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Recently, smart contracts have played a vital role in automatic financial and business transactions. To help end users without
programming background to better understand the logic of smart contracts, previous studies have proposed models for
automatically translating smart contract source code into their corresponding code summaries. However, in practice, only 13%
of smart contracts deployed on the Ethereum blockchain are associated with source code. The practical usage of these existing
tools is significantly restricted. Considering that bytecode is always necessary when deploying smart contracts, in this paper,
we first introduce the task of automatically generating smart contract code summaries from bytecode. We propose a novel
approach, named SmartBT (Smart contract Bytecode Translator) for automatically translating smart contract bytecode into
fine-grained natural language description directly. Two key challenges are posed for this task: structural code logic hidden in
bytecode and the huge semantic gap between bytecode and natural language descriptions. To address the first challenge, we
transform bytecode into CFG (Control-Flow Graph) to learn code structural and logic details. Regarding the second challenge,
we introduce an information retrieval component to fetch similar comments for filling the semantic gap. Then the structural
input and semantic input are used to build an attentional sequence-to-sequence neural network model. The copy mechanism is
employed to copy rare words directly from similar comments and the coverage mechanism is employed to eliminate repetitive
outputs. The automatic evaluation results show that SmartBT outperforms a set of baselines by a large margin, and the
human evaluation results show the effectiveness and potential of SmartBT in producing meaningful and accurate comments
for smart contract code from bytecode directly.
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1 INTRODUCTION
Smart contract, which was created by Nick Szabo [55], is a program (mainly written by Solidity) that can be
triggered and executed on the Ethereum Blockchain. It allows developers to write self-executing smart contracts
that can be deployed on Ethereum, enabling the development of decentralized applications. The Ethereum
blockchain has experienced remarkable growth along the blockchain technology, the average amount of smart
contracts deployed on Ethereum has exceeded 4,200 each month, and the average number of active Ethereum
addresses has exceeded 82 million per month. As a result, Ethereum has become one of the largest cryptocurrency
platforms (with an overall market capitalization surpassing 228.38 billion in USD) and smart contracts are
increasingly used to automate financial and business transactions.

Despite the great success of smart contracts, notable concerns have also emerged, especially for novice users
who are unfamiliar with smart contracts. Among them, false advertising stands out as a crucial issue faced by
smart contract end users. For instance, smart contract end users may experience ICO (Initial Coin Offer) scams
when investing in cryptocurrencies. The scammers make false claims about the project’s innovative technology
and/or business logic, enticing investors with promises of substantial returns on investment. However, the smart
contracts they deployed lack such actual utility, value, or even existence. The mismatch between the smart
contract code implementations and the content described in their white papers, websites, and announcements
has led to significant financial losses for investors. As pointed out by [1], ten of the most high-profile ICO scams
swindled 687.4 million USD from unsuspecting investors. To help end users find the inconsistency between the
smart contract source code and their documentation, researchers have investigated the ways of automatically
translating Solidity source code into fine-grained English descriptions [29, 51, 68]. For example, Hu et al. [29]
introduced SmartDoc, a deep-learning-based model to generate user notice for smart contracts. In this way, end
users without programming knowledge can understand and learn the logic of original smart contracts. Shi et
al. [51] presented a reinforcement learning model, named SolcTrans, to generate comments of the Solidity source
code via AST traversal and Probalistic Context-Free Grammar rules. All of the previous studies focus on
generating high-level summaries from Solidity source code, however, it is not guaranteed that the
Solidity source code of every smart contract can be obtained.

Typically, when developers deploy smart contracts on the Ethereum blockchain, they first compile the contract
source code to bytecode and then the bytecode is deployed to the blockchain. Developers can choose to upload
their source code for verification but this is optional. According to statistics obtained by Zellic [4], they collected
more than 30 million smart contracts deployed on the Ethereum blockchain, only 13% of them are
associated with source code. In other words, the existing methods which rely on the availability of Solidity
source code, are incapable of handling the majority of smart contracts on the Ethereum blockchain where source
code are missing. As a result, the practical usage of these tools is significantly limited and severely restricted.

Although the source code of the smart contracts may not be publicly accessible, the bytecode of every smart
contract is available upon deployment on the blockchain. In this study, we first investigate the possibility of
generating smart contract code summaries directly from bytecode, bypassing the existing methods
that rely on the original source code. However, generating comments from bytecode is a difficult task with
respect to the following challenges:

(1) Learning structural information from bytecode. The Solidity bytecode is generated by compiling Solidity
source code into an instruction set that can be read and executed by the Ethereum Virtual Machine (EVM).
Unlike human-readable source code, the bytecode is a series of hexadecimal numbers, which are not easily
understandable by individuals without specialized knowledge. Therefore, how to extract the information
about the contract’s structure and behavior as well as learning the logic and functionality pattern encoded
within Solidity bytecode presents a significant challenge.
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(2) Semantic gap between bytecode and comments. The semantic gap refers to the disparity between the low-
level EVM bytecode and the high-level explanations conveyed by human-written comments. Compared
with source code, the semantic gap between bytecode and natural language comment is even more
larger, how to properly fill the gap and effectively transform bytecode into meaningful natural language
comments is another challenge for this study.

In this work, to help end users better understand the logic details of the smart contracts deployed on the
Ethereum blockchain, we propose a novel neural network model, named SmartBT (Smart contract Bytecode
Translator), which can automatically translate smart contract bytecode into human-readable code summaries. The
generated code descriptions can be used as function code comments to help users understand and participate in
interacting with smart contracts more easily and safely. In particular, we first collect 30,742 〈1~C42>34, 2><<4=C〉
pairs from 54,739 deployed smart contracts. To extract structural information from the bytecode, we convert
each smart contract bytecode into a Control-Flow Graph (CFG) to learn the contract structure from the encoded
bytecode. To fill the semantic gap between bytecode and comment, we introduce the IR (Information-retrieval)
augmented module to fetch relevant comments from contracts with similar CFGs. Finally, we build an IR-
augmented sequence-to-sequence model by incorporating the structural input (i.e., CFGs) and semantic input (i.e.,
relevant comments). Moreover, we have introduced the copy mechanism to copy rare words from the IR module
and the coverage mechanism to eliminate the word repetition problem. The automatic and human evaluation
results show the advantage and superiority of SmartBT for generating comments from bytecode for smart
contracts. The paper makes the following contributions:

• The existing comment generation methods rely on the availability of source code, while 90% deployed
smart contracts’ source code are missing on the Ethereum blockchain. In this study, we first proposed the
new task of generating smart contract comments from the bytecode level.

• We build the first dataset for the smart contract bytecode comment generation task. In particular, we have
collected 30,742 〈1~C42>34, 2><<4=C〉 pairs of different functions from 54,739 verified smart contracts. Each
function bytecode is converted into an intermediate representation of CFG to provide useful structural
information for downstream tasks.

• To the best of our knowledge, SmartBT is the first model to investigate the possibility of generating smart
contract comments directly from the bytecode. We introduce the CFG and IR augmented components to
fill the gap between the bytecode and natural language comments. We extensively evaluate the SmartBT
on real-world deployed smart contracts, SmartBT is shown to outperform several baselines and reduce
the user’s efforts in understanding smart contracts.

• We have released a replication package [8], including the dataset and source code of SmartBT, to facilitate
other researchers and practitioners to repeat our work and verify their own ideas.

The rest of the paper is organized as follows. Section 2 presents the background of our research. Section 4.1
presents our approach details. Section 5 presents the experiment setup. Section 6 presents our research questions
and experimental results. Section 7 presents the threats to validity. Section 9 presents related works. Finally,
Section 10 presents the conclusion and future work.

2 BACKGROUND

2.1 Smart Contracts
Smart contract, a term coined by Nick Szabo in 1994 [54], was proposed as a computerized transaction protocol that
executes the contractual terms of an agreement. Recently, along with development of the blockchain technology,
smart contracts can be essentially implemented on top of blockchains (i.e., Ethereum), which are referred to as
code scripts to execute certain tasks once predefined conditions are met.

ACM Trans. Softw. Eng. Methodol.

 



4 • Xiang et al.

Creation Deployment Execution Completion

developing

1001
1101
0010

compile

Source 
code

EVM 
bytecode

Write to 
blockchain

Write to 
blockchain

Write to 
blockchain

Block 0 Block 1 Block i Block i+1 Block m

Ethereum 
Blockchain

Fig. 1. Life Cycle of Smart Contracts

Particularly, smart contracts are programs that run on the Ethereum blockchain. The contractual clauses are
converted into executable computer programs. The logical connections between contractual clauses are also
been preserved in the form of logical flows in programs (e.g., the if-else statement). If any condition in a smart
contract is satisfied, the triggered statement will automatically execute the corresponding function in a predictable
manner. The execution of each contract statement is then recorded as an immutable transaction stored in the
blockchain system. For example, Bob and Alice have an agreement on the penalty of violating the contract. If Bob
breaches the contract, the corresponding penalty (as specified in the contract) will be automatically deducted
from Bob’s deposit.

As shown in Fig. 1, the life cycle of smart contracts consists of four consecutive phases: 1) Smart Contract
Creation: Several involved parties (e.g., stakeholders, lawyers) will first reach a contractual agreement after
discussions. Then software developers convert this agreement written in natural languages into smart contract(s)
written in computer languages (e.g., Solidity, Vyper). 2) Smart Contract Deployment: The validated smart contracts
then can be deployed on top of the Ethereum blockchain. Since Ethereum uses EVM (Ethereum Virtual Machine)
to execute smart contracts, to deploy a smart contract on Ethereum, the contract source code (e.g., Solidity)
needs to be compiled into EVM bytecode and the bytecode will be stored on the blockchain. 3) Smart Contract
Execution: After deployment, the smart contracts are triggered by events. These events can be external (e.g.,
payment received) or internal (e.g., specific date or time). Once an event satisfies the predefined conditions, the
corresponding statements will be automatically executed. A transaction is executed and validated by miners in
the Ethereum blockchain. 4) Smart Contract Completion: After execution, the transactions during the execution,
as well as the updated states, are permanently stored in blockchains. Meanwhile, the digital assets have been
transferred from one party to another (e.g., money transfer from the buyer to the supplier). Notably, only EVM
bytecode is deployed and stored on the blockchain, while the source code remains off-chain and inaccessible.

From the developers’ perspective, the developer first needs to write source code for smart contracts with
programming languages (e.g., Solidity). Then the developer uses compilers (e.g., Solc) to convert source code
into EVM bytecode. The developer deploys the bytecode to the Ethereum blockchain and saves it at an address.
Particularly, two types of EVM bytecode are associated with deployment, i.e., creation code and runtime code.
Creation code is responsible for the creation of the contract (e.g., setting up the constructor and initializing
constructor variables), which is executed only once during deployment. Unlike creation code, runtime code doesn’t
include the constructor details. Once the creation code is executed, runtime code is stored on-chain for anyone to
interact with. Runtime code describes the contract, any on-chain interaction with the smart contract means an
interaction with the runtime code. In this work, we refer to smart contract runtime code as bytecode for short in
the rest of this paper.
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Rubixi Source Code
pragma solidity ^0.4.15;

contract Rubixi {
// Declare variables for storage critical to contract
uint private balance = 0;
uint private collectedFees = 0; 

        ……
        function DynamicPyramid () {

creator = msg.sender;
}
……

      
function collectAllFees () onlyowner {

if ( collectedFees == 0 ) throw ;
creator.send ( collectedFees ) ;
collectedFees = 0;

} 
        ……
}

Wrong Constructor Name

Vulnerable Function 

Rubixi Bytecode
606060405260008080556001819055600a60
025561012c60035560048190556109db9081
9061002d90396000f3606060405236156100
b95760e060020a600035046309dfdc7181146
100dd578063253459e31461011c578063422
9616d1461013d57806357d4021b146101785
7806367f809e9146101b7578063686f2c9014
6101ce5780636fbaaa1e146101fa5780638a5f
b3ca1461022e5780639dbc4f9b14610260578
063a26dbf26146102ed578063a6f9dae1146...
163696e672c2074686573652076616c75657
32073686f7720757020617320696e74656765
7273206f6e6c792c2077697468696e2074686
520636f6e747261637420697473656c662079
6f752077696c6c20676574207468652065786
1637420646563696d616c2076616c7565207
96f752061726520737...570706f7365642074
6f54686973206d756c7469706c69657220617
0706c69657320746f20796f7520617320736f
6f6e206173207472616e73616374696f6e206

97320726563656976656...

SmartBT

// Sets the creator to DynamicPyramid
function DynamicPyramid: 
//  Collect all fees by creator
function collectAllFees 

CALL

CA
LL

Fig. 2. Motivating Example of Using SmartBT

2.2 Neural Machine Translation
Neural Machine Translation (NMT) is an end-to-end learning framework for automated translation. It is a deep
learning-based approach and has made rapid progress in recent years [18, 20, 29, 30]. NMT has shown impressive
results surpassing those of phrase-based or rule-based systems while addressing shortcomings such as the need
for manually crafted features. NMT models usually consist of an encoder-decoder structure. The encoder encodes
the input sequence into a fixed-length vector, which represents the semantic and contextual information of the
source language sentence. The decoder gradually generates translated output sequences based on the vectors
encoded by the encoder and the previously generated target language parts.

NMT has proven to be effective in bridging the gap between different languages in natural language processing.
The NMT framework has also been successfully applied to various software engineering tasks [18, 19, 29, 44],
including comment generation [29]. Software engineering researchers view comment generation as a variant of
the machine translation problem between source code and natural language. However, all previous studies focus
on generating comments from source code. In this study, we first explore the possibility of whether the NMT
framework can be applied to comment generation from Solidity bytecode.

3 MOTIVATION
In this section, we provide a motivating example to explain the usage of our tool in practice. Fig. 2 shows a
common vulnerability, namely wrong constructor name, in smart contracts. Constructors are special functions that
are called only once during the contract creation. They often perform critical, privileged actions such as setting
the owner of the contract. Constructor names have to be the same as the contract class that contained it. If the
constructor method is inconsistent with the contract class (a.k.a., missnamed), security issues will be introduced.

Fig. 2 demonstrates a real smart contract with the wrong constructor name weakness. The smart contract
Rubixi uses DynamicPyramid instead of Rubixi as a constructor. Because of this inconsistency, the contract did
not assign the owner upon contract creation. As a result, anyone who calls this DynamicPyramid() function
can assign themselves as the owner of the contract. After granting the ownership, then they can easily collect
contract fees generated by participating players (e.g., calling function collectAllFees()). With our tool, even
if contract Rubixi is not open-sourced, SmartBT can successfully generate a comment, i.e., sets the creator to
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Fig. 3. Workflow of SmartBT

DynamicPyramid, for the DynamicPyramid() function from its bytecode. It can help users notice this inconsistency
between contract name (Rubixi) and constructor name (DynamicPyramid), and better make informed decisions.

4 APPROACH
In this section, we first define the task of comment generation from bytecode, then present the details of our
approach. Figure 3 demonstrates the workflow of the SmartBT. Our approach is primarily composed of three
stages: bytecode preprocessing, model training, and comment generation.

4.1 Task Definition
The main purpose of our work is to improve the understanding of a smart contract from its bytecode directly. We
thus propose a novel task in this paper - generating smart contract code comments from their corresponding
bytecode. Inspired by the great success of using the NMT framework in previous studies [29], We formulate our
task as a sequence-to-sequence learning problem.

Given that - is the input bytecode sequence of a smart contract function, our target is to generate its
corresponding comment. describing the function. In particular, our objective is to learn the underlying conditional
probability distribution %\ (. |- ). In other words, the goal is to train a model \ using 〈-,. 〉 pairs such that the
probability %\ (. |- ) is maximized over the given training dataset.The training objective function can be formulated
as maximizing the log-likelihood:

\ ∗ = argmax
\

∑
〈-,. 〉

log %\ (. |- ) . (1)

4.2 Bytecode Processing
Because we directly deal with smart contracts bytecode, two key challenges are posed for this study.

• Challenge 1: How can we effectively capture the structural information and logic details encoded in
smart contract bytecode?

ACM Trans. Softw. Eng. Methodol.
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function-

transfer()

CFG-func1()

CFG-func2()

CFG-funcN()

...

[...]

[..., value]

[..., ISZERO(value)]

[..., 0x3f3]

[...]

0x3e8:JUMPDEST

0x3e9:CALLVALUE

0x3ea:ISZERO

0x3eb:PUSH2 0x3f3

0x3ee:JUMPI

EVM STACKNode 1

0x3ef:PUSH1 0x0

0x3f1:DUP1

0x3f2:REVERT

EVM STACKNode 2

[..., 0x0]

[..., 0x0, 0x0]

[]

[..., 0x428]

[..., 0x428]

[..., 0x428, 0x4]

[..., 0x428, 0x4,0x4]

...

0x3f3:JUMPDEST

0x3f4:PUSH2 0x428

0x3f7:PUSH1 0x4

0x3f9:DUP1

...

EVM STACKNode 3

[..., 0xb87]

[..., 0xb87, caller]

[..., 0xb87, caller,caller,caller,caller,caller]

...

0xb7d:PUSH2 0xb87

0xb80:CALLER

0xb81:DUP4

...

EVM STACKNode 4

if(ISZERO

(value))= =0)

if(ISZERO

(value))= =1)

Smart Contract Bytecode

60606040526012600260006101000a8

1548160ff021916908360ff160217905

55034156200002c57600080fd5b6040

516200122f3803806200122f8339810

1604052808051906020019091908051

8201919060200180518201919050505

b600260009054906101000a900460ff

1660ff16600a0a830260038190555060

0354600460003373ffffffffffffffffffffff

ffffffffffffffffff1673fffffffffffffffffffffff

fffffffffffffffff168152602001908...

/**

* Destroy tokens

* Remove `_value` tokens from the system 

irreversibly

* @param _value the amount of money to 

burn

*/

function burn(uint256 _value) public returns

(bool success) {

require(balanceOf[msg.sender] >= 

_value);  

// Check if the sender has enough

balanceOf[msg.sender] -= _value;           

// Subtract from the sender

totalSupply -= _value;                      

// Updates totalSupply

Burn(msg.sender, _value);

return true;

}

Fig. 4. Example of Solidity Source Code, Bytecode and CFG

• Challenge 2: How can we effectively bridge the gap between semantic gap between the bytecode and
natural language comments?

To address these two key challenges, we process the smart contract bytecode with two components: a CFG
Generator and a Similar-Comment Retriever.CFGGenerator is responsible for constructing input containing
structural information, Similar-Comment Retriever is responsible for constructing input associated with
semantic information, then these two types of inputs are used to train an end-to-end model for automatically
generating comments from contract bytecode.

4.2.1 CFGGenerator. To deploy a smart contract to Ethereum, its source code needs to be compiled to bytecode
and stored on the blockchain. There are 140 unique opcodes by April 2019 [65], and each opcode is represented
by a hexadecimal number. EVM (Ethereum Virtual Machine) uses these opcodes to execute the task. When a
transaction needs to be executed, EVM will first split the bytecode into bytes. Each byte represents a unique
instruction called opcode. For example, for the bytecode 0x6070604001, EVM first splits the bytecode into bytes
(i.e., 0x60, 0x70, 0x60, 0x40, 0x01). EVM then executes the first byte 0x60 which refers to the opcode PUSH1.
PUSH1 pushes the one byte data (0x70) to the EVM stack. Then EVM executes the third byte 0x60 and pushes 0x40
into the stack. Finally, EVM executes 0x01 which refers to opcode ADD. ADD obtains two values from the stack (i.e.,
0x70 and 0x40) and perform the sum operation. As can be seen, the smart contract bytecode contains detailed
contract execution logic and structural information. To capture the structural information and detailed logic,
we convert the smart contract bytecode into CFG (Control-Flow Graph) representations. A CFG is a graphical
representation of the code control flow during the execution of a contract. Each node in the CFG represents
a basic block, which contains a straight-line piece of opcode without any jumps or jump targets. Blocks are
connected by edges which represent jumps to form a control flow graph. The CFG representations can capture
all the possible flows of execution of all code blocks and can reflect the real-time execution of a code fragment,
which is valuable for extracting structural information encoded within the contract bytecode.

ACM Trans. Softw. Eng. Methodol.
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For a given smart contract bytecode, we first extract the CFG for each function within the smart contract. As
shown in Figure 4, each smart contract may contain a number of functions, after the extraction process, each
function is converted into a CFG. In this work, we use the tool evm_cfg_builder for CFG extraction, the tool
can reliably recover a CFG from EVM bytecode using a dedicated value set analysis. However, the CFG cannot
be directly fed into a sequence model, we further traverse the CFG by utilizing DFS (Depth-First-Search) and
generate the target CFG sequence. In particular, we first identify the root node of each CFG, we then serialize
CFG into a sequence by using DFS algorithms. The symbol -> is used when traversing from one block to another,
maintaining the structural information of different blocks. So far, we have converted each function of the bytecode
into a CFG representation by our CFG Generator, and the structural inputs are prepared for the downstream
model training.

4.2.2 Similar-comment Retriever. Compared with source code, the semantic gap between bytecode and
natural language code descriptions is even larger, which poses another key challenge for translating bytecode into
code summaries. To bridge the semantic gap between bytecode and comments, we introduced another component,
namely Similar-comment Retriever. This component is responsible for retrieving similar comments from
our codebase and using them as semantic inputs for our model. Our goal is to leverage these retrieved similar
comments as valuable references for improving our translation process.

Specifically, we have stored all the functions’ CFG and their corresponding comments as our codebase. When
presented with the bytecode of a new function, we initially convert it into its CFG using the CFG Generator.
Subsequently, we employ an information retrieval algorithm, specifically BM25 [46] for this study, to query our
codebase and search for similar functions by comparing similarities between CFGs. The top similar functions
are returned and their corresponding comments are extracted as our semantic inputs. The Similar-comment
Retriever component acts as a critical link in our model, providing a way to connect bytecode with semantic
relevant natural language descriptions, which can enhance the final inference of our approach when generating
code summaries. So far, the semantic inputs have also been prepared for our model building.

4.3 Bytecode Encoder
After the structural inputs, i.e., CFGs, and semantic inputs, i.e., similar-comments, are prepared, we concatenate
these two inputs and feed them sequentially into our Bytecode Encoder. We add a special token [SEP] between
semantic input and structural input to further separate natural language (i.e., comments) and code implementations
(i.e., CFGs), which has been proven to be effective for bridging the gap between heterogeneous data [24, 61]. The
Bytecode Encoder uses Bidirectional Recurrent Neural Networks (BRNN), which can improve the model’s ability
to understand the input sequence from both forward and backward directions, capture more comprehensive
context information, and help the decoder generate more accurate target sequences. The Bytecode Encoder
aims to learn contextual representations from bytecode processing outputs (including generated CFGs and
retrieved similar-comments). The concatenated inputs, including the smart contract CFG and its associated similar
comments, are embedded into a vector before being fed into the Bytecode Encoder. The calculation equation of
forward RNN and reverse RNN are:

ℎ
5

C = BRNN5
(
GC , ℎ

5

C−1

)
, (2)

ℎ1C = BRNN1
(
GC , ℎ

1
C+1

)
. (3)

Here ℎ5

C represents the hidden state of forward RNN at time step C , ℎ1C represents the hidden state of reverse RNN
at time step C , and GC represents the input sequence at time step C . The hidden states of forward RNN and reverse
RNN can be calculated by the order of time steps, or by reverse calculation (starting from the last time step). In
BRNN, the hidden states of these two directions can be concatenated or merged to obtain a complete bidirectional
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representation. Here, we mainly take the concatenation operation. As shown in Eq. (4), ℎ5

C is the forward hidden
state, ℎ1C is the reverse hidden state, and ℎC is the hidden state after splicing. Here [; ] represents the splicing
operation. By concatenation, BRNN provides richer bidirectional context information for subsequent decoding.

ℎC =

[
ℎ
5

C ;ℎ
1
C

]
. (4)

4.4 Comment Decoder
SmartBT uses a 2-layer LSTM network as its decoder, which refers to a specific recurrent neural network structure
that consists of two LSTM layers stacked together. Each LSTM layer has its own set of LSTM cells responsible for
capturing and storing information over time. The output of one LSTM layer serves as the input to the next layer,
enabling the network to learn hierarchical representations of sequential data. This deeper architecture enables
the model to capture more complex dependencies and make more complex predictions than single-layer LSTM.
For the decoding process, we first have the following assumptions: C is the time step, and ℎC is the hidden states
at C time step. In our task, each token of the contract function comment will be embedded into a vector, and we
assume that �F>A3C is the target word at C of the ground truth comments, ~C is the embedding vector of �F>A3C .
For the first and second layers of LSTM, the calculation process is as follows:

!1C = LSTM1 (~C , ℎC−1) , (5)

!2C = LSTM2 (~C , L1C ) . (6)
During training, at each time step C , the first layer LSTM takes the embedding vector ~C of the target word�F>A3C
and the previous state ℎC−1 as input, and concatenates them to produce the output hidden state of the first layer.
For the second layer of LSTM, the initial value of ℎC is the output hidden state of the first layer of LSTM. The
decoder produces one symbol at a time and stops when the END symbol is emitted. The only change with the
decoder at the testing time is that it uses the output from the previous word emitted by the decoder in place of
�F>A3C−1, since there is no access to a ground truth then.

4.5 Incorporating Attention Mechanism
In a traditional NMT framework, the encoder processes the input sequence and encodes it into a fixed-size context
vector. This fixed-size context vector can become a bottleneck when dealing with long sequences or capturing
important information from different parts of the input. By using Bahdanau Attention [10] as the global attention
mechanism, our Comment Decoder can focus on different parts of the input sequence dynamically. In particular,
We model the attention [10] distribution over words in the source input sequence. We calculate the attention (0C8 )
over the 8Cℎ input sequence token as:

4C8 = EC tanh (,4ℎℎ8 +,BℎBC + 10CC ) (7)

0C8 = softmax
(
4C8
)

(8)
Here, EC ,,Bℎ and 10CC are model parameters to be learned, and ℎ8 is the concatenation of forward and backward
hidden states of our Bytecode Encoder. We use this attention 0C8 to generate the context vector 2∗C as the weighted
sum of encoder hidden states :

c∗C =
∑

8=1,.., |x |
0C8h8 (9)

We further use the 2∗C vector to obtain a probability distribution over the words in the vocabulary as follows:

% = softmax
(
WE [BC , 2∗C ] + 1E

)
(10)
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where,E and 1E are model parameters. Thus during decoding, the probability of generating a target word is
% (�F>A3). During the training process for each word at each timestamp, the loss associated with the generated
comment is:

!>BB = − 1
)

)∑
C=0

;>6% (�F>A3C ) (11)

The attention mechanism allows the model to focus on the most relevant parts of the input sequence as needed.
Instead of relying solely on the last hidden state, the attention mechanism allows our Comment Decoder to
consider all the hidden states from the Bytecode Encoder. It assigns different attention weights to each hidden
state, indicating its relevance to the current decoding step. This ability to amplify the signal from the CFG input
and similar comments input makes attention models produce better results than models without attention.

4.6 Incorporating Copy Mechanism
The copy mechanism [23] is commonly used in tasks such as machine translation and text summarization. It is
used to facilitate the model to copy tokens from the input sequence to the generated output sequence. This is
because some words are much less frequent than others, thus it is highly unlikely for a decoder that is solely
based on a language model to generate such a word with very rare occurrences in a corpus. In such cases, the
possibly rare words in the input sequence might be required to be copied from our input sequence to the target
comment. Therefore, we incorporate a copy mechanism to handle such rare words problem for our comment
generation tasks.

Specifically, we calculate ?26 ∈ [0, 1], which determines whether to generate a word from the vocabulary or to
copy the word directly from the input sequence, based on our previous attention distribution 0C8 :

?26 = B86<>83 (,)
4ℎ
2∗C +,)

Bℎ
BC +,GGC + 126) (12)

Here,4ℎ ,,Bℎ ,,G and 126 are trainable model parameters. The final probability of decoding a word is specified
by the mixture model:

%∗ (�F>A3) = ?26 ·
∑

0C8 + (1 − ?26) · ? (�F>A3). (13)

Where %∗ (�F>A3) is the final distribution over the union of the vocabulary and the input sequence. For a word
not in our output vocabulary, the probability will be %∗ (�F>A3) = 0, and in such cases, our model will replace
the <unk> token for out-of-vocabulary words with a word in the input sequence having the highest attention
obtained using attention distribution 0C8 . The copy mechanism allows the model to locate a certain segment of the
input sequence and puts that segment into the output sequence. ?26 is a soft switch to choose between generating
a word from vocabulary or copying a word from the input sequence.

4.7 Incorporating a Coverage Mechanism
The coverage mechanism [56] is an improved method for the attention mechanism. In the standard attention
mechanism, the decoder dynamically assigns attention weights to different parts of the input sequence at each
decoding step. However, as the decoding progresses, the attention mechanism tends to focus on the same regions
repeatedly, neglecting other parts of the input sequence. This can result in redundant or incomplete information
being generated during the decoding process. To address this repetition problem, we incorporated the coverage
attention mechanism into our model. Particularly, we maintain a word coverage vector 2>E which is the sum of
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Table 1. The Statistics of Our Collected Smart Contracts

Contract Function Comment Bytecode Length Avg Coment Length Avg

54,739 1,323,554 565,403 6920.21 142.00

attention distributions over all previous decoder timesteps:

2>EC =

C−1∑
C ′=0

0C
′
. (14)

Here, 2>EC is a distribution over input tokens that represents the degree of coverage that those tokens have
received from the attention mechanism so far. Since no word is generated before timestamp 0, 2>E00 will be a
zero vector. The update equation 7 is now modified to be:

4C8 = EC tanh
(
,2E2>E

C
8 +,4ℎℎ8 +,BℎBC + 10CC

)
(15)

Here,,2E are trainable parameters that ensure the attention mechanism’s current decision is informed by
a reminder of its previous decisions. The coverage mechanism allows our model to solve the word repetition
problem in the output sequence. The coverage mechanism ensures that the attention mechanism’s current decision
is informed by a reminder of its previous decisions (summarized in 2>EC ). This should make it easier for the
attention mechanism to avoid repeatedly attending to the same locations, and thus avoid generating repetitive
text. Following the incorporation of the copy and coverage mechanism in our sequence-to-sequence architecture,
the final loss function will be:

!>BB =
1
)

)∑
C=0

;>6%∗ (�F>A3C ) + _!2>E (16)

where _ is a reweighted hyperparameter and the coverage loss !2>E is defined as:

!2>E =
∑
8

<8=(0C8 , 2>EC8 ) (17)

Once the model is trained, we do inference using a beam search. The beam search is parametrized by the possible
paths number : . The inference process stops when the model generates the END token which stands for the end
of the sentence.

5 EVALUATION

5.1 DataSet Preparation
In this research, we reuse the raw smart contract dataset provided by Chen et al. [12], which contains 54,739
verified smart contracts. We describe how we prepared the dataset for our bytecode comment generation as
follows.

5.1.1 Data Collection. For each verified smart contract, we crawled its source code and EVM bytecode from
Etherscan [3]. As a result, we obtained 54,739 〈srccode, bytecode〉 pairs of verified smart contracts.

5.1.2 Data Preprocessing. We exploit the Solidity-parser to parse smart contract source code and extract
functions within each collected smart contract. We define several regular expressions to extract smart contract
comments for functions. Following that, we utilize the evm_cfg_builder tool [2] tool to generate CFG for each
function from EVM bytecode. Our dataset now is constructed as 〈fucntion srccode, function bytecode, function
comment〉 triplets. Considering that duplicated data samples between the training set and testing set can mislead
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      (a) Bytecode length distribution                                                            (b) Comment length distribution

Fig. 5. Length Distribution of The Training Data

Table 2. Data Splitting Statistics

Total Tain Validate Test

30,742 24,594 3074 3074

the evaluation results. We deduplicate our dataset according to the unique hash value generated by CFG and
comment. Finally, we obtain 30,742 〈function srccode, function bytecode, function comment〉 data samples. We
list the statistics in Table 1 and the length distribution of the bytecode and comment in Figure 5.

5.1.3 Data Splitting. We split the constructed data samples into three chunks: 80 percent of the triple samples
are used for training, 10 percent are used for validation and the rest are held out for testing. The training set is
used to adjust the parameters, while the validation set is used to minimize overfitting, and the testing set is used
only for testing the final solution to confirm the actual predictive power of our model with optimal parameters.
The number of training, validation, and test sets of data samples are shown in Table 2.

5.2 Evaluation Metrics
To demonstrate the effectiveness of SmartBT, we use two widely used metrics in comment and code generation
tasks [33]:

5.2.1 BLEU. BLEU [43] is a precision-oriented measure, which measures the average =-gram precision on
a set of reference sentences, with a penalty for overly short sentences. It is widely used in various tasks of
automatic software engineering, such as API sequence generation [25], comment generation [30, 31, 62], and
commit message generation [34]. BLEU calculates the similarity between the generated notice and references.
The similarity is computed as the geometric mean of n-gram matching precision scores multiplied by a brevity
penalty to prevent very short generated sentences. In addition, we introduce the smoothing function Smooth2 in
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BLEU evaluation, which can improve the stability of BLEU scores and reflect translation quality more accurately.
In this paper, we adopt BLEU-1, BLEU-2, BLEU-3, and BLEU-4 scores.

5.2.2 ROUGE. ROUGE [39] is a widely used recall-oriented measure in summarization tasks. It evaluates the
overlap of =-grams between system-generated summaries and reference sentences. ROUGE-1 and ROUGE-2
measure unigram and bigram overlaps, while ROUGE-L captures in-sequence matches reflecting sentence-level
word order. To evaluate different models, we consider ROUGE-1, ROUGE-2, and ROUGE-L scores.

5.3 Training Details
We implement SmartBT on top of Pytorch. Both token embeddings and hidden size are set to 256 dimensions.
All parameters are optimized using Adam [35] with the initial learning rate of 0.0005. Following Vaswani et
al. [57], we increase the learning rate linearly for the first 4000 steps (i.e., warmup steps) and decrease it thereafter
proportionally to the inverse square root of the step number. During the training, the batch size is set to 32. To
mitigate overfitting, we exploit the dropout mechanism and set the dropout rate as 0.1. We set the maximum
length of the encoder to 200 and the maximum length of the decoder to 50. Training runs for 50 epochs. We
conduct our experiments on a Linux server with an NVIDIA GeForce RTX 2080Ti GPU having 10 GB memory.

6 EXPERIMENT RESULTS
In this study, we aim to answer the following research questions:

• RQ1: How effective is our SmartBT for generating smart contract comments from bytecode?
• RQ2: How effective is the IR component with different retrieval methods?
• RQ3: How effective is our use of attention mechanism, copy mechanism and coverage mechanism under

automatic evaluation?
• RQ4: How effective is our SmartBT under different IR settings?
• RQ5: How effective are baseline models augmented with IR component?
• RQ6: How effective are LLMs for generating smart contract comments from bytecode?
• RQ7: How effective is our SmartBT under human evaluation?

6.1 RQ1. SmartBT Overall Effectiveness
6.1.1 Experimental Setup. In this RQ, we want to investigate how effective our approach and baseline methods
are for generating smart contract comments from bytecode. In particular, all models are trained (i.e., SmartBT)
and fine-tuned (i.e., CodeT5 and PLBART) with our training set. Then the models (including SmartBT and
baselines) with their best performance on the validation set are used to report final comparison results. For each
smart contract function in our test set, we use the intermediate representation of bytecode, i.e., CFG sequence,
as model inputs (including SmartBT and baseline methods). Then SmartBT and baseline methods generate
corresponding function comments as outputs based on the inputs. We then calculate the BLEU and ROUGE scores
between the generated comments and ground truth comments for comparison purposes.

6.1.2 Baselines. Since no prior work focused on contract comment generation based on bytecode, we chose
several commonly used baselines for this task. The following baselines are adopted in this study:

• IR: The IR stands for information retrieval baseline. For a given bytecode, it retrieves a function comment
that is closest to the input bytecode from the training set. Since directly comparing bytecode is difficult,
we calculate the similarity between the CFG sequence of two different bytecodes, and the most similar
comment is fetched as the IR method result. In this study, we employ widely used BM25 [46] as our
information retrieval algorithm to perform the information retrieval task.
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• CodeT5: CodeT5 [61] is a unified pre-trained encoder-decoder Transformer model. CodeT5 better lever-
ages the code semantics conveyed from the developer-assigned identifiers. CodeT5 builds on the T5
architecture [45] that supports both code understanding and generation and allows for multi-task learning.
CodeT5 outperforms prior methods in code generation tasks including PL-NL, NL-PL and PL-PL. In this
work, we use CodeT5 (CodeT5-small and CodeT5-base) as a baseline to perform our comment generation
tasks. Considering it is difficult for CodeT5 to directly learn from bytecode, we use CFG sequences as
inputs for CodeT5. We then fine-tuned the pre-trained CodeT5 model with our training set on the code
summarization task, using CFG sequences as inputs and target corresponding comments as outputs. We
fine-tuned CodeT5 for 50 epochs and the model with the highest BLEU-4 score was chosen for evaluation.

• PLBART: PLBART [5] is a bidirectional and autoregressive transformer pre-trained on unlabeled data
across PL (Programming Language) and NL (Natural Language) to learn multilingual representations.
PLBART is pre-trained on an extensive collection of Java and Python functions and NL text via denoising
autoencoding. PLBART outperforms or rivals state-of-the-art models on code summarization, code
generation, and code translation tasks. Similarly, we use CFG sequences as PLBART inputs. We fine-tuned
PLBART the same way of fine-tuning CodeT5, the best model on the validation set is used for final
evaluation.

6.1.3 Evaluation Results. The evaluation results of SmartBT and aforementioned baselines are summarized in
Table 3. From the table, we can observe the following points:

(1) In general, the encoder-decoder architecture baselines (i.e., CodeT5 and PLBART) outperform
IR based approach (i.e. BM25). For IR based approach, it retrieves the comments from the existing
database according to similarity scores, which heavily relies on the presence of similar Control Flow
Graphs (CFGs) and the degree of similarity between them, indicating that merely memorizing the training
set is not enough for this task. In contrast to the IR-based approach, the encoder-decoder model uses the
vector representation for tokens and internal states, semantic and structural information can be learned
from these vectors by taking global context into consideration.

(2) Notably, our IR-augmented model (i.e., SmartBT) even achieves a better performance than the
pre-trained transformer-basedmodels (e.g., CodeT5 and PLBART). This is because these pre-trained
language models are mostly pre-trained on the extensive collection of code corpus (e.g., source code and
NL text), however, these pre-trained models were not designed to handle opcode (e.g., CFG sequence),
which results in their suboptimal performance for our newly proposed task. Moreover, compared with
source code, the gap between the bytecode/opcode and comments is even larger, posing a significant
challenge for pre-trained models to capture their semantic relationships effectively. This is the reason
why we introduce IR-augmented techniques for bridging the semantic gap between low-level bytecode
and natural language comments.

(3) Regarding BLEU score, our approach is significantly better than other baselines and achieves
understandable results. For example, it improves over PLBART on BLEU-4 by 22%. We attribute this
to the following reasons: besides solely depending on structural inputs such as CFGs, our model also
incorporates an IR-augmented module, the IR augmented module fetches comments from similar smart
contracts. In other words, SmartBT combines the structural input (i.e., CFGs) and semantic input (i.e.,
similar comments) for constructing the contextual vectors, which signals that similar comments convey
much valuable information when generating target comments.

(4) Regarding ROUGE score, the advantage of our approach is also clear. This is because our model
is enhanced by a copy mechanism to handle rare-word problems as well as a coverage mechanism to
eliminate meaningless repetitions. This further justifies the aforementioned mechanisms generally help
when dealing with the comment generation task.
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Table 3. Automatic Comment Generation Evaluation Using BLEU and ROUGE Scores (%)

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

BM25 24.08 23.13 22.57 22.24 26.35 20.32 25.78
CodeT5-small 25.49 24.69 24.11 23.55 29.49 21.80 29.02
CodeT5-base 28.18 27.44 26.83 26.21 32.10 24.76 31.67
PLBART-base 30.03 29.01 27.93 27.24 36.01 27.80 35.46

SmartBT 37.18 35.65 34.15 33.24 41.14 32.44 40.53

Answer to RQ-1: How effective is our SmartBT for generating smart contract comments from
bytecode? We conclude that our approach is effective for generating smart contract comments from the
bytecode under automatic evaluation and surpasses baselines by a large margin.

6.2 RQ2. Effectiveness of Different IR Methods
6.2.1 Experimental Setup. In this RQ, we want to investigate how much performance improvement our approach
can achieve by using the IR-augmented component. In particular, we selected several different methods as
the information retrieval algorithm for IR-augmented component. We then used these different IR-augmented
components to generate target comments and calculated the BLEU and ROUGE scores for comparison purposes.

6.2.2 Baselines. To fill the semantic gap between bytecode and comment, we introduce the IR (Information-
retrieval) augmented module to fetch similar comments from contracts with similar code structures and logic.
Intuitively, our IR augmented module can take any similarity matching methods. To verify the effectiveness of
our using IR augmented component, we choose the following information retrieval methods for this research
question.

• IRNone: For this baseline, we remove the IR augmented component and keep the rest of SmartBT. In other
words, we drop the semantic input (i.e., similar comment) of our model and only retain the structural
input (i.e. CFGs). This baseline is denoted as IRNone.

• BOW: Cosine similarity [47] is one of the most popular distance metrics used for comparing the similarity
between two vectors. Regarding this baseline, we convert the CFG sequence into BOW (bag-of-words)
vectors, then cosine similarity scores are computed between any two given CFGs, this baseline is denoted
as BOW.

• GraphCodeBERT: Besides using the BOW to represent the CFG sequence, we also use GraphCode-
BERT [26] to encode CFG into vector representations. In particular, for a given smart contract bytecode,
its CFG sequence is fed into GraphCodeBERT to obtain the feature representation vector. Then the vector
is used to fetch the most similar smart contract by calculating the cosine similarity scores between two
embedding vectors.

• SmartBT: Our approach employs the widely used BM25 as our information retrieval algorithm. BM25
aims to provide accurate and relevant search results by scoring documents based on their term frequencies
and document lengths. It follows the probabilistic retrieval framework, which assumes that relevant and
non-relevant documents follow different statistical distributions.

6.2.3 Evaluation Results. The evaluation results of SmartBT and aforementioned baselines are summarized in
Table 4. From the table, it can be seen:
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Table 4. Effects of Different Information Retrieval Methods on Our Task: BLEU and ROUGE Scores (%)

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

IRNone 31.18 30.19 29.36 28.90 34.61 27.46 34.03
Bag-Of-Words 33.22 32.51 31.11 30.00 37.21 30.47 36.89
GraphCodeBERT 33.66 32.96 31.65 30.66 39.18 32.80 38.85

SmartBT 37.18 35.65 34.15 33.24 41.14 32.44 40.53

(1) The IR augmented module is effective in enhancing the effectiveness of our model and con-
tributes to the overall performance. Compared with IRNone, there is an improvement in terms of all
evaluation metrics after adding IR augmented module, regardless of the information retrieval algorithm.
For example, using BOW and GraphCodeBERT to fetch relevant comments as inputs, the BLEU-4 score
has improved by 3.8% and 6% respectively. The experimental results indicate that the encoder-decoder
neural network merely using structural inputs (i.e., CFGs) is unable to bridge the semantic gap between
bytecode and comments, verifying the importance and necessity of using semantic inputs (i.e., similar
comments) via using IR augmented component.

(2) SmartBT, using the BM25 algorithm, achieved the best performance among other information
retrieval algorithms. We attribute this to the following advantages of the BM25 algorithm: (a) Term
saturation: BM25 incorporates a term saturation function, this function mitigates the impact of excessively
high term frequencies. (b) Dynamic ranking: BM25 adjusts its ranking based on the distribution of terms
within the collection, making it more adaptable to different types of documents and queries. (c) Effective
for long queries: BM25 is effective in handling long CFG sequences as it addresses the issue of term
saturation and considers the overall CFG sequence length.

Answer to RQ-2: How effective is the IR component with different methods? We conclude that the
inclusion of the IR augmented module significantly enhances our model’s effectiveness and contributes to
its overall performance. The BM25 performs best for fetching relevant comments from smart contracts and
provides semantic inputs for SmartBT.

6.3 RQ3. Effectiveness of Using Copy and Coverage Mechanisms
6.3.1 Experimental Setup. In this RQ, we conduct an ablation experiment to verify the effectiveness of using the
copy mechanism and coverage mechanism within our model. In particular, we removed the copy mechanism and
coverage mechanism one by one, and then we calculated the BLEU and ROUGE scores between the generated
comments and ground truth comments for comparison purposes.

6.3.2 Baselines. When constructing SmartBT, we added an attention mechanism, a copy mechanism, and
a coverage mechanism to our IR augmented encoder-decoder architecture. The attention mechanism is often
regarded as a basic mechanism incorporated within the sequence-to-sequence model. The copy mechanism is
used to handle rare-word problems in our generation process and the coverage mechanism is used to eliminate
meaningless repetitions while decoding. To verify the effectiveness of the above mechanisms, to be more specific,
we compare our SmartBT with several of its incomplete variants:

• Model0CC4= : This baseline removes the copy and coverage mechanisms from our approach while keeping
the basic attention mechanism as the basic model.
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• Model0CC4=+2>?~ : This baseline removes the coverage mechanism from our approach while keeping the
attention mechanism and the copy mechanism.

• Model0CC4=+2>E4A064 :This baseline removes the copy mechanism from our approachwhile keep the attention
mechanism and coverage mechanism.

• SmartBT: It is our current work which considers all the three mechanisms.

Table 5. Ablation Evaluation of Different Mechanisms Using BLEU and ROUGE Scores (%)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Model0CC4= 28.37 27.23 26.32 25.83 32.01 24.29 31.39
Model0CC4=+2>?~ 32.29 31.18 30.28 29.81 35.95 28.32 35.38
Model0CC4=+2>E4A064 30.11 28.84 27.90 27.36 33.32 25.59 32.70

SmartBT 37.18 35.65 34.15 33.24 41.14 32.44 40.53

6.3.3 Evaluation Results. The evaluation results of the ablation study are summarized in Table 5. From the table,
we can observe the following points:

(1) By comparing the results of Model0CC4= with Model0CC4=+2>?~ and Model0CC4=+2>E4A064 , we can measure
the performance improvements achieved due to the incorporation of copy mechanism and coverage
mechanism respectively. It is clear that better performance can be achieved by solely adding copy
or coverage mechanism to the attention based model. This signals that both copy and coverage
mechanism do have contributions to the overall performance improvements.

(2) By comparing the results of our approach and each of the variant model, we can see that no matter
which type of mechanism we removed, there is a drop overall in every evaluation measure
metric and does hurt the performance of our model. Particularly, when comparing the our model
SmartBT with Model0CC4= , it drops almost 10% of the overall automatic evaluation scores. This verifies
the importance and effectiveness of these incorporated mechanisms.

(3) To gain insights into these mechanisms, we further illustrate an example in Figure 6 from the ablation
analysis to show the effect of employing copy and coverage mechanism. From the figure, we can see that: (a)
After introducing the copy mechanism, the model can copy relevant tokens from our IR augmented module
to the generated comment. For example, the words beneficiary and funders (colored in red) are copied
directly from the IR-augmented component to the target outputs. (b) Repetition is a common problem
for attentional sequence-to-sequence models, meaningless repeated words are produced during the
generation process (highlighted with green color). The coverage mechanism is effective for discouraging
such repetitions by quantitatively emphasizing the coverage of sentence words while decoding. For
example, the word “function” has been meaningless repeated twice, employing coverage mechanism can
effectively eliminate such repetitions.

Answer to RQ-3: How effective is our use of attention mechanism, copy mechanism and coverage
mechanism under automatic evaluation? We conclude that all the incorporated mechanisms do have
contributions to the overall performance and are effective and helpful in enhancing the performance of
SmartBT.
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CFG:
N860[label="ADRR:JUMPD
EST ADRR:CALLVALUE 
ADRR:PUSH2 DATA 
ADRR:JUMPI"] N860 -> 
N3572 
N3572[label="ADRR:PUSH2 
DATA ADRR:PUSH2 
DATA ADRR:JUMP"] 
N3572 -> N13755 ...

Information Retr ieval:
allows the beneficiary and or 
the funders to withdraw their 
tokens

ground truth comment: allows the 
beneficiary and or the funders to withdraw 
their funds.

Model Input Sequence case

copy (drop coverage): allows the beneficiary 
and transfer after the function function. 

coverage(drop copy): The function 
erroneously transfer tokens.

copy + coverage: Allows the beneficiary to 
add the sale and allow tokens to be traded.

Fig. 6. Ablation Analysis Example

6.4 RQ4. Effectiveness of Different IR Settings
6.4.1 Experimental Setup. In this RQ, we want to investigate how SmartBT performs under different IR
augmented module settings. In particular, we aim to explore the optimal IR-augmented module settings for our
task. Based on the findings of RQ3, we vary the number of retrieved comments for our model inputs and compare
generated results under different module settings.

6.4.2 Baselines. The key hyperparameter of our IR augmented module is the number of similar comments
retrieved for SmartBT inputs. In this RQ, to investigate the optimal settings for the IR augmented module,
we vary the number of retrieved comments to construct the baselines, denoted as IR: , where : represents the
number of retrieved comments. In other words, IR: retrieves : most relevant comments from our database and
concatenates these comments as semantic inputs for our model. The : is varied in [0, 1, 3, 5] for this study, where
: = 1 represents our current model SmartBT.

Table 6. Effects of Different Settings of IR Component Using BLEU and ROUGE Scores (%)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

IR:=0 31.18 30.19 29.36 28.90 34.61 27.46 34.03
IR:=3 26.23 25.33 24.16 23.22 30.54 22.48 30.01
IR:=5 23.78 22.13 21.03 20.34 27.60 17.41 26.91

SmartBT 37.18 35.65 34.15 33.24 41.14 32.44 40.53

6.4.3 Evaluation Results. The evaluation results are listed in Table 6, it can be seen that:
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(1) Adding semantic input for our model greatly improves the overall performance of our model.
Comparing our approach to the case of IR:=0 (where no similar comments are retrieved for semantic
inputs), our model shows an improvement of nearly 19% in overall evaluation metrics. This demonstrates
the significant impact of our IR-augmented module and the appropriate value of : .

(2) Regarding the number of retrieved comments, not themore the better.When adding more retrieved
comments to our semantic inputs (e.g., top3 and top5 similar comments), we can find that the BLEU and
ROUGE scores significantly drop. This is because a larger : may introduce more noise into our semantic
inputs with more irrelevant references, which can increase the difficulty of generating correct comments.

(3) By analyzing the performance of our approach with respect to different : , we notice that
SmartBT achieves its optimal performance when : = 1. The overall performance trend of our model
decreases as : increases, which supports our concern that larger : settings introduce more noise and
bring bigger challenges for our task. We thus set : = 1 for constructing our IR augmented module.

Answer to RQ-4: How effective is our SmartBT under different settings of IR component? We
conclude that our SmartBT performs best when the top 1 relevant comment is retrieved for our semantic
input, further increasing the : can introduce more noise and bring bigger challenges for our task.

6.5 RQ5. Effectiveness of Adding IR Component on Baselines
6.5.1 Experimental Setup. In this RQ,we aim to explore the impact of IR component on enhancing the performance
of baseline models. Specifically, we add the same IR component incorporated within our model to baselines.
For a fair comparison, the information retrieval methods (i.e., BM25) and its settings (i.e., number of retrieving
comments) are exactly the same with SmartBT. Following that, we augmented baselines with IR component to
generate target comments and calculate the BLEU and ROUGLE scores for evaluation.

6.5.2 Baselines. In RQ1, we adopted the Pre-trained Language Models, i.e., CodeT5 (small and base models) and
PLBART, as baselines for comparison. We thus augment the above pre-trained models with the IR component,
denoted as CodeT5-small+IR, CodeT5-base+IR and PLBART-base+IR respectively. We provide the performance of
each model without an IR component for easy reference. In this research question, we also provide the parameter
size as an indicator for reference.

6.5.3 Evaluation Results. The experimental results are shown in Table 7, from the table we can observe the
following points:

(1) By comparing the models augmented with IR components and without IR components, it is clear that
IR augmented models exhibit significant improvements over their respective baseline models
across all evaluation metrics, suggesting considerable advancements for introducing the IR
component. For example, after adding the IR component to CodeT5-small and CodeT5-base models, their
BLEU scores have been improved by 43% and 48% respectively. The ROUGE scores also demonstrate
substantial improvements, CodeT5-small+IR and CodeT5-base+IR models show a notable improvement of
38% and 43% respectively, while PLBART-base+IR model also achieves an improvement of 7%. Overall,
the introduction of the IR component can greatly enhance the performance of baseline models, further
verifying the effectiveness of the IR component in filling the semantic gap and improving the quality of
generated comments.

(2) After adding the IR component, the CodeT5-base+IR model even outperforms our SmartBT in terms of
BLEU and ROUGE scores, while our model has its advantages regarding parameter sizes, which is
much more lightweight and flexible. Compared with our SmartBT, our model only costs 26M, while
CodeT5-base+IR and PLBART-base+IR cost 220M and 1,100M respectively, which are 8 and 40 times larger
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Table 7. Effects of IR Augmented Baselines Using BLEU and ROUGE Scores (%)

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L # Parameters

CodeT5-small 25.49 24.69 24.11 23.55 29.49 21.80 29.02 60M
CodeT5-small+IR 36.53 34.29 33.01 32.22 40.71 32.90 40.17 60M
CodeT5-base 28.18 27.44 26.83 26.21 32.10 24.76 31.67 220M
CodeT5-base+IR 41.93 39.96 38.54 37.66 45.82 38.88 45.40 220M
PLBART-base 30.03 29.01 27.93 27.24 36.01 27.80 35.46 1100M
PLBART-base+IR 35.39 29.30 26.80 25.80 38.14 29.03 36.70 1100M

SmartBT 37.18 35.65 34.15 33.24 41.14 32.44 40.53 26M

than our model. Our SmartBT can be easily set up and deployed on developers’ personal computers, it
can perform inferencing with CPUs, without requiring GPUs. As a result, our proposed model is more
lightweight and flexible according to different developers’ computing resources.

Answer to RQ-5: How effective are baselinemodels augmentedwith IR component?The IR-augmented
models show significant improvements over baseline models across all evaluation metrics, further verifying
the effectiveness and importance of introducing IR component.

6.6 RQ6. The Effectiveness of LLMs on Our Tasks
6.6.1 Experimental Setup. The Large Language Models (LLMs) (e.g., ChatGPT) are widely used by developers
nowadays and have demonstrated promising performance for code-related tasks, such as code generation, test
generation, and code summarization [14, 40, 59, 66, 67]. In this RQ, we want to investigate whether the LLMs can
be adapted to our task successfully. In particular, we aim to explore the ability of LLMs on our tasks in terms of
two aspects: generating comments directly from smart contract bytecode and generating comments from CFG
sequences. Since it is too expensive to conduct the experiments on our full test set (i.e., 3,074 cases), we randomly
selected a statistically representative sample of 342 cases from our test set (with a 95% confidence level and 5%
margin of error). Following that, we calculated the BLEU and ROUGE scores of LLMs and SmartBT and these
342 cases for comparison purposes.

6.6.2 Baselines. The great success of ChatGPT demonstrates the remarkable ability of large language models
(LLMs) to comprehend human questions and assist in code-relevant tasks. In this RQ, we adopted the GPT-4
as the baseline to perform our task. GPT-4 is the newest LLM created by OpenAI, it is a large multimodal
model (accepting image and text inputs and emitting text outputs), that exhibits human-level performance on
various professional and academic benchmarks. Currently, in-context learning (i.e., ICL) has been widely used by
researchers to elicit human knowledge and logical reasoning from LLMs to accomplish complicated tasks. We
explore the performance of two variants of in-context learning (i.e., zero-shot learning and few-shot learning) on
two scenarios (i.e., input Bytecode and CFG sequence) respectively. We set the temperature request parameter to
0.7, which is a commonly used empirical standard in many papers [27]. This setting is known to generate results
that are relatively natural and exhibit a certain level of creativity.

• Zero-shot Learning: With the increasing ability of LLMs, in-context learning has shifted to a new
paradigm, known as zero-shot learning, where LLMs make predictions by directly describing the desired
output. Zero-shot prompting involves posing a question or task to the model without providing any
specific context or examples. We apply zero-shot learning to bytecode and CFGs respectively, denoted as
GPT-4-Zero-RBC and GPT-4-Zero-CFG.
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Fig. 7. An ICL Prompt Template Example

• Few-shot Learning: While zero-shot learning shows promising performance in various tasks by leverag-
ing prior knowledge from training sources, it remains challenging to apply to unseen tasks. To overcome
this challenge, few-shot learning is utilized to augment the context with a few examples of desired inputs
and outputs (as shown in Fig. 7). Few-shot learning enables LLMs to recognize the input prompt syntax
and patterns of output. We apply few-shot learning to bytecode and CFG input respectively, denoted as
GPT-4-Few-RBC and GPT-4-Few-CFG.

Table 8. Effects of GPT-4 on Our Task Using BLEU and ROUGE Scores (%)

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L # Parameters

GPT-4-Zero-RBC 10.56 8.00 7.00 6.41 14.24 4.33 13.63 1760B
GPT-4-Few-RBC 13.64 11.02 9.84 9.04 18.42 8.05 17.48 1760B
GPT-4-Zero-CFG 14.75 12.14 10.57 9.56 21.73 9.71 20.29 1760B
GPT-4-Few-CFG 17.01 14.19 12.70 11.74 24.18 11.32 22.74 1760B

SmartBT 37.18 35.65 34.15 33.24 41.14 32.44 40.53 26M

6.6.3 Evaluation Results. The experimental results of GPT-4 and SmartBT on the 342 test cases are summarized
in Table 8, from the table, several points stand out:

(1) It is difficult for LLM to generate comments from bytecode directly. Compared with generating
comments from CFG sequences, generating comments directly from bytecode inputs achieves the worst
performance in terms of all evaluation metrics. Our experimental results reveal that LLMs can hardly
understand the semantic meaning embedded within the bytecode, this is reasonable because even advanced
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LLMs such as GPT-4, have not been pre-trained with bytecode data, thereby hindering them from
generating target comments accurately and effectively.

(2) By comparing GPT-4’s performance with zero-shot learning and few-shot learning, it is clear that few-
shot learning has its advantage over zero-shot learning. For example, with few-shot learning, GPT-4
improves the BLEU-4 score over zero-shot learning by 41% and 22% regarding bytecode and CFG sequence
respectively. This is because zero-shot learning relies solely on the model’s preexisting knowledge to
generate responses. When GPT-4 doesn’t have specific knowledge triggered by the prompt, it may provide
generic or unrelated responses. Few-shot learning prompts the GPT-4 with concrete examples, enhancing
the model’s understanding of the given task.

(3) SmartBT outperforms GPT-4 by a large margin in terms of all evaluation metrics. The suboptimal
performance of GPT-4 on our tasks indicates that LLMs are not suitable for this task because they are not
pre-trained with the bytecode datasets and/or designed for handling bytecode-relevant tasks. Compared
with GPT-4, we introduce CFGs to capture the structural information of bytecode and IR-augmented
components to capture the semantic information of bytecode. It would be interesting to explore the
effectiveness of pre-training and fine-tuning LLMs with bytecode and/or developing LLMs particularly
tailored to handle bytecode-related tasks, but this is beyond the scope of our current research and we
plan to leave it for future work.

Answer to RQ-6: How effective are LLMs for generating smart contract comments from bytecode?
We conclude that it is difficult for LLMs such as GPT-4 to generate comments from smart contract bytecode
because LLMs are seldom pre-trained with bytecode data and can hardly generalize to this unseen task.

6.7 RQ7. Human Evaluation
6.7.1 Experimental Setup. Since automated evaluation indicators such as BLEU and ROUGE cannot really reflect
the effects of generating comments, we conducted a user study to make more real evaluations. In this RQ, we
investigate the effectiveness of our approach through human evaluation [18]. To be more specific, we invited
participants to manually assess the quality of our generated comments in terms of the following two aspects:

• Naturalness: Naturalness evaluates the grammatical correctness and fluency of the generated com-
ments. It assesses how well the comments read and flow in natural language, ensuring they are easily
comprehensible to human users.

• Relevance: Relevance assesses the comments’ alignment with the ground truth comment. It measures
the degree of relevance and coherence between the generated and reference comments, indicating how
well the generated comments capture the intended meaning and information present in the original code.

6.7.2 Baselines. The BM25, CodeT5 and PLBART are selected as baselines for human evaluation. Particularly, we
invited 20 with 1-3 years of blockchain or smart contract experience and good English proficiency to evaluate the
generated comments in the form of a questionnaire. An example of the questionnaire is demonstrated in Figure 8.
We randomly sampled 25 〈generated comment, reference comment〉 pairs from our evaluation dataset. To ensure
the quality of the manual analysis, we divided the 20 participants into five groups, each group of participants will
only rate 5 data samples independently. In other words, each data sample was rated by 4 independent evaluators.
Each participant is required to compare the candidate comments with the ground truth comment and estimate
their Naturalness and Relevance on a scale between 1 and 5 (5 is the best). During the annotation, participants
are allowed to search the Internet for related information and unfamiliar concepts. Participants do not know
which comment was generated by which approach.
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Please rate each Candidate for Naturalness and Relevance from 1-5 (5 is 
the best) compared with the Ground Truth comment Naturalness Relevance

Ground Truth: Get the amount of allowed tokens to spend

Candidate 1: Approves and then calls the receiving contract 3 1

Candidate 2: Returns the amount of tokens approved by the owner 
that can be transferred 5 3

Candidate 3: ERC20 return allowance for given owner spender pair 3 1

Candidate 4: Returns the amount of tokens approved by the owner 
that can be transferred to the spender’s account 5 5

1

Fig. 8. A User Study Case

Table 9. Human Evaluation

Method N !>F# "438D<# �86ℎ# R !>F' "438D<' �86ℎ'

BM-25 3.57 15% 31% 54% 1.74 85% 6% 9%
CodeT5 4.15 25% 22% 53% 3.54 18% 22% 60%
PLBART 3.66 18% 22% 60% 2.69 52% 19% 29%

SmartBT 4.34 0% 12% 88% 3.72 18% 18% 64%

6.7.3 Evaluation Results. After collecting responses from all evaluators, we regard a score of 1 and 2 as low
quality, a score of 3 as medium quality, and a score of 4 and 5 as high quality, respectively. We then calculated
the average scores and the proportion of each quality type (e.g., low quality, medium quality and high quality)
respectively. The quality distribution and average score of naturalness and relevance across each method are
presented in Table 9. From the table we can draw the following conclusions:

(1) Regarding the naturalness score, SmartBT outperforms other methods by a large margin.
Notably, the proportion of low-quality comments is 0%, while the proportion of high-quality comments is
88%. This indicates that our approach excels in generating fluent and grammatically correct comments.

(2) Regarding the relevance score, SmartBT also surpasses the other methods, indicating that
the generated comments exhibit a higher degree of relevance to the comments written by
developers. For instance, the average relevance score of SmartBT is 3.72, which is the highest among all
other methods. Furthermore, 64% of the generated comments are rated of high quality by participants. An
example of this is demonstrated in Figure 8, candidate 4 (“returns the number of tokens approved by the
owner that can be transferred to the spender’s account”) is the comment generated by our approach. Even
the generated comment and human written comment do not share many common words, but they are
semantically equivalent and rated as high relevance scores by evaluators.

(3) In general, our model performs well across both dimensions. The results of human evaluation are
consistent with automatic evaluation results. The considerable proportion of high-quality comments gen-
erated by our approach with respect to the Naturalness and Relevance also reconfirms the effectiveness
of our system.
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Answer to RQ-7: How effective is our SmartBT under human evaluation? We conclude that under
human evaluation, our approach outperforms other baselines in terms of both Naturalness and Relevance
aspects.

7 THREATS TO VALIDITY
In this section, we discuss potential threats to the validity of our study, which are concerns related to the accuracy
and generalizability of our findings.
Internal Validity: Threats to interval validity primarily are concerned with potential errors that may have
occurred in our code implementation and research settings. To minimize such errors, we have conducted thorough
inspections and fully tested our source code in both model design and automatic evaluation. The parameters of
the baseline methods have been carefully tuned and their highest-performing configurations are reported for
comparison. However, despite these efforts, there remains a possibility of unnoticed errors in our implementation.
Considering such cases, we have published our source code and dataset to facilitate other researchers to replicate
and extend our work.
External validity:Threats to external validity relate to the quality and generalizability of our dataset. Our dataset
includes Solidity source code and their complied bytecode for smart contracts. There are other programming
languages for smart contract development which are not considered in our study, we believe our results can gen-
eralize to other smart contract programming languages due to overall similarity in EVM bytecode representation.
Future research will explore other smart contract languages’ impact on code comment generation to enhance
SmartBT’s applicability. Considering smart contracts have a very high clone ratio on the Ethereum blockchain,
we performed data deduplication in our data preprocessing. In particular, we deduplicated our dataset according
to the unique hash value generated by a contract’s CFG and its comment. In other words, we can make sure
our training set doesn’t overlap with our testing set. A more comprehensive evaluation setting is to split the
data timewisely (e.g., using historical data for training and future data for testing), we will explore the timewise
evaluation of our approach in our future work.
Construct validity: Threats to construct validity relate to issues that could affect the ability to draw correct
conclusions about the relations between the treatment and outcome of an experiment. Evaluation metrics
suitability is the primary issue. We used BLEU and ROUGE for automatic evaluation, which are widely used for
evaluating grammatical correctness and relevance. However, semantic understanding might be limited due to
diverse natural language expressions. Although we incorporate manual evaluation, it can be affected by evaluator
attentiveness, language proficiency, and blockchain expertise. To address this, we select experienced participants
proficient in English and blockchain and provide each participant with reasonable data samples and sufficient
time for evaluation.

8 DISCUSSION
In this section, we discuss the adaptability of SmartBT to generate comments for other programming languages
and the unique ability of SmartBT to generate comments for smart contracts.

8.1 Comment Generation from Bytecode
SmartBT is proposed for handling smart contracts where their source code is missing, under such situations,
only bytecode is available on the Ethereum blockchain. Therefore, we design SmartBT to directly translate smart
contract bytecode to natural language comments. Notably, even though our approach is designed for smart
contracts, it can be easily extended to other programming languages. In general, SmartBT can be regarded
as a general framework for generating comments from bytecode, which uses CFG to capture the structural
information and the IR-augmented component to capture semantic information. It is an interesting research
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direction to explore the effectiveness of SmartBT on other programming languages (e.g., Java), but it is beyond
the scope of this research. Generating comments from bytecode not only benefits smart contract developers but
also provides practical implications for other programming languages. For example, when developers face the
task of decompilation (e.g., Android apps with only bytecode), the comments of the bytecode can provide a bird’s
eye view of the system’s functionalities.

Recently, researchers have investigated of generating code comments from bytecode for popular programming
languages, such as Java. For example, Huang et al. [32] first proposed a method named BCGen to generate
comments for Java bytecode in 2022. Similarly, they converted the bytecode into CFGs and built the neural
language model to learn from the CFGs and token sequences. Our SmartBT differs from the existing studies
of generating code summaries from bytecode for general languages in terms of the following aspects: 1) Our
research focuses on the EVM bytecode, this is because Solidity is specifically designed for writing smart contracts
and is most widely used by smart contract developers. As far as we know, there is no ready-made dataset available
for smart contracts and EVM bytecode, our work builds the first large dataset for this task. 2) Previous studies
find that smart contracts have a relatively high clone ratio (e.g., 90%), much higher than the code clone ratio
in traditional software projects [17]. Inspired by this finding, we introduced the IR augmented component to
retrieve the similar function’s comment to assist the target comment generation. The experimental results verify
the effectiveness of using IR components to enhance the overall performance of our approach.

8.2 Comment Generation for Smart Contract
The comment generation task has been widely explored by software engineering researchers, however, there
are only a few studies that investigated comment generation task for smart contracts [29, 51, 68]. Among them,
two representative tools are closely related to our work, i.e., SmartDoc [29] and Stan [38]. Hu et al. [29] first
introduce the task of generating descriptions for smart contracts from source code, they propose SmartDoc to
generate user notices for smart contract functions. Our SmartBT shares the same architecture with SmartDoc by
using the sequence-to-sequence learning of neural network models. However, different from SmartDoc which
targets on smart contract source code, our approach first focuses on smart contract bytecode. However, only
13% of smart contract source code are available, which means SmartDoc can only be applied to a small number
of smart contracts, while our SmartBT can support all smart contracts because their bytecode are all available
on-chain. Moreover, compared with the source code, the gap between comments and natural language comments
is even larger, therefore we introduced the IR augmented component to bridge this semantic gap.

Li et al. [38] proposed a model named Stan to generate descriptions for bytecode of smart contracts. Compared
with Stan, SmartBT is more general. Stan describes every smart contract interface from four aspects (i.e.,
functionality description, usage description, behavior description, and payment description). SmartBT aims to
generate comments for smart contract functions, since comments are natural language descriptions written by
developers, the comments generated by our approach are more general to describe the smart contract. Moreover,
Stan requires to analyze the extra metadata and adopts symbolic execution techniques to generate intermediate
information, while SmartBT is an end-to-end model that only acquires the runtime bytecode of a smart contract
as input and automatically outputs the natural language comment. Therefore SmartBT is more lightweight and
flexible compared with Stan.

9 RELATED WORK
We employ the deep learning model to generate natural language comments for the bytecode of the smart
contract, which are mainly related to the following three main aspects.
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9.1 Code Comment Generation
Code comment generation is the most relevant task which aims to generate natural descriptions for code snippets.
The Code comment generation task has been studied by a lot of software engineering researchers. Manually-
crafted templates [41, 42, 52], IR techniques [28, 37, 63, 64], and neural network models [7, 30, 58, 62] are widely
used in automatic comment generation. For example, Sridhara et al. [52] propose to construct Software Word
Usage Model (SWUM) to select relevant keywords from source code and then leverage them to construct natural
language descriptions from defined templates. Haiduc et al. [28] exploit two IR techniques, Vector Space Model
(VSM) and LSI, to analyze methods and classes in Java projects and generate short descriptions for them. Iyer et
al. [33] first propose to utilize the encoder-decoder framework to generate comments, in which the encoder is
token embeddings of source code and the decoder is an LSTM. The experimental results on C# and SQL comment
generation illustrate that neural networks perform better than traditional techniques.

Despite the availability of various automated comment generation studies and tools [6, 24, 69], there are
few tools specifically designed for generating comments on smart contract code [29, 51, 68]. Hu et al. [29] first
introduce the task of generating descriptions for smart contracts from source code. However, generating smart
contract comments from EVM bytecode has never been investigated. To the best of our knowledge, our work is
the first research to explore the possibility of generating smart contract comments from EVM bytecode, and our
extensive evaluation shows the effectiveness of our tool for this newly proposed task.

9.2 Smart Contract Bytecode Analysis
Smart contract bytecode has been investigated in various tasks, including smart contract vulnerability detection [9,
13], smart contract classification [48, 50], and code similarity detection [71]. For example, Chen et al. [13] proposed
DefectChecker, a symbolic execution-based approach and tool to detect eight contract defects that can cause
unwanted behaviors of smart contracts on the Ethereum blockchain platform. DefectChecker can detect contract
defects from smart contracts’ bytecode. Ashizawa et al. [9] proposed Eth2Vec, a machine-learning-based static
analysis tool for vulnerability detection in smart contracts. Eth2Vec automatically learns features of vulnerable
EVM bytecodes with tacit knowledge through a neural network for natural language processing. Shi et al. [50]
proposed a novel bytecode-based classification approach to effectively classify smart contracts of blockchain
platforms.There are also techniques investigating how to decompile smart contract bytecode and generate Solidity
source code. For example, Grech et al [21] presented Gigahorse, which is a reverse compiler that decompiles the
smart contract EVM bytecode into high-level three-address code representation. Following that, they proposed
Elipmoc [22] to further improve Gigahorse by integrating high-precision algorithms and design decisions that
target a balance of precision and scalability. Suiche et al. [53] proposed Porosity, which is able to generate readable
Solidity syntax contracts and enable static or dynamic analysis on these compiled contracts. However, even with
these decompilers, it is still not easy for users to grasp the semantic information of the contract, not to mention
the potential misleading due to decompilation errors.

Different from previous studies that focus on smart contract vulnerability detection from bytecode, our work
first introduces the task of generating descriptions for smart contracts from EVM bytecode. Considering more
than 90% of smart contract source codes are not available on the blockchain, while their EVM bytecode is always
accessible, our tool complements the existing smart contract comment generation tools by using bytecode.

9.3 Software Engineering on Smart Contract
Software engineering researchers have investigated smart contracts for different software engineering tasks, such
as smart contract clone detection [11, 15–17, 36], smart contract code searching [49], smart contract program
repair [60, 70]. For example, Gao et al. [17] proposed a model, named SmartEmbed to detect code clones and
clone-related bugs in smart contracts by using structural code embedding techniques. Shi et al. [49] proposed a
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Multi-Modal Smart contract Code Search (MM-SCS) model for semantic code search with smart contracts. Their
model can capture the data-flow and control-flow information from source code as well as semantic features. Yu
et al. [70] proposed the first general-purpose automated smart contract repair approach that is also gas-aware.
Their program repair model is search-based and searches among mutations of the buggy contract. Compared
with the aforementioned studies, our research focuses on smart contract code comprehension and maintenance,
our approach can greatly benefit smart contract developers and end users in understanding the functionality and
logic of smart contracts from EVM bytecode instead of source code.

10 CONCLUSION
In this work, we first introduce the task of generating smart contract function descriptions from their EVM
bytecode. We have proposed a novel model, named SmartBT, for translating bytecode to function comment
automatically. SmartBT employs IR augmented module to fill the semantic gap between bytecode and natural
language comments and adopts the encoder-decoder neural network to learn structural information from smart
contract bytecode. We have conducted extensive experiments to verify the effectiveness of our approach, and
SmartBT gets remarkable automatic evaluation scores and understandable human evaluation.
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