
Sustainability Forecasting for Deep Learning
Packages

Junxiao Han∗, Yunkun Wang†, Zhongxin Liu‡, Lingfeng Bao‡, Jiakun Liu§, David Lo§, Shuiguang Deng†
∗School of Computer & Computing Science, Hangzhou City University, Hangzhou, China
†College of Computer Science and Technology, Zhejiang University, Hangzhou, China

‡The State Key Laboratory of Blockchain and Data Security, Zhejiang University, Hangzhou, China
§School of Computing and Information Systems, Singapore Management University, Singapore, Singapore

hanjx@hzcu.edu.cn, {wangykun, liu zx, lingfengbao}@zju.edu.cn, {jkliu, davidlo}@smu.edu.sg, dengsg@zju.edu.cn

Abstract—Deep Learning (DL) technologies have been widely
adopted to tackle various tasks. In this process, through software
dependencies, a multi-layer DL supply chain (SC) is formed,
with DL frameworks acting as the root, DL packages acting as
the bridge nodes, and downstream DL projects acting as the
periphery. However, most Open Source Software (OSS) projects
may fail. Considering the crucial position of DL packages in the
DL SC, to foster the sustainable development of DL SCs and DL
packages, we aim to forecast the long-term sustainability of DL
packages. Here, sustained activity is adopted as the main proxy
of sustainability, and the sustainability status is classified as “sus-
tainable” or “dormant”. Relatedly, a DL package is considered
as “sustainable” if it has sustained activity in its last 12 months.
Otherwise, it is deemed as “dormant”. To this end, we propose
an approach that begins with obtaining longitudinal features for
each DL package in each month. Then, we develop a model
to forecast the sustainability of DL packages by incorporating
the longitudinal features, which can aptly predict sustainability
with an accuracy of up to 0.81. Subsequently, an interpretable
module is developed to interpret the determinants (i.e., important
features) that impact the sustainability of DL packages. Finally,
we generate sustainability trajectories for each DL package to
better understand the monthly changes of their sustainability
status. Our findings uncover that for most DL packages, fewer
but more centralized developers and a balanced collaboration
are more likely to help sustain the DL packages. Furthermore,
although some DL packages are sustainable, their sustainability
trajectories present statistically decreasing trends over time.
Based on the findings, we shed light on the dynamic sustainability
of DL packages, highlight future research directions, and provide
practical suggestions to DL package maintainers, developers,
users, and software engineering researchers.

Index Terms—Deep Learning Packages, Sustainability, Predic-
tion Model

I. INTRODUCTION

Deep learning (DL) has achieved tremendous success in

many cutting-edge domains in the past decade. In this regard,

a wide variety of DL frameworks, packages, and projects

emerged to deal with various tasks [27], such as image

recognition [16], [67], natural language processing [24], au-

tonomous driving [33], [56], crime prediction [68], [31], and

source code mining [28], [14], [13].

The explosion of DL technologies is inseparable from DL

frameworks. Simultaneously, due to the diverse needs when us-

ing DL frameworks, numerous DL enthusiasts have produced

Junxiao Han and Jiakun Liu are both corresponding authors.

Fig. 1. An example of efficientnet [3] in GitHub, a DL package with
many dependent packages and projects that has no longer been developed or
maintained for a prolonged time.

comprehensive packages that offer specific functionalities

based on these DL frameworks, either directly or transitively.

These DL packages can further serve as crucial nodes, acting

as bridges to attract downstream projects. Gradually, a DL

supply chain (SC) is formed, starting from a DL framework,

branching out into DL packages that serve as bridge nodes,

and ultimately expanding to a plethora of downstream projects

as the periphery [54].

Rich anecdotal evidence indicates a widespread adoption

and usage of DL packages [19]. However, over 80% of Open

Source Software (OSS) projects tend to be abandoned over

time [50]. Due to the wide adoption and critical position of

DL packages in DL SCs, once they are abandoned without

development and maintenance activities, it will pose a huge

threat to the sustainable development of downstream DL

packages and projects that depend on these DL packages. This

issue is exemplified by the case of efficientnet [3] in

Figure 1, a DL package with relatively high popularity (i.e.,

more than 2,000 stars). 21 packages and 1,639 repositories

depend on it. It has no longer been developed or maintained

for a prolonged time, resulting in many open issues waiting

for resolution, which could hinder the healthy and sustainable

development of downstream DL packages and projects.

Furthermore, an open issue from project keras-applications
on 06 July 2021 asks, ‘Will keras applications keep updating?’

They state, ‘It is truly useful, but it was last updated a

year ago.’ This issue further highlights the importance of

understanding and predicting the sustainability of DL pack-

981

2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/24/$31.00 ©2024 IEEE
DOI 10.1109/SANER60148.2024.00106

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

An
al

ys
is,

 E
vo

lu
tio

n
an

d
Re

en
gi

ne
er

in
g

(S
AN

ER
) |

 9
79

-8
-3

50
3-

30
66

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SA

N
ER

60
14

8.
20

24
.0

01
06

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

ages. If there is a tool that can predict the sustainability of

DL packages, participants can check the sustainability status

at any point, and maintainers can intervene and adjust the

sustainability when needed. Therefore, this motivates us to

understand and predict the sustainability of DL packages early

on. In this regard, since the definition of sustainability is

multifaceted [59], [62], we thus adopted sustained activity as

the proxy of project sustainability, following previous work

[12], [59], [62] (detailed in Section II).

Prior research studied the dependency and evolution of DL

libraries and projects [29], [19], [57], [54], [20]. These studies

have primarily focused on investigating the update behaviors,

library usage, and evolution of DL libraries [29], [19], [57],

as well as the structure and application domains of packages

and projects in DL SCs [54], [20]. However, no prior work

has investigated to forecast the sustainability of DL packages.

To address this gap and foster the sustainable development

of DL SCs and DL packages, in this paper, we start by

constructing a DL package SC, which consists of 262 DL

packages. Subsequently, we construct technical (code-related)

networks for each DL package in each month. This effort

is to investigate the potential for effectively predicting the

sustainability of DL packages by leveraging temporal traces.

This forms the first research question:

RQ1: How effectively can we predict the sustainability of DL
packages based on temporal traces?

To achieve this, we construct temporal technical networks

for each DL package and train LSTM models to perform the

prediction task. Our findings indicate that the best predictive

performance was observed at 33 months, with accuracy, pre-

cision, recall, and F1-score values of 0.81, 0.79, 0.81, and

0.80, respectively. However, DL models, such as LSTMs,

are black-box and lack of interpretability. This makes it

challenging for users to identify which features have the most

significant impact on sustainability. To better explain it, we

further develop an interpretable model. Hence, we have the

next research question:

RQ2: What are the determinants of sustainability?
Subsequently, we implement a global interpretable model to

interpret the predicted outcome of the trained LSTM model,

and identify the determinants (i.e., features of vital importance)

that impact sustainability. Consequently, we find that for most

DL packages, fewer but more centralized developers and a

balanced collaboration of contributions are more likely to

foster sustainable development. Instead, simply a large number

of developers and commits are likely to be detrimental to

sustainability. Furthermore, with our interpretable results, can

we better understand why sustainability changes over time for

DL packages? To gain a more profound understanding of this

question, we come to the final research question:

RQ3: What are the trajectories of sustainability for DL
packages?

In the final research question, we derive trajectories of sus-

tainability changes for each DL package. We further perform

in-depth case studies to explain critical turning points with the

aid of our interpretable results. Results indicate that although

some DL packages are sustainable, their sustainability trajec-

tories exhibit statistically decreasing trends over time. This

warns that maintainers and developers of these DL packages

should pay more attention and perform timely interventions to

reverse this status.

This paper makes the following contributions:

• We present a novel longitudinal dataset comprising devel-

opment traces of hundreds of DL packages, accompanied

by the labeled sustainability status. This dataset is publicly

available at https://github.com/greenlight2000/DL Package

Sustainability.

• By incorporating technical network and project features, we

propose a model that can aptly predict the future sustained

activity of DL packages.

• We interpret the prediction output of the model, and mine

the determinants impacting sustainability for DL packages.

• We depict the trajectories of sustainability changes for each

DL package, and conduct in-depth case studies to investigate

the events that happened during critical turning points.

The remainder of this paper is organized as follows. Section

II introduces the background and related work of our study.

Section III introduces the approach conducted in this paper,

and Section IV presents the dataset. Section V reports the

findings for each of the four research questions, and Section

VI discusses the implications. Section VII discusses threats

to the validity of our study, and Section VIII concludes this

paper and presents future work.

II. BACKGROUND AND RELATED WORK

A. Definition of DL Package SC

As defined in Tan et al.’s study [54], the DL SC is defined

as a directed graph G = 〈Vfrom, Vto, E〉, with the root project

being a DL framework such as TensorFlow or PyTorch. Here,

Vfrom represents a set of downstream projects, Vto is a set of

upstream projects imported by focal projects (i.e., the current

project), and E ⊆ Vfrom × Vto is a set of directed edges

reflecting import relationships. In their study, they constructed

two DL SCs for TensorFlow and PyTorch, separately, and

studied the structure of the two DL SCs. Moreover, they also

studied the domain distribution of packages and projects in

the two DL SCs. Gao et al. [20] constructed two hierarchical

DL package SCs for TensorFlow and PyTorch, separately, and

explored the domains, clusters, and disengagement reasons of

DL packages in their constructed DL package SCs. However,

they only uncovered the disengagement reasons for some DL

packages. They did not explore the dynamic sustainability of

DL packages, not to mention the determinants of sustainability,

as well as the trajectories of sustainability changes for DL

packages, which are studied in our paper.

B. Project Success and Sustainability

Although there is no unified definition of success [22], a

considerable body of literature has focused on the investigation

of project success. Ghapanchi et al. [23] conducted a literature

survey to explore various areas of OSS success and provided

a measurement taxonomy consisting of six success areas for

982

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

OSS projects. Midha et al. [45] proposed two measures of

project success, including market success (defined as the level

of interest shown by project consumers) and technical success

(defined as the effort expended by project developers), and

investigated which factors can affect the success of projects

over time. Joblin et al. [38] selected 32 OSS projects to

investigate how socio-technical factors are associated with

project success, and identified key features that have a sig-

nificant impact on project success. Piggott et al. [49] applied

machine learning techniques to develop a model capable of

accurately determining the developmental stage of a software

project. Coelho et al. [18] investigated the reasons why OSS

projects fail, and uncovered the discriminative maintenance

practices between failed and successful projects. Avelino et

al. [12] applied a mixed-method approach to understand the

abandonment of a project by its core developers, and the

survival of popular OSS projects.

Although project success is similar to sustainability, they

still have discrepancies. Sustainability somewhat reflects the

dynamic status of OSS projects, while success represents a

static status [63]. Nevertheless, there are only a few studies

that have investigated project sustainability. Valiev et al. [59]

studied the sustained activity of projects in the PyPI ecosys-

tem, and found that the relative position in the ecosystem

plays a vital role in the sustainability of projects. Xiao et

al. [62] investigated the relationship between early participa-

tion factors and long-term project sustainability, and found

that the steady attention and commitment of core developers

positively affect future sustained activity. Yin et al. [63]

incorporated social-technical networks to forecast the real-

time sustainability of Apache Software Foundation Incubator

(ASFI) projects, and applied the LIME model to identify the

determinants of sustainability. Their study is most relevant

to ours. However, their study is limited to ASFI projects.

Additionally, they adopted social-technical networks to form

predictive features, and emails were adopted as their social

traces. However, emails cannot be obtained for DL packages

in GitHub. Since technical (code-based) activities are major

activities in OSS projects [64], and can be easily obtained; we

thus constructed technical networks with project features to

predict the long-term sustainability of DL packages. Besides,

they only generated and analyzed trajectories of sustainability

changes for three projects, while we generated trajectories for

all DL packages in our dataset.

Furthermore, several studies explored the health of OSS

projects and ecosystems. For instance, Xia et al. [61] applied

recent data to predict multiple health indicators of open-

source projects. Liao et al. [41] proposed health indicators

and analyzed the healthy development trend of the GitHub

ecosystem. In summary, development activity has always been

adopted as a proxy for OSS success, sustainability, and health.

However, as Nyman et al. [47] stated, sustainability refers to

the capacity of OSS projects to continue serving the needs

of their developers and users, whereas success and health

are measured at a specific moment. Therefore, in this paper,

we adopted sustained activity as the main proxy of project

Fig. 2. The overview of our approach.

sustainability, following previous work [12], [59], [62].

C. Research on SE for DL

A surge of recent work has focused on SE for DL [21]

based on the data collected from GitHub, Stack Overflow,

interviews, and surveys. Most of the research in this area

revolves around DL bugs. Thung et al. [55] studied a sample

set of bugs in machine learning systems, along with their

corresponding fixes. Zhang et al. [66] investigated the root

causes and symptoms of program bugs that existed in DL

projects that depend on TensorFlow. Islam et al. [34], [35], Jia

et al. [37] and Chen et al. [15] explored the characteristics,

root causes, effects, anti-patterns, and fixing patterns of bugs

in representative DL frameworks. Additionally, Humbatova et

al. [32] generated a comprehensive taxonomy of real faults

in DL systems, and Zhang et al. [65] mined bugs associated

with DL jobs. Furthermore, there are also several studies

focused on the dependency evolution of DL frameworks. Han

et al. [29] explored the application domains, update behaviors,

and distribution of dependency versions for DL projects that

depend on DL frameworks. Dilhara et al. [19] examined

the usage and update of DL frameworks in DL projects,

while Tidjon et al. [57] studied the usage of DL library

combinations, and the distribution of DL library dependencies

across different ML workflows.

III. APPROACH

In this section, we first introduce the construction of our

DL package SC. Then, we introduce the longitudinal features

we obtained. After that, we describe how LSTM is trained

and employed to predict long-term sustainability based on

the longitudinal features. Ultimately, we describe how the

SHAP [42] model is performed to explain the correlation

between longitudinal features and the prediction outcome

(i.e., sustainability status). The overview of our approach is

illustrated in Figure 2.

A. DL Package SC Construction

In this paper, we leverage the DL packages published in

Tan et al.’s study [54] to construct our DL package SC. Tan

et al. [54] have constructed two DL SCs for TensorFlow

and PyTorch, separately. However, by manual observation, too

many packages belong to both SCs in their study. Therefore,

we adopted the SC construction algorithm introduced in their

983

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE AGGREGATE OF ALL FEATURES BELONGS TO THE TWO GROUPS.

Group Feature Name Description
active_devs The count of developers who actively engage in making commits or participating in issue discussions on a

monthly basis
Project code_activities The count of source code commits in the focal package on a monthly basis

Features num_files The number of source code files created in each month
c_percentage The percentage of commit activities performed by the active developers in each month
inactive_c The sum of the time intervals of the top 3 longest interruptions between successive commits in each month
c_nodes The number of nodes in each technical network in each month
c_edges The number of edges in each technical network in each month

Technical c_mean_degree The average degree of nodes in each technical network in each month
Features c_long_tail The degree of the 75th percentile of nodes in each technical network in each month

c_c_coef The ratio of connected triplets among the total number of triplets in each technical network in each month

study to construct a unified DL package SC to reduce redun-

dancy. Notably, the two constructed DL SCs in Tan et al.’s

study [54] only start with one root project of TensorFlow or

PyTorch, while our unified DL package SC starts with two

root projects of TensorFlow and PyTorch. After that, we find

packages that import TensorFlow or PyTorch as the next layer

of our DL package SC and point to TensorFlow or PyTorch,

respectively. For packages that import both TensorFlow and

PyTorch, it points to both TensorFlow and PyTorch. This

process is repeated until no new packages exist.

B. Longitudinal Features/Metrics of Interest
In this section, we present the features we have chosen and

the sustainability label.
Technical Features: Technical (code-related) activities are

major activities in OSS projects [64], Stănciulescu et al. [52]

identified that code-related variables may be associated with

project sustainability. Therefore, in this paper, we include

commits to source code files as technical activities to extract

features. Moreover, network view is always applied to study

the dynamics of OSS projects [38]; we thus construct a tech-

nical network for each package in each month. Specifically, if

developer D1 and D2 both committed to the same source code

file(s) F in a month, we derived an undirected edge between

them. In this way, we can generate a dynamic technical

network for each package in each month.
Subsequently, we extract the technical network-related fea-

tures, which are always extracted in network analysis [63],

[58]. These include the number of nodes c_nodes and

edges c_edges in each technical network. Furthermore, we

determine the mean degree c_mean_degree by dividing the

sum of degrees of all nodes by the total number of nodes. Ad-

ditionally, we compute the c_long_tail, which represents

the degree of the 75th percentile of nodes in the network. The

clustering coefficient c_c_coef is also calculated, which is

determined by dividing the number of connected triplets by

the total number of triplets in the monthly technical network.
Project Features: Besides, project features are also widely

adopted in prior studies for modeling OSS project sustain-

ability [59], [63], [62]. We thus select the following project

features that are suitable for our problem, based on prior

studies. The feature active_devs denotes the count of

developers who actively engage in making commits or par-

ticipating in issue discussions on a monthly basis, the feature

code_activities is the count of source code commits

in the focal package, the feature num_files indicates the

number of source code files created in each month. Simul-

taneously, we also obtained the feature c_percentage,

which is the percentage of commit activities performed by

the active developers, and inactive_c, which is determined

by dividing the sum of the top 3 longest intervals between

successive commits by the interval between the first and last

commit in each month.
Consequently, to make the presentation of all features clear,

we integrate them into Table I. Notably, the two groups of

features are all longitudinal.
Sustainability Label: Following previous studies [59], [62],

we consider a DL package as “sustainable” if it has sustained

activity in its last 12 months prior to its most recent commit.

That is, its average commit per month in the 12 months prior

to its most recent commit is greater than one. Otherwise, it can

be regarded as “dormant”. In this regard, 192 DL packages are

labeled as “sustainable”, and 70 DL packages are labeled as

“dormant” (as detailed in Section IV). We further define the

sustainability status as a binary variable, with 0 = dormant
and 1 = sustainable.

C. Model Setup
Given the gathered longitudinal features, our next task is to

train a model that can effectively predict the sustainability of

DL packages. This problem is essentially a binary classifica-

tion task. In this study, we employ an LSTM-based recurrent

neural network [26], where the inputs are the longitudinal

features and the outputs are the sustainability status, as illus-

trated in Figure 3. The rationale for selecting LSTM is that:

1) LSTM is particularly suitable for sequential data, and is

less sensitive to gradient disappearance and explosion issues

during training on long sequences [63], 2) LSTM outperforms

all other baseline machine learning models (e.g., XGBoost,

Random Forest, and Logistic Regression) in our dataset in

terms of the evaluation metrics (as detailed in Section V-A).
Implementation Details: To obtain sequential data as input

for each DL package, we aggregated longitudinal records into

monthly data, spanning from the creation date to the point

of becoming sustainable or dormant. Notably, to avoid data

leakage, the longitudinal features in the 12 months used for

labeling are not included in our dataset. Since longitudinal

features have different magnitudes and many of them do

984

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

σ σ tanh σ

×

+×

×

tanh

X0

σ σ tanh σ

×

+×

×

tanh

X1

σ σ tanh σ

×

+×

×

tanh

XT-1

...
cT-1

hT-1

c0

h0

month 1month 2 month T

D
en

se L
ay

er

Given the evolution history, is the DL package sustainable or not?

Fig. 3. Demonstration of the prediction process based on LSTM.

not conform to normal distributions, we thus performed the

MinMaxScaler function to standardize all predictive features.

We then implemented a 1-layer LSTM model with 64 neurons,

and applied drop-out [51] with the drop rate set to 0.3.

Additionally, we utilized a dense layer that employed the

softmax function, which yielded the prediction outcome for the

classification task (sustainable/dormant). During the training

process, we adopted a binary cross-entropy as the loss func-

tion, and used Adam as the optimizer. For each hyperparameter

of timestep, denoted as n, monthly data was truncated to match

the current timestep when their duration time (i.e., the lifespan

of DL packages) exceeded it. Then, this truncated data was

input into the model. For instance, as depicted in Figure 3,

when the timestep is set to T , our monthly data is truncated,

retaining data only up to the first T -th month, and subsequently

fed into the model. By training multiple LSTM models with

varying timestep values (in months), our approach can predict

the sustainability of DL packages with diverse lifespans.

Followed by prior studies [63], [38], we randomly divided

the studied packages into training and testing sets, with an

80%-20% ratio. Consequently, we obtained predicted sustain-

ability outcomes for each DL package in each month, and thus

obtained the predicted sustainability trajectories for each DL

package. Repeating the above process five times, we derived

the final result with their error bounds.

Notably, we pick a simple LSTM model in this paper. One

might try other models, which we leave to future work. Our

goal is to show that a simple time-series classification model

is sufficient to get good prediction results.

Evaluation Metrics: To assess the effectiveness of the LSTM

models in forecasting sustainability, we employed commonly

adopted metrics in SE tasks, i.e., the Accuracy, Precision,

Recall, and F1-score.

D. SHAP-based Interpretable Model

DL models, such as LSTMs, have gained vital attention

due to their impressive predictive accuracy. However, they are

black-box and lack of interpretability, making them less ideal

for decision-making tasks. To better explain model decisions,

we adopt an interpretable model [36] to explain the output

of DL models. Model-agnostic explanation methods, such

as SHapley Additive exPlanations (SHAP) [42], is a global

interpretable model that treats the DL model as a black-box,

and attempts to approximate the relationship between the input

sample and the output prediction. It leverages a game-theory-

based approach to compute shap values for each feature. Shap

values represent the contribution of each input feature toward

explaining the predicted outcome. Larger shap values indicate

a more significant contribution of input features, while smaller

shap values indicate a more minor contribution.

Implementation Details: Specifically, we first constructed an

explainer using the DeepExplainer function from the Python

SHAP package. The SHAP package was designed to explain

the output of any machine learning model [42]. By using the

shap values function, and passing a test set x test, we can

obtain the interpretable scores shap values of the explainer on

the test set. Notably, the returned shap values is an interpreta-

tion matrix M ; an entry M [n, i, j, k] indicates the probability

offset towards the direction of label n to the predicted result,

which is contributed by feature k in project i at month j.
Project-Specific vs. Project-Overall: We employed SHAP

results in two levels: project-specific level and project-overall

level. In the former, we leveraged SHAP to compute monthly

shap values for each feature, and aggregated them over all

months for each DL package to form a project-specific distri-

bution. Conversely, in the latter, we aggregated project-specific

shap values over all packages. Thus, we obtained the shap

values for each feature over all packages.

IV. DATASET

Applying the method for constructing DL package SC

discussed in Section III-A, we collected 1,033 packages in

our DL package SC. Notably, the goal of Tan et al.’s study

[54] is to construct two DL SCs as large as possible. However,

our goal is to predict long-term sustainability and understand

the determinants of sustainability for each package in the

DL SC. Therefore, to safeguard the quality of our dataset,

we performed a filtering process. Specifically, we removed

packages if they had less than or equal to 2 contributors, less

than 15 issues (i.e., the median number of issues in the DL

package SC), or an age shorter than 2 years. The rationale

is to eliminate personal projects [39], inactive projects [32]

and ensure that the filtered packages have traceable records

from a set of contributors [60]. Besides, since TensorFlow

and PyTorch are widely adopted and popular enough [30],

[34], we also removed them from further analysis. Finally,

262 DL packages remained for later analysis. Among them,

90 packages only depend on TensorFlow, 82 only depend on

PyTorch, and 90 depend on both TensorFlow and PyTorch.

Besides, 192 packages are labeled as “sustainable”, and 70

are labeled as “dormant”.

Subsequently, we proceed to obtain SC-related attributes for

each DL package based on the constructed DL package SC as

well as some other attributes of DL packages. The rationale

for obtaining SC-related attributes and other attributes is to aid

in comprehending why certain longitudinal features exhibit

inconsistent effects across different DL packages, which is

discussed in Section V-B. Here, layer tf and layer torch
are the number of layers of each DL package in the DL

SC. upstream project and downstream project are the count

of upstream packages imported by the focal package, and

the number of packages dependent on the focal package.

Additionally, we calculate the up mutual contributors and

985

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Performance metrics of the LSTM models across various timesteps
(in months), with the standard errors depicted in the shadow area. The orange
line indicates the best accuracy of 0.81 achieved at 33 months.

down mutual contributors, which are the number of contribu-

tors who contribute to both the focal package and its upstream

packages, and the number of contributors who contribute to

both the focal package and its downstream packages. Further-

more, we compute the number of dormant upstream dependen-

cies upstream dormant for each DL package, and compute the

sustainability rate of both upstream and downstream packages

for the focal package sc sus rate. The sustainability rate is

determined by dividing the number of sustainable upstream

and downstream packages by the total number of packages

in the upstream and downstream. Ultimately, we derived SC-

related attributes for each DL package. Then, we further

obtained more attributes of DL packages via GitHub API,

including the number of stars, contributors, commits, issues,

sizes, etc.

V. RESULTS

Here, we present the results of our RQs.

A. RQ1: How effectively can we predict the sustainability of
DL packages based on temporal traces?

We evaluate the predictive performance of our model across

various timestep values. We also conduct a comparative

analysis between our model and several baseline machine

learning models to demonstrate the competitiveness of LSTM

in addressing this problem.

1) Experimental Performance: Figure 4 presents the per-

formance curves of the LSTM models over various timestep

values. It unveils that the LSTM models demonstrate promis-

ing predictive performance during months 25 to 34, and reach

its peak at 33 months, with an accuracy equal to 0.81, i.e.,

81% of the DL packages can be correctly classified; with

a precision equal to 0.79, i.e., for every five DL packages

classified as sustainable, about four are correctly classified,

and one is wrongly classified as dormant. Besides, it has a

recall of 0.81 and an F1-score of 0.8. These findings suggest

that the LSTM models can aptly predict the future sustained

activity of DL packages.

To investigate why predictive performances are relatively

promising during months 25 to 34, we further investigated the

distribution of duration time for DL packages, as illustrated

in Figure 5. Our findings indicate that most DL packages

have duration time ranging from 27 to 36 months, with some

surviving for more than 60 months and some surviving for

Fig. 5. The distribution of duration time (in months) of DL packages.

less than 15 months. Therefore, the insufficient data below 27

and above 36 months results in a decrease in the predictive

performance of the LSTM models, which is in line with the

duration time of DL packages.

TABLE II
EFFECTIVENESS OF OUR APPROACH AND BASELINE METHODS.

Approach Accuracy Precision Recall F1-score
NB 0.42 0.74 0.42 0.41

KNN 0.70 0.61 0.70 0.64
XGBoost 0.68 0.64 0.68 0.65

RF 0.70 0.60 0.70 0.64
LR 0.73 0.64 0.73 0.65

MLP 0.74 0.57 0.74 0.63
LSTM (avg) 0.75 0.65 0.75 0.69
LSTM (best) 0.81 0.79 0.81 0.80

2) Comparison with Baselines: To demonstrate the compet-

itiveness of LSTM on this problem, we compare our model

with a range of baseline methods. These baseline methods

include Naive Bayes (NB), K-Nearest Neighbors (KNN),

XGBoost, Random Forest (RF), Logistic Regression (LR), and

MultiLayer Perceptron (MLP), which are popular models with

widespread use in software engineering [53], [48], [62]. As

shown in Table II, our model outperforms all other baseline

models across various evaluation metrics. Notably, as our

LSTM models involve various timestep values, we additionally

presented LSTM (avg), which signifies the average perfor-

mance of our LSTM models with diverse timestep values. This

also serves to demonstrate the robustness of our approach.

Moreover, LSTM (best) represents the best performance

achieved as described in Section V-A1. In this regard, we

observe that, in most cases, both LSTM (avg) and LSTM
(best) exhibit better performance than the baseline methods,

confirming the efficacy and robustness of our approach.

Our LSTM models can effectively predict the future sus-

tained activity of DL packages, and achieve an accuracy

of up to 0.81 at month 33.

B. RQ2: What are the determinants of sustainability?

Here, we leverage the SHAP model to interpret the outcome

of the LSTM models, with the purpose of demonstrating the

contribution of each feature towards the predicted sustain-

ability by generating monthly shap values for each feature.

Take the sustainable DL package Jax [9], as an example,

986

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The shap values of all features from a sustainable project named
“Jax”. The shap values are aggregated over all months, showing the overall
contribution of each feature at the project-specific level.

we illustrate how we interpret the output at the project-

specific level, as depicted in Figure 6. It is worth noting

that the shap values are aggregated over all months, and the

median values provide a comprehensive understanding of each

feature’s relative importance in sustainability prediction for

each DL package.

Specifically, we observe that the number of active de-

velopers active_devs and the number of commits

code_activities are negatively correlated with the sus-

tainability of package Jax. This finding appears to be contrary

to conventional knowledge. A potential explanation for this

finding may be that an excessive number of active developers

or commits each month may lead to code fragmentation, and

increase the complexity of code and interpersonal relation-

ships, which negatively affects the sustainability of the DL

package. Another possible explanation may be that although

the number of active developers and commits are high each

month, the package may still be under-resourced regarding

code development, bug maintenance, and other aspects. For

instance, although there are many active developers and com-

mits each month, we still observe a significant number of ac-

cumulated bugs [6] in this package, which further corroborates

our conjecture.

However, the percentage of commits performed by active

developers c_percentage and the clustering coefficients

c_c_coef in technical networks are positively correlated

with the sustainability of the package. This suggests that a

focused effort by a core group of developers, along with the

collaborations of contributors, can positively sustain the DL

package. This finding is in line with the above findings, which

indicate that DL packages with fewer but more centralized

developers and a balanced collaboration of their contributions

are more likely to become self-sustainable. Instead, just a large

number of developers and commits may be detrimental to the

sustainability of DL packages.

Subsequently, we obtained the signs of shap values over all

months across all DL packages to determine the consistency of

Fig. 7. The overall impact of all features across all DL packages, where blue
indicates a negative impact and orange indicates a positive impact.

a feature’s contribution. That is, whether a feature is positive to

the sustainability across all DL packages, or it is only positive

to the sustainability of several packages, while negative to

most other packages. As a result, we derived the aggregated

signs of shap values of all features across all DL packages, as

depicted in Figure 7. Here, orange indicates a positive effect,

and blue indicates a negative effect.

Results uncover that these features present inconsistent

effects across various DL packages. For instance, the per-

centages of commit activities performed by active developers

c_percentage, and the ratio of the top 3 longest intervals

between successive commits inactive_c, show positive

correlations with the sustainability of 74% and 73% of DL

packages, respectively. This implies that, in most DL packages,

the focused efforts of a core group of developers can promote

the sustainable growth of DL packages. Meanwhile, by our

manual observation, the value of inactive_c is relatively

small for most sustainable DL packages, and this feature

presents a positive effect on the sustainability of most DL

packages. However, the value of inactive_c is relatively

large in some dormant DL packages, which in turn, negatively

affects the sustainability of minor DL packages.

To better comprehend why certain features exhibit incon-

sistent effects across different DL packages, for each feature,

we compare the distribution of attributes between DL packages

where the feature has a positive effect and packages where the

feature has a negative effect. The attributes include duration

time, package sizes, and SC-related attributes (as described in

Section IV). Then, we select several features as examples to

depict the corresponding boxplots, which is shown in Figure

8. We further perform the Wilcoxon rank-sum test [44] to

investigate if there exist statistically significant differences

between the two groups, and use Cliff’s delta [17] to examine

the effect sizes.

Figure 8(a) reveals that the duration time of DL pack-

ages where the feature active_devs has a positive ef-

fect is longer than that of DL packages where the feature

active_devs has a negative effect. Moreover, the statistical

test shows that the difference is statistically significant, with

a small effect size. As for the feature c_percentage in

Figure 8(b), we find that DL packages where the feature has a

positive effect are larger in size than those where the feature

987

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

(a) active dev (b) c percentage (c) c c coef

Fig. 8. Comparison of Duration time (a), Sizes (b), and number of downstream projects (c) for DL packages where the features display positive/negative
effects.

(a) c mean degree (b) c percentage (c) num files

Fig. 9. The overall absolute shap values of three sample features, which are the mean degree in technical networks (a), the percentage of commits conducted
by active developers (b), and the number of code files (c).

has a negative effect. And the statistical test result indicates

that the difference is statistically significant, with a medium

effect size. Furthermore, Figure 8(c) illustrates that the feature

c_c_coef has a positive effect on DL packages with more

downstream projects, while displaying a negative effect on

DL packages with fewer downstream projects. Simultaneously,

the statistical test indicates that the difference is statistically

significant, and the effect size is negligible. These results imply

that although a specific feature has inconsistent effects across

different DL packages, for DL packages where the feature

has a positive effect and DL packages where the feature has

a negative effect, there are statistically significant differences

between them on some attributes.

Notably, we only establish correlations between predictive

features and package attributes here, rather than providing

causalities. Therefore, we recommend future researchers to

further investigate the causal relationships between package

attributes and the inconsistent effects of predictive features.

As SHAP can interpret LSTM models for each month,

we thus can check the dynamics of shap values over time

for each feature. Taking the features of c_mean_degree,

c_percentage, and num_files as examples, we illustrate

their effect trajectories in Figure 9. The results uncover that the

effects of c_mean_degree and c_percentage become

increasingly important before 28 months, after which their

importance decreases. Nevertheless, these two features present

a more vital effect during months 25 to 30. However, the

effect of num_files differs from the other two features.

Its importance remains relatively vital throughout the entire

duration time, and becomes more important in the second half

of the duration time. These phenomena may be explained by

the changes in sizes, contributors, and other factors during

the evolution of DL packages. Before the 28 months, DL

packages may grow fast, leading to a gradual increase in the

effects of many features. After that, the sizes or the number

of contributors in DL packages may reach saturation; DL

packages may become relatively stable, making the effects of

features begins to decrease.

Interpretable results reveal that c_percentage and

c_c_coef are positively correlated with the sustain-

ability of most DL packages, while active_devs and

code_activities are negatively correlated with the

sustainability of most DL packages. In this regard, for

these DL packages, fewer but more centralized developers

and a balanced collaboration of the contributions are

more likely to foster the sustainable development. Instead,

simply a large number of developers and commits are

prone to be detrimental to sustainability.

C. RQ3: What are the trajectories of sustainability for DL
packages?

To have a deeper understanding of the changes of sus-

tainability for DL packages over time, we generated sus-

tainability trajectories for each DL package, and made it

publicly available at https://github.com/greenlight2000/DL

Package Sustainability. Then, we applied the Mann-Kendall

test [43], [40], [25] to effectively assess if there is a monotonic

upward or downward trend of the sustainability trajectories for

each DL package over time. Notably, a monotonic upward or

downward trend means that the variable consistently increases

or decreases over time, but the trajectories may or may not be

linear.

Consequently, we find that 6% of sustainable DL packages

(e.g., edx-enterprise [2] and innvestigate [8]) present statis-

tically decreasing trends over time, 63% of sustainable DL

packages (e.g., dace [1] and neural-tangents [10]) present

statistically increasing trends over time, and the other sus-

tainable DL packages (e.g., GPflow [7] and f2format [5])

988

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

(a) GPflow (b) edx-enterprise (c) nucleus
Fig. 10. Sustainability changes of DL packages with different types of trajectories. GPflow is sustainable, with statistically no trend, although it presents
a decreasing trajectory in the second half of duration time; edx-enterprise is sustainable, while presents a statistically significant decreasing trajectory; and
nucleus is dormant, and presents a statistically significant decreasing trajectory.

show no trend. As for dormant DL packages, 34% of them

(e.g., encodermap [4] and nucleus [11]) show statistically

decreasing trends over time, while 10% of them show sta-

tistically increasing trends, and the others exist no trend.

By generating sustainability trajectories for each DL package

and assessing their upward/downward trend, we can provide

effective guidance for developers and users, to ensure that they

select the suitable DL packages.

After that, we further take 3 representative DL packages

(2 sustainable and 1 dormant) as examples to display their

sustainability trajectories in Figure 10, and discuss the critical

turning points with the aid of our interpretable model. As

a result, we find that the sustainability trajectory of GPflow
in Figure 10(a) exhibits an overall increasing trend during

the first 10 months, keeps high sustainability for a prolonged

period, but experiences fluctuations and declines after the 40th

month. Combined with interpretable results, the increasing

trend during the first 10 months may be due to the increasing

number of active developers in this package and the frequent

commits contributed by developers. After that, the develop-

ment process becomes stable with a relatively high and stable

number of active developers. However, its sustainability comes

to fluctuations and declines after the 40th month. This may be

due to the distinct decreasing number of active developers and

their contributions, while the fluctuations may be due to the

big releases during this period.

Regarding the sustainability trajectory of edx-enterprise in

Figure 10(b), it displays a significant downturn at months 26

to 38, while experiencing a surprising upturn after month 41.

Combined with interpretable results, the significant downturn

may be due to the rapid reduction of active developers and

their contributions, where the number of active developers

decreases from a dozen or so to only 0 to 6 during this

period. There are also very few development activities such

as code commits. After the 41th month, the number of active

developers comes to increase, along with an increase of

development activities, making a surprising upturn afterward.

As for the sustainability trajectory of nucleus in Figure

10(c), it experiences fluctuations in the first half of duration

time, while coming to dormant in the second half of duration

time. By incorporating the interpretable results, we observe

that the number of active developers and their code contri-

butions is relatively low during the first half of the duration

time. Meanwhile, the time intervals between successive code

commits are also very long. When it comes to the second half

of the duration time, some core developers left, and only 0

or 1 active developers remain. Meanwhile, there are hardly

any development activities happening anymore, making the

package dormant.

Although some DL packages are sustainable, their sustain-

ability trajectories present statistically decreasing trends

over time, with approximately 6% of sustainable DL

packages demonstrating such a trend. Meanwhile, it is

worth noting that some DL packages, even if they have

been dormant for a certain period, can still have the

potential to return to be sustainable.

VI. IMPLICATIONS

Automated sustainability prediction tool: Results in RQ1 re-

veal that our constructed LSTM models can effectively predict

the sustainability of DL packages. Therefore, we recommend

practitioners to make use of it. We also recommend researchers

to incorporate as many DL packages as possible, and develop

automatic tools to forecast and monitor the sustainability of

as many DL packages as possible. Hence, they can help DL

package maintainers, developers, and users comprehend the

dynamic status of various DL packages, which, in turn, foster

the sustainable development of DL packages. Moreover, re-

searchers can extend the automatic tools to other domains, e.g.,

the packages in the PyPI ecosystem, to foster the sustainable

development of Python programming communities.

Balance of quantity and collaboration: Our summary of

findings in RQ2 reveals that these package maintainers and

developers should be aware of that, in contrast to conventional

knowledge, simply improving the number of developers and

commits may not always benefit the sustainability of DL

packages. When there is an excessive number of developers

and their commit contributions, it is likely to be detrimental

to sustainability. Therefore, these package maintainers and

developers should encourage collaboration among a core group

of developers and strive to maintain a balance between the

quantity and the collaboration of developers in DL packages.

Discussing features objectively and specifically: Addition-

ally, findings illustrated in Figure 7 of RQ2 also reveal that a

particular feature exhibits inconsistent effects across different

DL packages. However, DL packages where a certain feature

has positive effects and those where a certain feature has

negative effects may show significant differences in some

specific attributes. For instance, the feature c_c_coef dis-

989

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

plays a positive effect on DL packages with more downstream

projects, while exhibiting a negative effect on DL packages

with fewer downstream projects. Therefore, package maintain-

ers and developers should recognize that there is no universally

applicable approach to ensure sustainability based on the

given features. Especially, they should apply our interpretable

module to generate specific shap values for these features in

their DL packages, and then, in accordance with the specific

shap values and the specific attributes of their DL packages to

comprehend the effect of these features on their DL packages.

In this way, they can foster the long-term sustainability of

their DL packages, and provide more solid dependencies for

downstream packages and projects.

DL packages monitoring and selecting: Results in RQ3

furnished us with the sustainability trajectories of all DL

packages in our dataset. Findings indicate that approximately

6% of the sustainable DL packages present statistically sig-

nificant decreasing trends over time. This serves as a warning

to DL package maintainers that, although DL packages are

sustainable in a certain period, their sustainability trajectory

may decline, and eventually become dormant in the near

future. Therefore, we recommend that DL package maintainers

leverage the dynamic sustainability forecast in RQ3, and

closely monitor the points of downturn in their packages. In

this way, they can react proactively and foster the long-term

sustainability of their DL packages.

Simultaneously, as we have derived the sustainability tra-

jectories for DL packages, developers and users can employ

the trends of these sustainability trajectories in conjunction

with other metrics (e.g., the stars of a given DL package) to

inform a better assessment of which DL packages to choose.

Besides, given that some DL packages have already been

dormant, or shown statistically significant decreasing trends

even though they are sustainable, developers and users must

be careful when depending on such DL packages. They should

conduct dependency replacement for this kind of DL package

if necessary [46].

VII. THREATS TO VALIDITY

Construct validity. The construct threat relates to the label

of sustainability for DL packages. In this paper, our label of

sustainability for DL packages is based on extant literature

[59], [62]. A prior study [59] indicates that a repository can

be considered as “dormant” if its average commit per month in

the 12 months prior to its most recent commit is less than one.

Otherwise, it can be considered as “sustainable”. Similarly,

another study [62] adopted sustained activity as the main proxy

of project sustainability. They also applied commit activity

to represent the long-term sustained activity. Therefore, to

alleviate this threat, we adopted the proxy of sustainability in

Xiao et al.’s [62] study and defined “sustainable”/“dormant”

status according to the definition in Valiev et al.’s [59] study.

In this way, we can ensure a relatively long-term dynamics of

the definition.

Internal validity. The first threat pertains to the construction

of our DL package SC. Previous studies [54], [20] have

independently constructed two hierarchical DL SCs for Ten-

sorFlow and PyTorch. However, they aimed to construct DL

SCs as large as possible by incorporating as many dependent

packages and projects as possible. In this regard, there are

many redundant DL packages and projects that belong to

both SCs. To mitigate the redundancy threat and ensure the

quality of our dataset, we incorporate DL packages that

depend on Tensorflow and PyTorch to construct a unified

DL package SC according to their dependencies. Another

threat concerns the selection of longitudinal features. Due to

limitations in data accessibility through the GitHub API, we

do not include social-related features in our study, since email

communications cannot be obtained via GitHub API. However,

since technical (code-based) activities are major activities in

OSS projects [64], which lowers the risk to a certain degree.

External validity. A crucial external threat involves the

generalizability of our findings. The constructed DL package

SC in this paper is based on the dataset published in [54].

To ensure the quality of our dataset, we have further filtered

out some DL packages that may be personal projects or

survive for a short time. Hence, our findings may not be

applicable to all DL packages. Besides, since we focus on

the sustainability of DL packages, thus, the findings may

not generalize to packages in other domains. Regarding this,

incorporating additional packages from diverse domains may

ameliorate this risk.

VIII. CONCLUSION AND FUTURE WORK

This paper reports a study focusing on forecasting the long-

term sustainability of DL packages. We conduct our study

on 262 DL packages and train LSTM models to forecast the

long-term sustainability of DL packages (RQ1), interpret and

find the determinants of sustainability (RQ2), and generate

trajectories of sustainability for each DL package (RQ3). Our

results uncover that our LSTM models can effectively predict

the sustainability of DL packages. Moreover, fewer but more

centralized developers and a balanced collaboration are more

likely to help sustain the DL packages. Furthermore, although

some DL packages are sustainable, their sustainability trajec-

tories show statistically significant decreasing trends over time.

In the future, we seek to investigate the effectiveness of our

model, extend our analysis to more DL packages, and enhance

the generalizability of the findings to a broader spectrum of

OSS packages in various domains.

ACKNOWLEDGMENT

This research is supported by Zhejiang Provincial Natural

Science Foundation of China (No. LQ24F020019), Scientific

research project of Zhejiang Provincial Education Department

(No. Y202351453 and No. FX2023067), National Science

Foundation of China (No.U20A20173 and No.62372398), and

the Ministry of Education, Singapore under its Academic

Research Fund Tier 3 (Award ID: MOET32020-0004). Any

opinions, findings and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not

reflect the views of the Ministry of Education, Singapore.

990

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “dace.” [Online]. Available: https://github.com/spcl/dace
[2] “edx-enterprise.” [Online]. Available: https://github.com/openedx/

edx-enterprise
[3] “efficientnet.” [Online]. Available: https://github.com/qubvel/efficientnet
[4] “encodermap.” [Online]. Available: https://github.com/AG-Peter/

encodermap
[5] “f2format.” [Online]. Available: https://github.com/pybpc/f2format
[6] “google/jax/issues.” [Online]. Available: https://github.com/google/jax/

issues
[7] “Gpflow.” [Online]. Available: https://github.com/GPflow/GPflow
[8] “innvestigate.” [Online]. Available: https://github.com/albermax/

innvestigate
[9] “Jax.” [Online]. Available: https://github.com/google/jax

[10] “neural-tangents.” [Online]. Available: https://github.com/google/
neural-tangents

[11] “nucleus.” [Online]. Available: https://github.com/google/nucleus
[12] G. Avelino, E. Constantinou, M. T. Valente, and A. Serebrenik, “On

the abandonment and survival of open source projects: An empirical
investigation,” in 2019 ACM/IEEE International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM). IEEE, 2019, pp.
1–12.

[13] N. D. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning for
code retrieval and summarization via semantic-preserving transforma-
tions,” in Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2021, pp. 511–
521.

[14] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964–974.

[15] J. Chen, Y. Liang, Q. Shen, J. Jiang, and S. Li, “Toward understanding
deep learning framework bugs,” ACM Transactions on Software Engi-
neering and Methodology, 2022.

[16] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmentation,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 1290–1299.

[17] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[18] J. Coelho and M. T. Valente, “Why modern open source projects fail,” in
Proceedings of the 2017 11th Joint meeting on foundations of software
engineering, 2017, pp. 186–196.

[19] M. Dilhara, A. Ketkar, and D. Dig, “Understanding software-2.0: A
study of machine learning library usage and evolution,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 30,
no. 4, pp. 1–42, 2021.

[20] K. Gao, R. He, B. Xie, and M. Zhou, “Characterizing deep learning
package supply chains in pypi: Domains, clusters, and disengagement,”
arXiv preprint arXiv:2306.16307, 2023.

[21] K. Gao, Z. Wang, A. Mockus, and M. Zhou, “On the variability
of software engineering needs for deep learning: Stages, trends, and
application types,” IEEE Transactions on Software Engineering, vol. 49,
no. 2, pp. 760–776, 2022.

[22] B. Gezici, N. Özdemir, N. Yılmaz, E. Coşkun, A. Tarhan, and O. Chou-
seinoglou, “Quality and success in open source software: a systematic
mapping,” in 2019 45th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 2019, pp. 363–370.

[23] A. H. Ghapanchi, A. Aurum, and G. Low, “A taxonomy for measuring
the success of open source software projects,” First Monday, 2011.

[24] M. Gheini, X. Ren, and J. May, “Cross-attention is all you need: Adapt-
ing pretrained transformers for machine translation,” arXiv preprint
arXiv:2104.08771, 2021.

[25] R. O. Gilbert, Statistical methods for environmental pollution monitor-
ing. John Wiley & Sons, 1987.

[26] A. Graves and A. Graves, “Long short-term memory,” Supervised
sequence labelling with recurrent neural networks, pp. 37–45, 2012.

[27] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 810–822.

[28] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing com-
mon c language errors by deep learning,” in Proceedings of the aaai
conference on artificial intelligence, vol. 31, no. 1, 2017.

[29] J. Han, S. Deng, D. Lo, C. Zhi, J. Yin, and X. Xia, “An empirical
study of the dependency networks of deep learning libraries,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2020, pp. 868–878.

[30] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do programmers
discuss about deep learning frameworks,” Empirical Software Engineer-
ing, vol. 25, pp. 2694–2747, 2020.

[31] C. Huang, J. Zhang, Y. Zheng, and N. V. Chawla, “Deepcrime: Attentive
hierarchical recurrent networks for crime prediction,” in Proceedings of
the 27th ACM international conference on information and knowledge
management, 2018, pp. 1423–1432.

[32] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning systems,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 1110–1121.

[33] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al., “An em-
pirical evaluation of deep learning on highway driving,” arXiv preprint
arXiv:1504.01716, 2015.

[34] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 510–
520.

[35] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep neural
networks: Fix patterns and challenges,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp.
1135–1146.

[36] J. V. Jeyakumar, J. Noor, Y.-H. Cheng, L. Garcia, and M. Srivastava,
“How can i explain this to you? an empirical study of deep neural net-
work explanation methods,” Advances in Neural Information Processing
Systems, vol. 33, pp. 4211–4222, 2020.

[37] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “The symptoms,
causes, and repairs of bugs inside a deep learning library,” Journal of
Systems and Software, vol. 177, p. 110935, 2021.

[38] M. Joblin and S. Apel, “How do successful and failed projects differ?
a socio-technical analysis,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 31, no. 4, pp. 1–24, 2022.

[39] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories, 2014,
pp. 92–101.

[40] M. G. Kendall, “Rank correlation methods.” 1948.
[41] Z. Liao, M. Yi, Y. Wang, S. Liu, H. Liu, Y. Zhang, and Y. Zhou, “Healthy

or not: A way to predict ecosystem health in github,” Symmetry, vol. 11,
no. 2, p. 144, 2019.

[42] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[43] H. B. Mann, “Nonparametric tests against trend,” Econometrica: Journal
of the econometric society, pp. 245–259, 1945.

[44] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[45] V. Midha and P. Palvia, “Factors affecting the success of open source
software,” Journal of Systems and Software, vol. 85, no. 4, pp. 895–905,
2012.

[46] C. Miller, C. Kästner, and B. Vasilescu, ““we feel like we’re winging
it:” a study on navigating open-source dependency abandonment.”

[47] L. Nyman and J. Lindman, “Code forking, governance, and sustainability
in open source software,” Technology Innovation Management Review,
vol. 3, no. 1, 2013.

[48] S. Pan, J. Zhou, F. R. Cogo, X. Xia, L. Bao, X. Hu, S. Li, and
A. E. Hassan, “Automated unearthing of dangerous issue reports,” in
Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2022, pp. 834–846.

[49] J. Piggott, “Open source software attributes as success indicators,” Univ.
of Twente, 2013.

[50] C. M. Schweik and R. C. English, Internet success: a study of open-
source software commons. MIT Press, 2012.

991

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[52] Stănciulescu, L. Yin, and V. Filkov, “Code, quality, and process metrics
in graduated and retired asfi projects,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 495–506.

[53] C. Stanik, L. Montgomery, D. Martens, D. Fucci, and W. Maalej,
“A simple nlp-based approach to support onboarding and retention in
open source communities,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 172–
182.

[54] X. Tan, K. Gao, M. Zhou, and L. Zhang, “An exploratory study of
deep learning supply chain,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 86–98.

[55] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs in
machine learning systems,” in 2012 IEEE 23rd International Symposium
on Software Reliability Engineering. IEEE, 2012, pp. 271–280.

[56] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303–
314.

[57] L. N. Tidjon, B. Rombaut, F. Khomh, A. E. Hassan et al., “An empirical
study of library usage and dependency in deep learning frameworks,”
arXiv preprint arXiv:2211.15733, 2022.

[58] A. Utture, S. Liu, C. G. Kalhauge, and J. Palsberg, “Striking a balance:
pruning false-positives from static call graphs,” in Proceedings of the
44th International Conference on Software Engineering, 2022, pp. 2043–
2055.

[59] M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-level determinants
of sustained activity in open-source projects: A case study of the pypi
ecosystem,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2018, pp. 644–655.
[60] Z. Wang, Y. Feng, Y. Wang, J. A. Jones, and D. Redmiles, “Unveiling

elite developers’ activities in open source projects,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 29, no. 3, pp.
1–35, 2020.

[61] T. Xia, W. Fu, R. Shu, R. Agrawal, and T. Menzies, “Predicting health in-
dicators for open source projects (using hyperparameter optimization),”
Empirical Software Engineering, vol. 27, no. 6, p. 122, 2022.

[62] W. Xiao, H. He, W. Xu, Y. Zhang, and M. Zhou, “How early participa-
tion determines long-term sustained activity in github projects?” arXiv
preprint arXiv:2308.06005, 2023.

[63] L. Yin, Z. Chen, Q. Xuan, and V. Filkov, “Sustainability forecasting
for apache incubator projects,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 1056–1067.

[64] Y. Yue, Y. Wang, and D. Redmiles, “Off to a good start: Dynamic
contribution patterns and technical success in an oss newcomer’s early
career,” IEEE Transactions on Software Engineering, vol. 49, no. 2, pp.
529–548, 2022.

[65] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An empir-
ical study on program failures of deep learning jobs,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 1159–1170.

[66] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT international symposium on software testing and analysis,
2018, pp. 129–140.

[67] Z. Zhang, H. Zheng, R. Hong, M. Xu, S. Yan, and M. Wang, “Deep color
consistent network for low-light image enhancement,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 1899–1908.

[68] F. Zhou, B. Zhou, S. Zhao, and G. Pan, “Deepoffense: a recurrent
network based approach for crime prediction,” CCF Transactions on
Pervasive Computing and Interaction, vol. 4, no. 3, pp. 240–251, 2022.

992

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:57:35 UTC from IEEE Xplore. Restrictions apply.

