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Abstract—Vulnerabilities are disclosed with corresponding
patches so that users can remediate them in time. However,
there are instances where patches are not released with the
disclosed vulnerabilities, causing hidden dangers, especially if
dependent software remains uninformed about the affected code
repository. Hence, it is crucial to automatically locate security
patches for disclosed vulnerabilities among a multitude of commits.
Despite the promising performance of existing learning-based
localization approaches, they still suffer from the following
limitations: (1) They cannot perform well in data scarcity scenarios.
Most neural models require extensive datasets to capture the
semantic correlations between the vulnerability description and
code commits, while the number of disclosed vulnerabilities
with patches is limited. (2) They struggle to capture the deep
semantic correlations between the vulnerability description and
code commits due to inherent differences in semantics and
characters between code changes and commit messages. It is
difficult to use one model to capture the semantic correlations
between vulnerability descriptions and code commits.

To mitigate these two limitations, in this paper, we propose
a novel security patch localization approach named PromVPat,
which utilizes the dual prompt tuning channel to capture the
semantic correlation between vulnerability descriptions and
commits, especially in data scarcity (i.e., few-shot) scenarios.
We first input the commit message and code changes with the
vulnerability description into the prompt generator to generate
two new inputs with prompt templates. Then, we adopt a pre-
trained language model (i.e., PLM) as the encoder, utilize the
prompt tuning method to fine-tune the encoder, and generate two
correlation probabilities as the semantic features. In addition, we
extract 26 handcrafted features from the vulnerability descriptions
and the code commits. Finally, we utilize the attention mechanism
to fuse the handcrafted and semantic features, which are fed
into the classifier to predict the correlation probability and locate
the security patch. To evaluate the performance of PromVPat,
we compare it with five baselines on two datasets. Experimental
results demonstrate that PromVPat performs best in the security
patch localization task, improving the best baseline by 14.42% and
86.57% on two datasets regarding Recall@1. Moreover, PromVPat
has proven to be effective even in data scarcity scenarios.

Index Terms—Vulnerability Patch Localization, Few-Shot
Learning, Pre-trained Language Models

I. INTRODUCTION

Open Source Software (OSS) has transformed the dynamics

of contemporary software development, making software more

accessible, versatile, and collaborative. However, this public

nature also renders OSS a prime target for cyber threats. The

∗ Corresponding author

upsurge in disclosed OSS vulnerabilities highlights this threat

landscape [1]–[3]. Security patches are crucial in addressing

these vulnerabilities, often seen as the primary solution.

However, as the scale and complexity of OSS increase, a

concerning trend emerges: security patches are often silently

merged into their repositories, absent any explicit link to

the documented vulnerabilities they address. If not notified,

software dependent on these code repositories could be exposed

to concealed risks [4].

Applying the latest version in time is a common and

effective practice to mitigate the risk of vulnerability attacks.

However, the latest version, which may contain not only

security vulnerability fixes but also new features or performance

bug fixes, can overwhelm users or administrators [5]. Besides,

it is crucial to facilitate the awareness of vulnerability fixes

for OSS users so they can understand the root cause and react

to the vulnerabilities as early as possible. Thus, it is important

to identify the security patch instead of simply updating the

software to the latest version. In response to this need, many

data-driven techniques have emerged. These techniques aim

to frustrate the exploitation of these vulnerable libraries and

facilitate the automatic detection of security patches within a

vast volume of code commits [6]–[13].

Generally, existing localization approaches can be catego-

rized into two types: (1) matching-based and (2) learning-

based approaches. Matching-based methods depend on specific

keywords or supplementary information in the vulnerability

description. For instance, Kim et al. [6] used the CVE-ID in

code commits to locate security patches. Other studies [7], [8]

have located security patches using external reference URLs in

CVE records. However, these approaches only address a limited

subset of disclosed vulnerabilities due to often incomplete

or incorrect vulnerability or code commit information [3].

Inspired by the semantic association between vulnerability

description and code commits, learning-based methods employ

deep learning and data mining techniques to discriminate the

correlation between the vulnerability description and the code

commit. For example, Zhou et al. [9] utilized word2vec [14]

to learn the representations of the commit message and bug

reports for security patch localization. Both Sabetta et al. [10]

and Zhou et al. [11] employed the Long Short-Term Memory

(LSTM) model [15] to separately encode the message and code

change, aiding in the identification of security patches.
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The emerging pre-trained language model (PLM) is trained

on a very large-scale corpus, which can deeply understand

the semantic information of the code, and has become the

main method of encoding text information in the code [16]–

[18]. For example, Nguyen et al. [13] employed BERT-based

models [19] to encode commit messages, bug reports, and

code changes, aiming to classify vulnerability-fixing commits.

Similarly, Wang et al. [20] utilized CodeBERT [17] to extract

semantic correlations between vulnerability descriptions and

code commits. They enhanced their methods by integrating

semantic correlation features with 36 handcrafted features to

locate security patches.

Despite their promising results, learning-based localization

methods still have two limitations: (1) They cannot perform
well in data scarcity scenarios. Typically, existing learning-

based approaches rely on the large-scale corpus to fine-tune the

PLM. Nevertheless, the number of disclosed vulnerabilities with

security patches remains limited. Numerous vulnerabilities are

silently fixed in the open-source community and do not reveal

corresponding patches [4]. The scarcity of security patches for

particular types or programming languages of vulnerabilities

amplifies the challenge. (2) They are less effective in exploring
semantic correlations between vulnerability descriptions
and code commits. Code commits contain two types of

information: commit messages and code changes. Commit

messages typically include file paths and descriptions of code

changes, which are more domain-specific and noisy than

other typical texts, such as social media posts or product

reviews [21]. Code changes comprise a sequence of modified

code statements extracted from one or multiple source code

files. A difference exists between programming languages (in

the form of code changes) and natural languages (including

vulnerability descriptions and commit messages) [11]. Existing

learning-based approaches employ a single model to handle

both types of information. These approaches assume the same

model can effectively capture the semantic correlations between

vulnerability descriptions, commit messages, and code changes.

However, given the different semantics of commit messages

and code changes, this assumption may not always hold.

To alleviate the above two limitations, we propose a novel

dual prompt tuning channel to locate the security patch called

PromVPat, which is inspired by the recent advances in prompt

tuning [22]. This approach captures semantic correlations be-

tween vulnerability descriptions and code commits, particularly

in the data scarcity scenario. To tackle the first challenge,

we utilize the prompt tuning method to fine-tune PLMs and

guide PLMs’ outputs in scarcity scenarios (i.e., few-shot

learning). Prompt tuning adjusts the model’s responses to

prompts. Instead of training the model from scratch, prompt

tuning uses a natural language instruction (i.e., “prompt”) to

hint at the downstream task. By modifying the original input

and leveraging the pre-existing knowledge acquired by PLMs

during the pre-training stage, prompt tuning can direct PLMs

to focus on matching relevant information even with limited

training data. To address the second limitation, we propose

a novel dual prompt tuning channel with two prompts: code

change and commit message channels. The former captures the

semantic correlations between vulnerability descriptions and

code changes. The latter focuses on the semantic correlations

between vulnerability descriptions and commit messages. In

addition to the abstract semantic features captured by the dual

prompt tuning channel, we design 26 handcrafted features

to capture the explicit correlation and adopt the attention

mechanism to fuse the semantic and handcrafted features.

Specifically, given a vulnerability and a code commit,

PromVPat first parses the code commit into the code change

and the commit message. Then, PromVPat utilizes two prompt

generators to generate the code change and commit message

prompt to link them with vulnerability descriptions. The two

prompts are initial prompts for prompt tuning of PLMs. Each

prompt with the vulnerability and commit information is fed

into an encoder (i.e., CodeT5 [16]) to capture the deep semantic

correlations between the vulnerability descriptions and code

commits. Considering the semantics between vulnerability

descriptions and code commits, a fixed prompt (i.e., hard

prompt) may lack flexibility or adaptability [23]. We adopt

the soft prompt tuning method [24] in the dual prompt

tuning channel, forming a continuous prompt with a learnable

embedding. Soft prompt involves trainable parameters to the

prompt itself, which are learned alongside the other parameters

of the model during fine-tuning. Besides, we extract 26

handcrafted features that fall into two groups: vulnerability

identifier and location features. These features explicitly capture

the relationships between vulnerabilities and code commits.

Further, we adopt an attention mechanism [25] to highlight the

different importance of the handcrafted and semantic features

and fuse them into the final correlation features. Finally, a

multi-layer perceptron (MLP) is leveraged to produce the final

correlation probability.

To evaluate the effectiveness of PromVPat, we compare it

with five baselines across two public datasets, the VCMatch and

SAP datasets, which serve as widely recognized benchmarks

in locating security patches. Experiment results reveal that our

approach outperforms all baselines by large margins regarding

Recall and NDCG. Specifically, PromVPat improves the best-

performing baseline by 14.42% and 86.57% across two datasets

in Recall@1. Further analysis demonstrates the effectiveness

of our approach in two data scarcity scenarios, namely, the

cross-language and cross-project low-resource scenarios.

In summary, we make the following contributions:

• We propose a novel security patch localization approach

named PromVPat, which takes the advantages of prompt

engineering and few-shot learning [26] to locate security

patches, especially in data scarcity scenarios.

• We conduct extensive experiments on two datasets to

evaluate the superiority of the proposed model.

• We release our replication package [27], which includes

the source code, the dataset, and our evaluation results.

II. PRELIMINARIES

In this section, we first introduce the background knowledge

related to vulnerabilities and prompt tuning. Then, we provide
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Fig. 1. An illustration of prompt tuning in the context of security patch
localization. The blue rectangle symbolizes the input slot [x] (e.g., vulnerability
descriptions and code commits). The purple rectangle denotes the answer slot
[z] (e.g., “yes” and “no”). The green rectangle signifies the special token (e.g.,
〈CLS〉).
a motivation example to show our key idea.

A. Background

1) Common Vulnerabilities and Exposure (CVE): CVE

serves as a dictionary of identified vulnerabilities [28]. Security

vendors can contact the CVE Assignment Team to request a

unique CVE ID upon identifying a vulnerability. In addition

to the CVE ID and vulnerability description, each CVE record

includes a list of pertinent external references, such as security

advisories and patches.

2) Prompt Tuning: Our approach builds upon the dual

prompt tuning channel, which adopts the prompt tuning to

stimulate PLMs’ ability to capture semantic correlations be-

tween vulnerability descriptions and code commits. The process

of prompt tuning is depicted in Figure 1. The underlying idea of

prompt tuning is to align the training objective of downstream

tasks with the pre-training phase of PLMs [22], [29]. The

prompt tuning modifies the original input by introducing a

natural language prompt to ensure the input format remains

consistent with the pre-training stage.

Specifically, prompt tuning utilizes a prompt template,

denoted as fprompt(x), to restructure the original input x
and generate a new input x′ with certain unfilled slots. As

depicted in Figure 1, the prompt template comprises two types

of reserved slots: input slot [x] and answer slot [z]. The input

slot [x] is designated to be populated with the original input

text, such as vulnerability descriptions and code changes. The

answer slot [z] is intended to be filled with predicted labels,

such as “yes” and “no”. We define the set of permissible values

for input slots as Z, a small subset representing the classifi-

cation labels. For example, in the security patch localization

task, Z={“yes”, “no”, “relevant”, “irrelevant”}. The PLM

calculates the probability of the corresponding filled answer

words and seeks the highest-scoring potential option ẑ ∈ Z,

within the permissible values for Z.

ẑ = argmax(P (fprompt(x); θ)). (1)

Inspired by previous works [22], [29], there are two main

types of prompts: the hard prompt (a.k.a discrete prompt)

and the soft prompt (a.k.a continuous prompt). The hard
prompt [30]–[32] is the most natural method to create intuitive

templates and modify the model input manually. The prompt

is a text string where each token is meaningful. For instance,

in the security patch localization task, the original input can be

converted into “The CVE [x1]. The commit [x2]. Relevant [z].”
[x1] denotes the vulnerability description, and [x2] represents

the cod commit. The task objective becomes predicting the

word at the answer slot [z], such as “yes” or “true”. The soft
prompt [31], [33], [34] is different from the hard prompt in

that the tokens of the prompt are represented as continuous

vectors instead of fixed discrete words. We use [soft] to denote

the tokens in the soft prompt. The original hard prompt of the

security patch localization task can be converted into

fprompt(x1, x2) = [soft] [x1][soft] [x2] [soft] [z], (2)

where [soft] can be optimized during the tuning stage.

Although hard prompt has shown promising performance in

previous work [35], [36], it is time-consuming to create and

discover optimal prompt templates [37], [38]. Since soft prompt

is a continuous vector involving trainable parameters to the

prompt representation, it allows for a wider range of prompts to

help PLMs better adapt to the specific inputs. Besides, the soft

prompt can capture more general patterns in the data. Hence,

we adopt the soft prompt in our dual prompt tuning channel

to stimulate the potentiality of PLMs.

B. Motivation Example

Figure 2 illustrates an example of a disclosed vulnerability

and its corresponding security patch from the qemu project [39].

This vulnerability, identified as CVE-2020-7248 [40], could

result in an over-read of data, subsequently causing a seg-

mentation fault. Although its security patch was committed

on July 31, 2019, it was not disclosed until October 06,

2022. The disclosure of the patch occurred later than
its submission. This poses a risk to projects that depend on it,

as the vulnerability provides potential attackers a substantial

window of opportunity to launch attacks. It is crucial to locate

the security patch of the disclosed vulnerability, enabling

downstream projects to update their versions and implement

remediation measures in time.

Further, we have the following findings: (1) The vulnera-

bility description lacks essential identifier information of the

commit, such as commit-ID, file names, and function names.

Additionally, key vulnerability information such as CVE-ID

and CWE-ID were not included in the code commit and could

not be found through search-based localization methods. (2)

The commit message is cluttered with extraneous information,

including reporters’ and reviewers’ names and email details.

This abundance of noise adversely affects the accuracy of

matching vulnerability descriptions with code commits. (3) A

substantial disparity exists between code changes and commit

messages. Combining the two makes it challenging for existing

models to capture the correlation between vulnerabilities and

patches effectively. Given these challenges, we propose the

dual prompt tuning channel to separately capture the semantic

correlations between commit messages, code changes, and

vulnerability descriptions.
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Fig. 2. An example of disclosed vulnerability and its security patch.

III. APPROACH

In this section, we introduce PromVPat, a novel security

patch localization approach. We first introduce its overall

architecture. Then, we describe the details of its three modules.

A. Overview

Figure 3 presents the framework of the PromVPat framework,

composed of three modules: semantic matching, handcrafted

feature extraction, and feature fusion & patch location.

Semantic Matching Module. This module utilizes a PLM

and the dual prompt tuning channel to identify semantic corre-

lations between vulnerability descriptions and code commits. It

generates two new inputs using prompt templates and employs

the PLM to produce two correlation probabilities, which serve

as semantic features.

Handcrafted Feature Extraction Module. This module

seeks to capture the explicit correlations between vulnerability

descriptions and code commits. The handcrafted features draw

on the prior work [20]. Notably, we extract fewer features,

while the performance of PromVPat outperforms the earlier

work [20], as presented in Section IV-C.

Feature Fusion & Patch Location Module. This module

uses an attention mechanism to integrate the features derived

from the previous two modules. This process emphasizes the

varying significance of the semantic and handcrafted features.

Finally, a classifier predicts the correlation probability to locate

the security patch.

B. Semantic Matching Module

The dual prompt tuning channel, comprising the code change

and commit message channels, identifies semantic correlations

between vulnerability descriptions and commits. The code

change channel focuses on the correlation between the code

change and the vulnerability description, and the commit

message channel targets the correlation between the commit

message and the vulnerability description. Both channels

contain three components: a prompt generator, encoder, and

classifier.

Prompt Generator. This component transforms the original

input into a new format using the prompt template. As discussed

in Section II-A, we use the soft prompt, representing the prompt

with continuous vectors. Following the insights from previous

studies [41], [42], proper initialization of the [soft] token

can offer a beneficial starting point for optimizing the input

embeddings. We use a manually designed prompt template to

initialize [soft] token representations, determining their number

and position, rather than random initialization. As for the two

channels, we design different initialization prompt templates.

The template of the code change channel “The CVE [x1] is
fixed by the code [x3]. [z]” is converted into

fprompt(x1, x3) = [soft] [x1] [soft] [x3] [z], (3)

where [x1] represents the vulnerability description, and [x3]
denotes the code change.

The prompt template of the commit message channel is “The
CVE: [x1] means [x4]. Is it correct? [z]”. We convert it into

fprompt(x1, x4) = [soft] [x1] [soft] [x4] [soft] [z], (4)

where [x4] denotes the commit message. In our experiments, we

compare four templates for each channel to select the optimal

template initialization tokens.

Encoder. For each channel, we use CodeT5 [16] as the en-

coder to generate the input representations, including the input

text (i.e., [x1], [x3], and [x4]) and the prompt representation

(i.e., [soft]). Initially, we freeze the CodeT5’s parameters and

derive the embeddings of the prompt tokens P ∈ R
p×d, where

p is the prompt length. For two input texts (e.g., [x1] and

[x3]), CodeT5 embeds their tokens into a matrix X ∈ R
2n×d,

where n is the token count of one input, and d is the size of

embedding space dimension. The prompt embeddings are then

appended to the input embeddings to create a single matrix

[P;X] ∈ R
(p+2n)×d, fed into CodeT5 to maximize the answer

words’ probability. We evaluate three popular PLMs in our

experiments: CodeBERT [17], CodeT5 [16], and GPT2 [43].

Classifier. A softmax classifier uses the learned input text

representation to determine the answer word distribution. Then,

the verbalizer M maps various searched answer words to a
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TABLE I
THE LIST OF HANDCRAFTED FEATURES.

Feature Type Feature Name Feature Description
Number of CVE Number of CVE IDs in commit messages
Number of Bug Number of bug IDs in commit messages
Flag of CVE Match Whether the CVE IDs in commit messages
Flag of Bug Match Whether Bug IDs in commit messages
Flag of CWE Match Whether CWE IDs in commit messages
Same number of CVE Msg Number of same words between CVE description and commit messages
Same ratio of CVE Msg Ratio of same words between CVE description and commit message
Max of same CVE Msg Word Max frequencies of same words between CVE descriptions and commit messages
Sum of same CVE Msg Word Sum frequencies of same words between CVE descriptions and commit messages
Average of same CVE Msg Word Average frequencies of same words between CVE descriptions and commit messages
Variance of same CVE Msg Word Variance frequencies of same words between CVE descriptions and commit messages
Same number of CVE Code Number of same words between CVE descriptions and code changes
Same ratio of CVE Code Ratio of same words between CVE descriptions and code changes
Max of same CVE Code Word Max frequencies of same words between CVE descriptions and code changes
Sum of same CVE Code Word Sum frequencies of same words between CVE descriptions and code changes
Average of same CVE Code Word Average frequencies of same words between CVE descriptions and code changes

Vulnerability
Identifier
Features

Variance of same CVE Code Word Variance frequencies of same words between CVE descriptions and code changes
Number same file path Number of same file paths between CVE descriptions and commits
Ratio same file path Ratio of same file paths between CVE descriptions and commits
Number unrelated file path Number of file paths that is in commits but not mentioned in CVE descriptions
Number same file Number of same files between CVE descriptions and commits
Ratio same file Ratio of same files between CVE descriptions and commits
Number unrelated file Number of files in commits but not mentioned in CVE descriptions
Number same function Number of functions between CVE descriptions and commits
Ratio same function Ratio of functions between CVE descriptions and commits

Vulnerability
Location
Features

Number unrelated function Number of functions in commits but not mentioned in CVE descriptions

single class. Specifically, our verbalizer maps the probability of

answer words “true” or “yes” to the relevant class and “false”

or “no” to the irrelevant class. We use the cross entropy loss

to train the dual prompt tuning channel and predict correlation

probabilities as deep semantic features.

C. Handcrafted Feature Extraction Module

In addition to semantic features, our approach also incor-

porates 26 handcrafted features to strengthen the correlation

between the vulnerability description and the commit, as

validated by previous studies [3], [20]. Table I provides details

of these features, which fall into two categories: vulnerability

identifier features and vulnerability location features. We further

elaborate on these features below.

Vulnerability Identifier Features. Beyond CVE-ID and

Bug-ID, we also consider the type and impact of the vulner-

ability as identifiers, such as CWE-ID, the CWE description,

vulnerability trigger conditions, and vulnerability causes. We

employ corresponding regular expressions (i.e., “CVE-[0-9]4-

[0-9]{1, 8}” and “bug.0,3([0-9]{2, 5}”) to discern if the

commit is related to the vulnerability identifier and count the

number of these identifiers in the commit message. Besides,

we tokenize the commit message, the code change, and

the vulnerability description. We then count the identical

tokens between the commit message and the vulnerability

description, and between the code change and the vulnerability

description. Further, we compute five statistical features (i.e.,

ratio, maximum, sum, average, and variance). Finally, we

identify 17 features between the vulnerability and the commit.

Vulnerability Location Features. Six features are derived

from the number and ratio of the related files and functions

between the vulnerability description and the commit. We

count the number of file paths, files, and functions that do not

relate to the vulnerability description. Vulnerability location

features enhance the correlation by verifying if the code file

or function, where the vulnerability is situated, is present in

the code commit.
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D. Feature Fusion & Patch Location Module

To indicate the varying importance of different features, we

apply the dot-production attention mechanism [25] to merge

the extracted features and produce the attentive correlation

features Ĉ. Finally, we use an MLP classifier to generate the

final correlation probability ŷ, as follows:

ŷ = Softmax(MLP(tanh(Ĉ))). (5)

E. Model Training

We use the cross entropy loss to forecast the correlation and

train our approach by minimizing the following loss:

L(ŷ, y) = −y · log (ŷ) + (1− y) · log (1− ŷ) , (6)

where y represents the actual value. If a connection exists

between the vulnerability description and the security patch, y
is set to 1; otherwise, it is 0.

IV. EXPERIMENT

In this section, we conduct extensive experiments to justify

our model’s superiority and analyze the reasons for its effec-

tiveness. We aim to answer the following research questions:

RQ1: How effective is PromVPat compared to the state-of-

the-art baselines on locating security patches for disclosed

vulnerabilities?

RQ2: What are the effects of different prompt tuning design

choices for the proposed model?

RQ3: What are the effects of different handcrafted features

for the proposed model?

RQ4: Can PromVPat outperform existing localization ap-

proaches in data scarcity scenarios?

A. Dataset

To evaluate the effectiveness of PromVPat, we adopt two

public datasets: the VCMatch [20] and SAP dataset [44]. The

VCMatch and SAP datasets serve as widely recognized bench-

marks in security patch localization. The VCMatch dataset

proposed by Wang et al. [20] comprises 1,318 vulnerabilities

from 10 large-scale open-source projects. The SAP dataset

proposed by Ponta et al. [44] includes 566 vulnerabilities

covering 205 distinct Java open-source projects. Each dataset

is randomly divided into three segments: 80% for training, 10%

for validation, and the final 10% for testing. Table II provides

a comprehensive statistical overview of these two datasets.

TABLE II
THE STATISTICS OF DATASETS.

Dataset VCMatch SAP
# Vulnerability 1,318 566
# Total Commits 705,456 7,165
# Training Commits 564,364 5,719
# Validation Commits 70,546 756
# Test Commits 70,546 690

B. Experimental Setup

Baselines. We compare PromVPat with five state-of-the-

art approaches: XGBoost [45], LightGBM [46], PATCH-

SCOUT [3], VCMatch [20], and VulCurator [13]. These

approaches can be categorized into three types: traditional

classification models, neural-network-based models, and PLMs-

based models. XGBoost and LightGBM fall under the

category of traditional classification models. They are both

tree-based learning algorithms that belong to the gradient-

boosting framework. We employ these two models to predict

the correlation between patches and vulnerability descriptions

based on 22 manually extracted features. PATCHSCOUT
is a neural-network-based localization model that utilizes

RankNet [47] and 22 handcrafted features to locate security

patches. VCMatch is a PLMs-based model that employs

CodeBERT to capture semantic features from vulnerability

descriptions and commit messages. Besides, it considers 36

handcrafted features to locate security patches. VulCurator
is also a PLMs-based model that utilizes three CodeBERT

models to predict the probabilities of code messages, code

changes, and bug reports related to vulnerabilities. We do

not compare PromVPat with matching-based methods since

previous studies [3], [20] have demonstrated that matching-

based methods have limited effectiveness.

Evaluation Metrics. Our model’s primary goal is ranking

items based on relevance rather than classifying them into

distinct categories. In ranking models, the emphasis is on the

relative order of items rather than their discrete categorization.

Using classification-based metrics like precision, accuracy, and

F1 would not capture the nuances and intricacies of ranking

performance. We followed previous works [3], [20], adopted

two widely-used Top-K ranking metrics instead of classification-

based metrics, i.e., Recall@K and Normalized Discounted

Cumulative Gain (NDCG@K), for evaluation (K is 1 and

5). NDCG = DCG
IDCG , where DCG = rel1 +

∑n
i=2

reli
log2i

and

IDCG = relsorted1 +
∑n

i=2

relsortedi
log2i

. reli is the relevance

of the item at position i. relsortedi
is the relevance of items in

the ideal order. Recall@K is the percentage of successfully

identified security patches, while NDCG@K factors in the

positional success of the code commit, allocating a higher

score if the security patch resides within the top positions.

In all metrics, greater values signify superior performance.

Furthermore, we present the mean score of all vulnerabilities

within the test set as the conclusive score.

Implementation Details. We adopt the PyTorch frame-

work [48], the Huggingface [49], and the OpenPrompt [50] to

implement PromVPat. In the prompt tuning stage, we assign a

value of 20 to the number of [soft] tokens. The learning rate

is 1e-5. The maximum length of each input is 512. Moreover,

we choose AdamW [51] as the optimizer. During the inference

process, we predict the correlation probability of each CVE and

code commit and rank the order of code commits according

to the probability. Besides, we maintain consistent parameter

configurations when implementing the other baselines. The

experiments are performed on a machine equipped with two
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Fig. 4. An example of disclosed vulnerability (CVE-2019-10894) and its
security patch.

Nvidia GeForce GTX 3090 GPUs and two Intel Xeon Gold

6226R CPUs.

C. Effectiveness on Patch Localization (RQ1)

We compare our approach with other baselines on two

datasets regarding Recall and NDCG. Table III illustrates the

overall performance results. The results show that PromVPat

outperforms all the baselines across two datasets in terms

of four metrics by large margins, indicating the effective-

ness of PromVPat. Specifically, it improves over the best-

performing baseline, i.e., VulCurator, by 14.42% and 86.57%

in two datasets in terms of Recall@1, respectively. PromVPat

improves VulCurator on two datasets of NDCG@1 and

NDCG@5 by 0.97%, 11.36%, 27.32%, and 2.23%, respec-

tively. Compared with Recall, our model shows a small

improvement in the results on NDCG. The reason is that the

dataset has few relevant patches for each vulnerability. Further,

we have the following observations:

(1) Traditional classifiers (i.e., XGBoost and LightGBM) are

limited in locating the security patches. This could be attributed

to their reliance on manually extracted features for localization,

which cannot comprehend the underlying semantic information.

In contrast, our approach not only adopts handcrafted features

but also utilizes the PLMs to capture the deep semantic features

between vulnerability description and code commits, which

enhances the precision of security patch localization.

(2) It is evident that PLMs-based models (i.e., VCMatch,

VulCurator, and PromVPat) outperform the other baseline

models. This indicates that PLMs can effectively capture

the semantic correlation between vulnerability descriptions

and code commits. PromVPat utilizes the dual prompt tuning

channel to capture the semantic correlations of the commit

message and code changes with the vulnerability description.

This allows PLMs to focus on the specific semantic features

crucial to the matching process. To further explore why PromV-

Pat can achieve better performance, we manually inspect the

ranking results of PromVPat and the best-performing baseline,

VulCurator. Our manual inspection shows PromVPat can

identify key information related to vulnerabilities from noisy

commit messages, improving the matching precision between

vulnerabilities and commits. Figure 4 presents an example from

our test set: a reachable-assertion-type vulnerability identified

as CVE-2019-10894. The patch message for this vulnerability

includes the reporter and reviewer’s names and email addresses.

Despite this additional information, our approach can still

identify words related to the vulnerability, such as “valid

dissector”. This example further confirms the effectiveness

of our approach in accurately localizing security patches.

D. Effects of Different Prompt Tuning Designs (RQ2)

In this subsection, we aim to explore the impact of different

prompt-tuning design choices on the effectiveness of our ap-

proach, including different numbers of prompt-tuning channels,

different prompt-tuning methods, different prompt templates,

different answer words, and different PLMs.

1) The Effect of Dual Prompt Tuning Channel: The key idea

of PromVPat is to adopt the dual prompt tuning channel and

stimulate PLMs’ ability to capture deep semantic features

between vulnerability descriptions and code commits. To

explore the effect of the dual prompt tuning channel, we

compare PromVPat with its three variants: (1) PromVPat-
mess only considers the prompt tuning in the message channel.

(2) PromVPat-code only adopts the prompt tuning method in

the code change channel. (3) PromVPat-single does not use

dual prompt channels but directly stitches the vulnerability de-

scription and code commit together to calculate the association

probabilities.

Table IV presents the results. PromVPat outperforms all its

variants across four metrics. Specifically, for Recall@1, the

improvements achieved by PromVPat range from 2.58% to

16.67%. These results suggest that the dual prompt tuning

channel positively impacts the extraction of deep semantic

features. Moreover, the performance improvement of PromVPat

over PromVPat-mess in Recall is less than the improvement

over PromVPat-code. One possible reason is that capturing the

semantics between vulnerability descriptions and code changes

is more difficult. Besides, the performance of PromVPat-single

is worse than the other three models, indicating the importance

of the dual prompt tuning channel.

2) The Effect of Different Prompt Tuning Methods: As we

introduced in section II-A, there are two types of prompt

tuning methods: hard and soft prompt. To study the impact

of different prompt tuning methods, we compare PromVPat

with three variants: (1) PromVPat-hh adopts the hard prompt

tuning method in both channels. (2) PromVPat-hs utilizes the

hard prompt tuning method in the code change channel and

the soft prompt tuning method in the commit message channel.

(3) PromVPat-sh employs the soft prompt tuning method in

the code change channel and the hard prompt tuning method in

the other channel. We conduct experiments with fixed answer

words and PLMs.

The results of our comparisons are presented in Table V.

We find that the prompt tuning methods would impact the

model performance. Compared with hard prompt tuning, soft

prompt tuning performs better. Our approach can locate the

most patches when both channels use the soft prompt tuning.
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TABLE III
PERFORMANCE COMPARISONS OF OUR APPROACH WITH OTHER BASELINES.

VCMatch Dataset SAP DatasetModel\Dataset Recall@1 NDCG@1 Recall@5 NDCG@5 Recall@1 NDCG@1 Recall@5 NDCG@5
XGBoost 74.24% 31.72% 78.03% 32.74% 17.52% 13.33% 39.43% 30.14%
LightGBM 76.51% 32.69% 78.79% 33.29% 19.30% 14.22% 40.13% 33.35%
PATCHSCOUT 75.76% 32.36% 78.79% 33.18% 19.12% 21.57% 41.99% 34.17%
VCMatch 75.76% 32.36% 81.81% 34.95% 19.71% 22.21% 43.62% 35.73%
VulCurator 78.79% 37.54% 79.55% 26.52% 21.37% 27.45% 56.21% 44.92%
PromVPat 90.15% 38.51% 91.67% 38.92% 39.87% 34.95% 66.01% 45.92%
Improvement 14.42% 0.97% 12.05% 11.36% 86.57% 27.32% 17.43% 2.23%

TABLE IV
EVALUATION RESULTS OF THE EFFECT OF DUAL PROMPT TUNING CHANNEL.

MetricsMethod R@1 N@1 R@5 N@5
PromVPat-mess 87.88% 37.54% 88.64% 37.74%
PromVPat-code 82.58% 35.28% 83.33% 35.40%
PromVPat-single 77.27% 33.01% 81.06% 34.03%
PromVPat 90.15% 38.51% 91.67% 38.92%

TABLE V
EVALUATION RESULTS OF DIFFERENT PROMPT TUNING METHODS.

MetricsTuning
Method Recall@1 NDCG@1 Recall@5 NDCG@5

PromVPat-hh 85.61% 36.57% 87.12% 36.90%
PromVPat-hs 86.36% 36.89% 89.39% 37.71%
PromVPat-sh 87.88% 37.54% 89.39% 37.95%
PromVPat 90.15% 38.51% 91.67% 38.92%

This may be because hard prompt tuning falls short in providing

valuable guidance for PLMs. Hence, we choose both channels’

soft prompt tuning methods to stimulate the PLMs’ ability.

3) The Effect of Different Prompt Templates: Inspired by

previous works [24], [42], the initial words of the prompt

template are crucial for soft prompt tuning. We design four

templates for each channel to investigate the effect of different

prompt template words, shown in Table VI.

TABLE VI
EVALUATION RESULTS OF DIFFERENT PROMPT TEMPLATES.

MetricsChannel
Type Prompt Templates R@1 N@1

[x1] means [x3]? Is it correct? [z]. 88.64% 37.86%
Code: [x3] fix [x1]? Is it correct [z]. 84.85% 36.24%
Code: [x3] CVE: [x1] Relevant [z] 87.12% 37.22%

Code
Change
Channel

CVE [x1] is fixed by code [x3] [z] 90.15% 38.51%
[x1] means [x4]? Is it correct? [z]. 90.15% 38.51%
Message [x4] describe [x1] Is it correct? [z] 84.85% 36.25%
CVE: [x1] Message: [x4] Relevant [z] 84.09% 35.92%

Commit
Message
Channel

CVE [x1] is described by message [x4] [z] 86.36% 36.89%

The experimental results are shown in Table VI. We can

observe that the choice of prompt templates significantly

impacts our approach’s effectiveness. Specifically, when we

select the template “The CVE [x1] is fixed by the code [x3]
[z].” and “[x1] means [x4]? Is it correct? [z].” as the prompt

for the code change and commit message channel, PromVPat

achieves the best performance in all metrics. It indicates that

each channel should focus on different semantic aspects of

the code change and commit message, highlighting the deep

semantic correlation between input texts. Consequently, it is

necessary to design different prompt templates for two channels.

The choice of prompt words plays a pivotal role in steering

the response of language models. While two words may be

synonymous, the contexts in which they are typically used

can vary. We can enhance interactions’ robustness, depth,

and breadth with language models by employing different

but synonymous prompt words, ensuring more accurate and

contextually relevant outputs.

4) The Effect of Different Answer Words: In addition to

the prompt template words, different answer words may also

impact the performance of PromVPat. To explore the effect

of different answer words, we maintain a consistent prompt

tuning method, adopt the same template words, and select

task-relevant answer words for the verbalizers.

TABLE VII
EVALUATION RESULTS OF DIFFERENT PROMPT VERBALIZERS.

MetricsChannel
Type Prompt Verbalizer Recall@1 NDCG@1

+: “yes”, -: “no” 89.39% 38.19%
+: “true”, -: “false” 90.15% 38.51%

Code
Change
Channel +: “relevant”, -: “irrelevant” 88.64% 37.86%

+: “yes”, -: “no” 90.15% 38.51%
+: “true”, -: “false” 87,88% 37.54%

Commit
Message
Channel +: “relevant”, -: “irrelevant” 88.64% 37.86%

As demonstrated in Table VII, when we utilize the answer

words “true” and “false” to fill the answer slot [z] of the code

change channel and the answer words “yes” and “no” in the

commit message channel, the metrics are superior to those

obtained using other answer words. These results validate that

selecting appropriate answer words can help capture the deep

semantic correlations between the vulnerability description and

code commits.

5) The Effect of Different PLMs: In PromVPat, we adopt

the CodeT5 [16] to encode the input text. To explore the

adaptability and performance of our approach with other PLMs,

we integrated PromVPat with two other prominent PLMs:

CodeBERT [17] and GPT2 [43]. To this end, we design two

variants, PromVPat-CodeBERT and PromVPat-GPT2. These

two models use CodeBERT and GPT2 to encode the input text.

Our empirical evaluations, presented in Table VIII, reveal that

when applied to PromVPat, PromVPat achieves superior results,

outperforming its counterparts using PromVPat-CodeBERT and
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PromVPat-GPT2 by an impressive margin of over 1.51 points

in Recall@1. The reasons can be attributed to several key

factors. (1) CodeT5 is trained on a larger and more diverse

dataset than CodeBERT, which is more advantageous than

CodeBERT. (2) GPT2 adopts unsupervised learning, which has

not been specifically optimized for classification tasks, and

may be less effective. (3) There is a fundamental architectural

difference between GPT2 and CodeT5. GPT2 adopts the

only-decoder architecture, while CodeT5 adopts the encoder-

decoder architecture, which performs better in generating

representations of [soft] tokens and contributes to its superior

performance in capturing deep semantic correlations.

TABLE VIII
EVALUATION RESULTS OF DIFFERENT PLMS.

MetricsPLM Type Recall@1 NDCG@1
PromVPat-CodeBERT 88.64% 37.86%
PromVPat 90.15% 38.51%
PromVPat-GPT2 84.09% 35.92%

E. The Effect of Handcrafted Features (RQ3)
As shown in Table I, our approach extracts 26 handcrafted

features categorized into two groups. To measure the contri-

bution of each group of handcrafted features, we compare

PromVPat with two variants that only consider one type of

handcrafted features.

TABLE IX
EVALUATION RESULTS OF DIFFERENT HANDCRAFTED FEATURES.

MetricsFeature Types R@1 N@1 R@5 N@5
Without Identifier 81.81% 34.95 % 84.09% 35.52%
Without Location 89.39% 38.19 % 90.15% 38.31%

PromVPat 90.15% 38.51% 91.67% 38.92%

Table IX demonstrates the effect of different categories

of handcrafted features. Each category significantly boosts

the performance of our approach. The vulnerability identifier

features contribute the most. This is likely because this type

of feature is unique to a vulnerability and can most directly

establish the explicit relationship between a vulnerability and

its security patches.

F. Effectiveness in Data Scarcity Scenarios (RQ4)
To study how well prompt tuning can handle data scarcity

scenarios, we establish two data scarcity scenarios: (1) cross-
language low-resource scenario, where we train on the C/C++

programming language and evaluate on PHP language. (2)

cross-project low-resource scenario, where the model is

trained on a limited number of datasets from various projects

and then tested on the target projects. Following previous

research [29], we first simulate a low-resource setting by

randomly selecting 1, 4, 8, and 16 vulnerabilities per project

with C/C++ or the project to create four training datasets (also

referred to as 1, 4, 8, and 16 shots). We then compare the

performance of prompt tuning with the fine-tuning method in

these two scenarios.

1) Performance in the Cross-Language Low-Resource Sce-
nario: Table X presents the Recall@1 achieved by both

tuning methods across five training datasets. Our approach

performs better than the model using fine-tuning in low-

resource scenarios (i.e., 1, 4, 8, and 16 shots). On average,

prompt tuning exceeds fine-tuning by 4.98%, 7.41%, 10.00%,

and 4.65% across the four datasets in terms of Recall@1,

respectively. These results confirm that prompt tuning can

extract the knowledge of PLMs with minimal dataset training,

as it transforms the task into a language model format.

TABLE X
EVALUATION RESULTS IN THE CROSS-LANGUAGE LOW-RESOURCE

SCENARIO.

Different ShotsMethod 1 Shot 4 Shots 8 Shots 16 Shots
Fine-Tuning 48.78% 49.39% 48.78% 52.44%

Prompt-Tuning 51.21% 53.05% 53.66% 54.88%

2) Performance in the Cross-Project Low-Resource Scenario:
In certain projects, the amount of available training data is often

limited. For example, in the VCMatch dataset, the OpenSSL

project [52] only contains 92 vulnerabilities with publicly

available security patches. To evaluate the performance of our

approach under the cross-project low-resource setting, we train

on 1-shot, 4-shot, 8-shot, and 16-shot settings, then evaluate the

test set used in IV-C. Table XI shows the Recall@1 achieved

by both PromVPat and the fine-tuning method. Prompt tuning

achieves better performance than fine-tuning in all few-shot

settings. Specifically, prompt tuning outperforms the fine-tuning

method by 0.97%, 0.97%, 1.02%, and 8.73% across the four

few-shot settings. Besides, we also observe that the performance

improvement does not increase but rather decreases as the

number of training shots increases. These results demonstrate

that prompt tuning is more advantageous than fine-tuning when

dealing with limited training data.

TABLE XI
EVALUATION RESULTS IN THE CROSS-PROJECT LOW-RESOURCE SCENARIO.

Different ShotsMethod 1 Shot 4 Shots 8 Shots 16 Shots
Fine-Tuning 78.03% 78.03% 77.27% 78.03%

Prompt-Tuning 78.79% 78.79% 78.03% 84.84%

V. DISCUSSION

A. Handcrafted Features

VCMatch [20] and PatchScout [3] employ four feature

groups: vulnerability identifier, vulnerability location, vulnera-

bility type, and vulnerability descriptive texts to locate security

patches. As shown in Table III, our approach outperforms

VCMatch and PatchScout. To evaluate the impact of the four

groups of handcrafted features, we design one variant named

PromVPat-af that incorporates four types of vulnerability

features and compare it with PromVPat. As indicated in

Table XII, PromVPat performs better. We believe this is because

the other two characteristics may lead to model overfitting. Our
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dual prompt tuning channel can more precisely capture the

semantic correlation between vulnerability descriptions and

code commits. TABLE XII
EVALUATION RESULTS OF DIFFERENT HANDCRAFTED FEATURES.

MetricsApproach Recall@1 NDCG@1 Recall@5 NDCG@5
PromVPat-af 87.88% 37.54% 90.91% 38.27%
PromVPat 90.15% 38.51% 91.67% 38.92%

B. Other Auxiliary Information
Besides vulnerability descriptions and code commits, some

studies incorporate auxiliary information, such as issue report

contents, to strengthen the correlations between vulnerabilities

and their patches [12], [13]. However, our datasets do not

include issue report information, so we did not factor in

issue reports when reproducing VulCurator. We investigated

to determine the number of existing CVE records that contain

issue report links by searching for related keywords like

“issue” and “bug”. Following the methodology of a previous

study [53], we collected CVE records from 2002 to 2022

from the CVEdetail website [54]. Our findings reveal that only

19.61% of CVE records contain issue report links. This result

represents the maximum possible coverage, as this method

may include incorrect or incomplete links. This suggests that

auxiliary information can only encompass a small portion of

CVE records.

C. Time Efficiency
Table XIII outlines the time costs of PromVPat on the

VCMatch dataset during two stages: model training and

patch localization. It indicates that PromVPat necessitates

approximately 3.1 hours for one epoch of training on the

VCMatch dataset. Given that the training is typically conducted

offline, we think that the time required is reasonable. On

average, PromVPat takes less than 9.77 seconds to identify one

patch from 1,000 code commits, suggesting that PromVPat’s

efficiency is adequate for real-world applications.
TABLE XIII

TIME COSTS OF PROMVPAT ON VCMATCH DATASET.

Approach Training Location
PromVPat 3.1 hours/epoch 9.77 seconds/1k

D. Threats to Validity
1) Internal Validity: Internal validity threats pertain to

potential issues with our study’s execution. One such threat

is the potential bias in the experiment results due to the

limited number of datasets used. To address this, we conducted

experiments using two datasets spanning three programming

languages: C/C++, PHP, and Java. We plan to incorporate more

datasets in future evaluations of our approach. Another validity

threat is our inability to perform extensive hyper-parameter

optimizations on our model due to hardware constraints, a

common issue in deep learning model work. We have mitigated

this threat by following the hyper-parameter values used in

previous work [29]. Furthermore, we have ensured that the

experimental setups of baselines are reasonable and align

closely with their descriptions in the replication package.

2) External Validity: External validity threats relate to

potential issues with the generalizability of our approach. One

such threat is that we adopt CodeT5 [16] as the encoder to

learn input representations, instead of other PLMs. However,

existing experiments and results (refer to Section IV-D5) have

validated the superiority and universality of our approach.

Additionally, our approach uses manually designed template

words as initialization to represent the [soft] token in the

prompt tuning process. We mitigate this threat by creating

four templates for each channel and comparing them. The

experimental results (refer to Section IV-D3) demonstrate

that our approach excels in locating security patches. Future

research should concentrate on automatically selecting suitable

initial words from a large corpus to enhance the generalizability

of our approach.

VI. RELATED WORK

A. Security Patches Localization

Numerous studies have explored the localization of se-

curity patches [3], [8], [55], [56]. Early research primarily

concentrated on identifying security patches [8], [55]. Xu

et al. [56] employed the regular expression to identify the

security patch. Wang et al. [8] mined additional code change

features and assembled five traditional classification algorithms

for patch identification. Several studies also attempted to

leverage the correlations between vulnerability descriptions

and code commits [3]. For example, PATCHSCOUT [3] used

RankNet [47] to locate the security patch based on various

handcrafted features between vulnerability descriptions and

code commits. As PLMs in NLP have evolved, researchers

have attempted to use PLMs to identify security patches and

establish the correlation between the vulnerability description

and the commit [4], [13], [20]. For instance, Zhou et al. [4]

employed CodeBERT [17] to extract semantic representation

from code changes and identify silent security patches. Nguyen

et al. [13] introduced a security patch location tool that uses

the BERT-based model [17] to encode the commit message,

code changes, and issue reports, and generates the probability

that the commit is the security patch. Wang et al. [20]

used CodeBERT [17] to capture the semantic correlations

of the vulnerability descriptions and commit messages, and

combined the probabilities of three traditional classifiers to

locate the security patch. Unlike these models, our approach

employs the prompt tuning method to maximize the potential

of existing PLMs in capturing deep semantic features between

vulnerabilities and commits. Moreover, our proposed approach

can deliver superior performance in scenarios with scarce data.

B. Prompt Tuning in Software Engineering

Prompt tuning has gained significant popularity in recent

years, driven by the advent of large PLMs. The software

engineering community has conducted extensive explorations

of prompt tuning [26], [29], [57]–[61]. For example, Wang

et al. [29] evaluated prompt tuning experimentally on Code-

BERT [17] and CodeT5 [16] in three code intelligence tasks:

defect prediction, code summarization, and code translation.
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The results demonstrated that prompt tuning surpasses fine-

tuning in these tasks. Le et al. [57] employed prompt tuning to

identify keywords and parameters in log messages. Huang

et al. [58] created a dynamic prompt generator to extract

API entities and relations using a PLM. Liu et al. [60]

developed a prompt-based input generation and tuning method

to automatically generate GUI testing text based on the

GUI page’s text and view hierarchy file. In our work, we

introduce a dual prompt tuning approach to enhance the

generalization ability of text and code matching models and

improve the performance of locating security patches for

disclosed vulnerabilities, particularly in situations with limited

training data. To our knowledge, this is the first initiative in

this direction.

VII. CONCLUSION AND FUTURE WORK

This paper introduces PromVPat, a novel approach to localiz-

ing security patches for disclosed OSS vulnerabilities. The key

idea of PromVPat involves using a dual prompt tuning channel

to extract semantic features between vulnerability descriptions

and code commits. Besides, PromVPat employs 26 handcrafted

features and an attention mechanism to fuse the semantic and

handcrafted features, capturing their correlation. Evaluations

of two datasets demonstrate that PromVPat outperforms all

existing methods, particularly in situations with limited data.

In future work, we plan to extend the application of the dual

prompt tuning channel to other tasks that require two inputs

or are faced with data scarcity scenarios.
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