[15] M. Tufano, G. Bavota, D. Poshyvanyk, M. Di Penta, R. Oliveto,
and A. De Lucia, “An empirical study on developer-related factors
characterizing fix-inducing commits,” Journal of Software: Evolution
and Process, vol. 29, no. 1, p. e1797, 2017.

[16] B. Chen and Z. M. Jiang, “Extracting and studying the logging-
code-issue-introducing changes in java-based large-scale open
source software systems,” Empirical Software Engineering, vol. 24,
pp. 2285–2322, 2019.

[17] L. Bao, X. Xia, A. E. Hassan, and X. Yang, “V-szz: automatic
identification of version ranges affected by cve vulnerabilities,”
in Proceedings of the 44th International Conference on Software Engi-
neering, 2022, pp. 2352–2364.

[18] L. Tang, L. Bao, X. Xia, and Z. Huang, “Neural szz algorithm,” in
2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2023, pp. 1024–1035.

[19] C. Rezk, Y. Kamei, and S. Mcintosh, “The ghost commit problem
when identifying fix-inducing changes: An empirical study of
apache projects,” IEEE Transactions on Software Engineering, vol. 48,
no. 9, pp. 3297–3309, 2021.

[20] Y. Lyu, H. J. Kang, R. Widyasari, J. Lawall, and D. Lo, “Evaluating
szz implementations: An empirical study on the linux kernel,”
arXiv preprint arXiv:2308.05060, 2023.

[21] E. Sahal and A. Tosun, “Identifying bug-inducing changes for code
additions,” in Proceedings of the 12th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, 2018, pp.
1–2.

[22] “The commit of the motivation example.” [Online]. Available:
https://github.com/torvalds/linux/commit/e9838bd5116

[23] E. Soremekun, L. Kirschner, M. Böhme, and A. Zeller, “Locating
faults with program slicing: an empirical analysis,” Empirical Soft-
ware Engineering, vol. 26, pp. 1–45, 2021.

[24] M. Weiser, “Program slicing,” IEEE Transactions on software engi-
neering, no. 4, pp. 352–357, 1984.

[25] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, and C. Tao, “Mvd: memory-
related vulnerability detection based on flow-sensitive graph neu-
ral networks,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 1456–1468.

[26] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5,
no. 7, pp. 1–19, 1970.

[27] R. S. Boyer, B. Elspas, and K. N. Levitt, “Select—a formal system
for testing and debugging programs by symbolic execution,” ACM
SigPlan Notices, vol. 10, no. 6, pp. 234–245, 1975.

[28] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing
Surveys (CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[29] G. Rodrı́guez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M.
Germán, and J. M. Gonzalez-Barahona, “How bugs are born: a
model to identify how bugs are introduced in software compo-
nents,” Empirical Software Engineering, vol. 25, pp. 1294–1340, 2020.

[30] L. Yujian and L. Bo, “A normalized levenshtein distance metric,”
IEEE transactions on pattern analysis and machine intelligence, vol. 29,
no. 6, pp. 1091–1095, 2007.

[31] “tree-sitter,” 2024. [Online]. Available: https://github.com/
tree-sitter/tree-sitter

[32] V. Lenarduzzi, F. Palomba, D. Taibi, and D. A. Tamburri, “Open-
szz: A free, open-source, web-accessible implementation of the
szz algorithm,” in Proceedings of the 28th international conference on
program comprehension, 2020, pp. 446–450.

[33] S. Davies, M. Roper, and M. Wood, “Comparing text-based and
dependence-based approaches for determining the origins of
bugs,” Journal of Software: Evolution and Process, vol. 26, no. 1, pp.
107–139, 2014.

[34] C. Williams and J. Spacco, “Szz revisited: verifying when changes
induce fixes,” in Proceedings of the 2008 workshop on Defects in large
software systems, 2008, pp. 32–36.

[35] G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota,
M. Lanza, and R. Oliveto, “Evaluating szz implementations
through a developer-informed oracle,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 436–447.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

[36] M. Wen, R. Wu, Y. Liu, Y. Tian, X. Xie, S.-C. Cheung, and Z. Su,
“Exploring and exploiting the correlations between bug-inducing
and bug-fixing commits,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 326–337.

[37] Y. Fan, X. Xia, D. A. Da Costa, D. Lo, A. E. Hassan, and S. Li,
“The impact of mislabeled changes by szz on just-in-time defect
prediction,” IEEE transactions on software engineering, vol. 47, no. 8,
pp. 1559–1586, 2019.

[38] [Online]. Available: https://github.com/torvalds/linux/
commit/15273ffd7ef

[39] [Online]. Available: https://github.com/torvalds/linux/
commit/072b30642f9

[40] [Online]. Available: https://github.com/torvalds/linux/
commit/bfab7c8ff89

[41] [Online]. Available: https://github.com/torvalds/linux/
commit/e9838bd5116

[42] V. S. Sinha, S. Sinha, and S. Rao, “Buginnings: identifying the
origins of a bug,” in Proceedings of the 3rd India software engineering
conference, 2010, pp. 3–12.

[43] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in 2014
IEEE symposium on security and privacy. IEEE, 2014, pp. 590–604.

[44] [Online]. Available: https://github.com/torvalds/linux/
commit/7090abd6ad0

[45] R. Koppler, “A systematic approach to fuzzy parsing,” Software:
Practice and Experience, vol. 27, no. 6, pp. 637–649, 1997.

[46] M. L. Bernardi, G. Canfora, G. A. Di Lucca, M. Di Penta, and
D. Distante, “The relation between developers’ communication
and fix-inducing changes: An empirical study,” Journal of Systems
and Software, vol. 140, pp. 111–125, 2018.

[47] G. Bavota and B. Russo, “Four eyes are better than two: On the
impact of code reviews on software quality,” in 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2015, pp. 81–90.

[48] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating code review quality: Do people and participation
matter?” in 2015 IEEE international conference on software mainte-
nance and evolution (ICSME). IEEE, 2015, pp. 111–120.

[49] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact of
self-admitted technical debt on software quality,” in 2016 IEEE
23Rd international conference on software analysis, evolution, and
reengineering (SANER), vol. 1. IEEE, 2016, pp. 179–188.

[50] B. Çaglayan and A. B. Bener, “Effect of developer collaboration
activity on software quality in two large scale projects,” Journal of
Systems and Software, vol. 118, pp. 288–296, 2016.

[51] P. Fabio, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, A. De Lucia
et al., “On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation,” in Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018.
ACM, 2018, pp. 482–482.

[52] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time
quality assurance,” IEEE Transactions on Software Engineering,
vol. 39, no. 6, pp. 757–773, 2012.

[53] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). Ieee, 2013, pp. 279–289.

[54] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect prediction,”
in Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 560–560.

[55] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” in Proceedings of the 8th
Working Conference on Mining Software Repositories, 2011, pp. 153–
162.

[56] M. L. Bernardi, G. Canfora, G. A. Di Lucca, M. Di Penta, and
D. Distante, “Do developers introduce bugs when they do not
communicate? the case of eclipse and mozilla,” in 2012 16th Euro-
pean Conference on Software Maintenance and Reengineering. IEEE,
2012, pp. 139–148.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3468296

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 01:32:21 UTC from IEEE Xplore. Restrictions apply.

