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Abstract—Nowadays, vulnerabilities in open source software
(OSS) are constantly emerging, posing a great threat to ap-
plication security. Security patches are crucial in reducing the
risk of OSS vulnerabilities. However, many of the vulnerabilities
disclosed by CVE/NVD are not accompanied by security patches.
Previous research has shown that the auxiliary information
in CVE/NVD can aid in the matching of a vulnerability to
appropriate commits. The state-of-art research proposed a rank-
based approach based on the multiple dimensions of features
extracted from the auxiliary information in CVE/NVD. However,
this approach ignores the semantic features in the vulnerability
descriptions and commit messages, making the model still have
room for improvement.

In this paper, we propose a novel ranking-based approach VC-
MATCH (Vulnerability-Commit Match). In addition to extracting
the shallow statistical features between the vulnerability and the
patch commit, VCMATCH extracts the deep semantic features
of the vulnerability descriptions and commit messages. Besides,
VCMATCH applies three classification models (i.e., XGBoost,
LightGBM, CNN) and uses a voting-based rank fusion method to
combine the results of the three models to generate a better result.
We evaluate VCMATCH with 1,669 CVEs from 10 OSS projects.
The experiment results show that VCMATCH can effectively
identify security patches for OSS vulnerabilities in terms of
Recall@K and Manual Effort@K, and outperforms the state-of-art
model by a statistically significant margin.

Index Terms—Security Patches, Vulnerability Analysis, Mining
Software Repository

I. INTRODUCTION

Open source software (OSS) is widely adopted by many

applications in software industry1. But OSS vulnerabilities

pose a significant risk to software applications. For exam-

ple, WannaCry ransomware [1] spreads over the Internet

by exploiting the National Security Agency’s Eternal Blue

vulnerability, encrypting computer data on the host computer,

and demanding Bitcoin as a ransom. Furthermore, the number

of OSS vulnerabilities is continually increasing. According to

Georgios’ analysis [2], the National Institute of Standards and

Technology (NIST) 2 collected more than twice the vulnera-

bility data between 2009 and 2019 than it did between 1999

‡Corresponding author
1https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-

ossra-2021.pdf
2https://www.nist.gov/

and 2009. Common Vulnerabilities and Exposures (CVE)3 has

collected over 160,000 vulnerability data so far.

Security patches play an important role in OSS vulnerability

management. Firstly, developers can apply patches directly to

fix the appropriate vulnerabilities. Second, patches can assist

in estimating the impact of a vulnerability (e.g., discovering

the software components affected by it) and make a plan to

mitigate its risk in a timely manner. Third, developers can

analyze the characteristics of a vulnerability based on its patch

and learn how to remedy or prevent a similar issue. Addi-

tionally, vulnerability patches have been collected to facilitate

some research studies. such as vulnerability prediction [3]–

[5], vulnerability code clone detection [6], [7], vulnerability

testing [8], [9], etc. Therefore, the acquisition of security

patches is very important.

However, locating security patches (typically in the form

of code commits in a code repository) for a vulnerability is

still a challenge [10]. A large number of CVE/NVD entries

are also missing security patches. Furthermore, obtaining and

identifying patches for vulnerabilities manually is difficult.

Hogan et al. [11] reported that manual labeling is a high-skill,

time-consuming task and can still be error prone due to lack of

knowledge. As a result, it is essential to identify vulnerability

patches through an automatic approach.

The auxiliary information in the vulnerability description

and the commit message (e.g., CVE ID or bug ID) can be

used to automatically match vulnerabilities and patches in

code repositories [12]. However, we can only identify patches

for a small part of vulnerabilities since such information is

usually incomplete and the code repositories contain a large

number of code commits. Hence, some researchers propose a

machine learning based approach to assist developers in iden-

tifying patches for vulnerabilities. Tan et al. [10] proposed a

model for matching vulnerabilities and security patches named

PatchScout. They transformed the search problem of locating

security patches into a ranking problem on code commits.

PatchScout considers four categories of features between code

commits and vulnerabilities: vulnerability identifier, vulnera-

bility location, vulnerability type, and vulnerability descriptive

text. Then, they use the RankNet [13] model to rank code

3https://cve.mitre.org/
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commits. PatchScout can significantly reduce the cost of

manual labeling, but it simply extracts the characteristic of

the number of words in vulnerability descriptions and commit

messages, which lack semantic information contained in the

vulnerability description and commit message.

In this study, we propose a novel approach called VC-

MATCH (Vulnerability-Commit Match) to match vulnerabili-

ties and code commits. We follow the study of Tan et al. [10] to

rank the code commits based on the correlation between com-

mits and vulnerabilities. The rank position of security patches

represents the number of code commits that developers need

to manually check. VCMATCH combines handcrafted features

and deep textual features together to build prediction models.

For the handcrafted features, we extract more features to

capture correlations between vulnerabilities and code commits

in addition to the features used by PatchScout. For example,

we compute the time interval between code commit time and

CVE-ID assigned time since the time of the code commit for

a vulnerability is often close to the CVE-ID assigned time.

VCMATCH also extracts four dimensions of features including

LOC (line of codes) dimension, location dimension, identity

dimension, and token dimension. For deep textual features, we

utilize BERT [14], one of the state-of-art pre-trained models,

to extract semantic correlations between vulnerabilities and

code commits. Based on the combination of the handcrafted

features and deep textual features, we build three classification

models, i.e., XGBoost [15], LightGBM [16], and CNN [17].

These models have shown good performance on imbalanced

data as identifying the security patches for a vulnerability from

a large number of commits is an imbalanced data task. Finally,

VCMATCH uses a voting-based ranking fusion method based

on the idea of majority voting mechanism. It combines the

results of the three classifiers and make a final prediction.

We use 1,669 vulnerabilities in 10 projects to evaluate the

performance of VCMATCH. We also choose PatchScout and

several traditional classifiers as the baselines. The experiment

results show that VCMATCH can effectively identify security

patches for OSS vulnerabilities in terms of Recall@K and

Manual Effort@K. The Recall@1, Recall@10, and Manual
Effort@10 of VCMATCH are 88.86%, 97.06%, and 1.4997,

respectively. VCMATCH outperforms PatchScout by a sta-

tistically significant margin. Our paper makes the following

contributions:

1) We build a dataset containing 1,669 vulnerabilities and

their corresponding fixing commits from 10 popular OSS

projects.

2) We propose a vulnerability-commit matching model VC-

MATCH, which is based on the combination of the hand-

crafted features and deep textual features4. VCMATCH also

uses a voting-based rank model fusion approach to fuse three

classification models to achieve a better performance.

3) We evaluate VCMATCH on our built vulnerability-commit

matching dataset. The experiment results show that VC-

4We release the dataset and the source code of our approach in
https://figshare.com/s/0f3ed11f9348e2f3a9f8

Commit URLs
Function Name

File Path

Fig. 1. An Example CVE Entry

MATCH outperforms the state-of-art model PatchScout by

17.74%, 7.61%, and 0.979 in terms of Recall@1, Re-
call@10, and Manual Effort@10, respectively.

Paper organization. Section II introduces the basic concepts

related to vulnerabilities and the models used. Section III

describes our approach. Section IV presents our experiment

setup and results. Section V discusses the implications and

threats to validity of our work. Section VI presents related

work. Section VII concludes the paper and discusses the future

work.

II. BACKGROUND

In this section, we will introduce vulnerability-related con-

cepts and the background knowledge of pre-trained models

used in our model.

A. Vulnerability Concepts
Common Vulnerabilities & Exposures (CVE) is a docu-

mented vulnerability information list sponsored by the U.S.

Department of Homeland Security. Each CVE entry contains

vulnerability-related information, such as CVE-ID, vulnera-

bility description, vulnerability references, and created date

(see an example in Fig 1). The CVE-ID is the unique

identification of the vulnerability data assigned by the CVE

Numbering Authorities (CNAs). The vulnerability description

mentions the vulnerable software repository and the conse-

quences caused by the remote attacker. Sometimes the descrip-

tion also mentions function names, file names, and software

versions of the vulnerability, which plays an important role

in identifying vulnerability patches. Vulnerability references

provided by CNA allow the reader to understand better and

distinguish vulnerabilities. However, the list is not intended to

be complete. Record created date is the CVE-ID assigned to

the CNA or the CVE record posted in the CVE list.

National Vulnerability Database (NVD), launched by the

National Institute of Standards and Technology (NIST), pro-

vides enhanced information based on the CVE list, such as

severity scores, fix information, and CWE. CWE (Common

Weakness Enumeration) is a category system that identifies

vulnerability types with a CWE-ID and a CWE name.

Snyk Vulnerability Database is an open-source vulnerability

database launched by Snyk, a company that focuses on open

source security. It uses scanning programs to find open source

component vulnerabilities in applications. Its vulnerability

data has a wide range of sources, including existing NVD
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and CVE databases, monitoring possible vulnerabilities, pull

requests, and other information on Github. Among the 1,669

vulnerabilities used in the study, 112 vulnerabilities’ patches

are missing in NVD but identified by Snyk. Thus, we collect

vulnerability patches from Snyk in this study.

B. BERT
BERT (Bidirectional Encoder Representation from Trans-

formers) [14] has been an emerging natural language process-

ing model in the past few years. Google trained the BERT

model on English Wikipedia with the Mask Language Model

(MLM) and Next Sentence Prediction (NSP) multitasking and

achieved state of the art in 11 downstream natural language

processing tasks. The MLM training task enables the BERT

model to capture the deep semantics of words, while the

NSP training task and the main framework of the algorithm

- Transformer, allow the BERT model to more thoroughly

capture the bidirectional relationships in utterances and obtain

contextual semantics. So we use BERT model in our encoder

module to capture the the deep semantics of vulnerabilities

and code commits.

C. Prediction Models
We choose to use XGBoost, LightGBM and CNN as basic

models, as these models are more effective than traditional

machine learning models in software engineering studies [18]–

[20], even when the data set is imbalanced [21], [22].

XGBoost is one of the booster algorithms. Its principle is to

integrate many weak classifiers to generate a strong classifier

according to a particular method. The XGBoost algorithm

takes the residuals of the last prediction as the training target

for the next tree addition. According to this idea, the model

adds weak classifiers sequentially so that the final results are

closer to the ground truth values. Each added cart regression

tree fits the residuals of the last prediction and keeps split-

ting and growing according to the features. Eventually, each

training sample falls to the corresponding leaf node, and each

leaf node corresponds to a value. For a sample, the result of

the model prediction is the summation of the corresponding

values of that sample overall weak classifiers.

LightGBM also is one of the boosting algorithms. It differs

from the XGBoost algorithm in the following aspects. 1)

The LightGBM algorithm uses a histogram-based decision

tree algorithm, requiring fewer calculations than XGBoost,

which needs to calculate the feature gain for each feature

traversal. 2) The XGBoost algorithm uses a level-wise decision

tree growth strategy, while the LightGBM algorithm uses a

leaf-wise growth strategy with depth limitation. The latter

can reduce more deviation with the same number of splits

but produce deeper decision trees, thus overfitting. 3) The

LightGBM algorithm can screen out most of the slight gradient

samples according to the gradient of the massive learning

data, which can speed up the training speed while maintaining

accuracy. 4) The LightGBM algorithm for massive sparse data,

according to the conflict degree between data, merges the

features with a small conflict degree, changes the sparse matrix

into a dense matrix, and reduces the feature dimension.

CNN (Convolutional Neural Network) has a complex network

structure. Due to the non-linearity of the activation function,

neural networks can detect deeper relationships between train-

ing and prediction data. The neural network model generates

prediction information through forwarding propagation, ob-

tains the model error through the loss function, and updates the

network’s internal parameters through backward propagation,

improving the model performance.

III. APPROACH

In this section, we first introduce the overall framework

of VCMATCH. Then we describe the details of our proposed

model.

A. Overall Framework
Figure 2 shows the overall framework of our approach,

which consist of five phases: Data Collection, Data Preprocess-

ing, Handcrafted Feature Extraction, Deep Textual Features

Extraction, Voting Rank Fusion.

• Data Collection. In this phase, we collect code commits

from the code repositories, which are hosted in GitHub [23]

or GitLab [24]. We collect vulnerability information from

CVE/NVD and vulnerability-commit matching data from

Snyk.

• Data Preprocessing. In this phase, we pre-process the

collected data, such as tokenizing textual data, extracting

commit ID.

• Handcrafted Feature Extraction. In this phase, we extract

four dimensions of features that capture the correlations

for pairs of vulnerabilities and commits, including LOC,

identity, location, and token.

• Deep Textual Feature Extraction. In this phase, we use

BERT to convert the vulnerability descriptions and commit

messages into the encoding features, respectively.

• Voting Rank Fusion. In this phase, we build three classi-

fication models based on the handcrafted features and deep

textual features, and fuse the results of these models to get

a final result.

B. Data Collection
We select 10 popular OSS projects, including FFmpeg,

ImageMagick, Jenkins, OpenSSL, QEMU, Wireshark, Linux,

Moodle, PHP-src, and phpMyAdmin. These projects have

been widely studied in many previous studies of vulnerability

analysis [25], [26]. To get the commits of these projects,

we clone these code repositories from GitHub or GitLab.

Table I presents the programming language, the number of

CVE entries we collected, and the number of commits in the

code repository for each project.

Given a vulnerability, we collect its CVE-ID, textual de-

scription, and created date from CVE, and collect its CWE

name from NVD. We collect its vulnerability references from

the Snyk database. We only retain commit-related URLs

by determining whether each URL contains the “commit”

keyword or not. For the majority of cases, the reference URLs

contain the commit IDs. We use a regular expression to extract

commit IDs from links. However, there are a few cases in
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Fig. 2. The Overall Framework of VCMATCH

TABLE I
REPOSITORY DETAILS

Software Language # CVEs # Commits

Linux C/C++ 286 1,043,066
php-src C/C++ 153 126,066
phpMyAdmin PHP 95 122,501
FFmpeg C/C++ 215 103,814
Moodle PHP 119 102,068
QEMU C/C++ 141 90,309
Wireshark C/C++ 304 82,095
Jenkins Java 108 31,519
OpenSSL C/C++ 92 30,333
ImageMagick C/C++ 156 19,130

Total 1,669 1,750,901

which the commit IDs are hidden in the URLs. We extract the

commit IDs by inspecting the web pages manually.

C. Data Prepropressing
In this study, we only focus on the commits in the mas-

ter branch of a repository. Developers often create multiple

branches to manage workflows of different versions in a

project when using Git. For example, there are 31 branches

in the FFmpeg repository. The commits in a branch are often

applied to multiple branches. For example, developers can use

the git cherry-pick command to apply a code change to

another branch. Most vulnerability patches would be merged

into the master branch. Hence, we only search the vulnerability

patches in the master branch to save time and computing

resources. For the patches in other branches, as they usually

have the same code change and commit message, we can

identify them easily once we get the vulnerability patch in

the master branch.

Given a vulnerability, we first check whether its patches

we collected are on the master branch. We observe that

a vulnerability might have multiple patches with the same

content. So, we only keep the patch on the master branch.

If a vulnerability patch is not in the master branch, we try

to identify the corresponding patch on the master branch

manually. We search on GitHub/GitLab using the commit

message to get all the commits with the same commit message,

and identify the vulnerability patch on the master branch.

To utilize the textual information, we first pre-process

the textual data, including vulnerability descriptions, com-

mit messages, and CWE names, by tokenizing them and

removing stop words. Specifically, we use the open-source

tokenization method from the Google Cubert repository [27]

and the stopword package from the NLTK [28] library to

remove stop words. After that, we collect all tokens in the

commit messages and vulnerability descriptions and get the

token intersection between them. The token intersection is

considered “useful tokens”. In the later tokenization process,

we only keep the useful tokens, which helps to reduce the data

size and computation consumption. Other tokens that exist

only in vulnerability information or commit information are

considered useless and dropped.

D. Handcrafted Feature Extraction
In this section, we introduce the handcrafted features. Ta-

ble II shows the details of these features. In addition to the

features used by PatchScout [10], we extract extra features

(shown in bold text in the table). Finally, we extract four

dimensions of features to measure the correlation between the

input vulnerability and commits, i.e., LOC Dimension, Identity

Dimension, Location Dimension, and Token Dimension. Given

a pair of a vulnerability and its fixing commit, we extract the

following dimensions of features:
LOC Dimension. The vulnerability patches often modify

fewer lines of code in comparison to the commits that im-

plement a functional requirement [29]. So, we calculate the

number of lines of code (LOC) modified by a code commit,

including the LOC added, deleted, and modified in total.
Identity Dimension. Some vulnerability-fixing commits con-

tain the corresponding CVE-ID explicitly, such as the commit

in OpenSSL to fix CVE-2016-2107 [30]. Thus, we use a

regular expression (i.e., “CVE-[0-9]{4}-[0-9]{1, 8}”) to match

CVE-ID in the commit messages. Furthermore, a vulnerability

may be classified as a common bug and assigned a bug/issue

ID. We also extract bug ID and issue ID from the commit

messages using a regular expression. Additionally, developers

often add an URL of CVEs or bug reports in the commit
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TABLE II
HANDCRAFTED FEATURES

Dimension Feature Description

LOC Features
Code Added Num # of lines of code added in the commit.
Code Deleted Num # of lines of code deleted in the commit.
Code Modified Num # of lines of code modified in the commit.

Identity Features

CVE Num # of CVE IDs in commit message.
Bug Num # of bug IDs in commit message.
Issue Num # of issue IDs in commit message.
URL Num # of URLs in commit message.
CVE Match Whether the code commit mentions the software-specific CVE-ID in the NVD Page.
Bug Match Whether the code commit mentions the Bug-ID in the NVD Page.
Vulnerability Type Relevance The relevance of the vulnerability texts between NVD and commit.
Patch Likelihood The probability of a commit to be a security patch.

Location Features

Time Interval Time interval between code commit time and CVE-ID assigned time.
Same Filepath Num # of filepaths that exist in both code commit and vul description.
Same Filepath Ratio # of same filepaths / # of filepaths modified by the code commit.
Unrelated Filepath Num # of filepaths that exist in code commit but not mentioned in the vul description.
Same File Num # of files that exist in both code commit and vul description.
Same File Ratio # of same files / # of files modified by the code commit.
Unrelated File Num # of files that appear in code commit but not mentioned in the vul description.
Same Function Num # of functions that exist both in the commit diff and vul description.
Same Function Ratio # of same functions / # of functions modified by the code commit.
Unrelated Function Num # of functions that exist in commit diff but not mentioned in the vul description.

Token Features

Vul-CWE-Msg Same Num # of the same tokens between commit message and CWE name.
Vul-CWE-Msg Same Ratio Vul-CWE-Msg Same Num / # of CWE name tokens.
Vul-Commit Tfidf Similarity Cosine similarity of vulnerability tfidf and commit tfidf.
Shared-Vul-Msg-Word Num # of shared words between vul description and commit message.
Shared-Vul-Msg-Word Ratio # of Shared-Vul-Msg-Words / # of words in vul description.
Max of Shared-Vul-Msg-Word Frequency The max of the frequencies for all Shared-Vul-Msg-Words.
Sum of Shared-Vul-Msg-Word Frequency The sum of the frequencies for all Shared-Vul-Msg-Words.
Average of Shared-Vul-Msg-Word Frequency The average of the frequencies for all Shared-Vul-Msg-Words.
Variance of Shared-Vul-Msg-Word Frequency The variance of the frequencies for all Shared-Vul-Msg-Words.
Shared-Vul-Code-Word Num # of shared words between vul description and code diff.
Shared-Vul-Code-Word Ratio # of Shared-Vul-Code-Words / # of words in vul description.
Max of Shared-Vul-Code-Word Frequency The max of the frequencies for all Shared-Vul-Code-Words.
Sum of Shared-Vul-Code-Word Frequency The sum of the frequencies for all Shared-Vul-Code-Words.
Average of Shared-Vul-Code-Word Frequency The average of the frequencies for all Shared-Vul-Code-Words.
Variance of Shared-Vul-Code-Word Frequency The variance of the frequencies for all Shared-Vul-Code-Words.

messages. We extract URLs from the commit messages as

well.
Location Dimension. We use the following information of the

CVE entries to locate the corresponding code changes, i.e.,

the created time, the file name, file path and function name.

The time a vulnerability is disclosed by CVE does not always

match with the time a vulnerability-fixing commit is created in

the code repository. However, Tan et al. find that most record-

created dates are not too far away from the vulnerability patch

commit time [10]. Thus, we compute the time interval between

the time the code commit was created and the time the CVE-

ID was assigned. The vulnerability description may include

file names, file paths, and function names, as demonstrated in

Figure 1. The code commit essentially modified these files and

functions. Therefore, we extract the filenames, file paths, and

function names modified in the code commit and count times

they appear in the vulnerability description. The more times

it appears, the more likely it is that the commit is related to

the vulnerability.
Token Dimension. We extract token features from the vul-

nerability descriptions, CWE names, and commit messages to

measure the similarity between the vulnerability and the code

commit. Given the useful tokens in the vulnerability descrip-

tion and the commit message, we calculate the number of the

same tokens between them and the ratio of the number of

the same tokens to the number of the vulnerability description

tokens. We also extract these two features between the CWE

name and the commit message. In addition, we generate TF-

IDF vectors for vulnerability description and commit message,

respectively. TF-IDF is widely used in information retrieval

and data mining to mine important words. Then, we calculate

the cosine similarity between these two vectors, which might

indicate the similarity between the vulnerability and the code

commit.

E. Deep Textual Feature Extraction

Figure 3 presents the architecture of the encoder module

used by VCMATCH. We use BERT [14], one of the state-

of-art pre-trained models, to generate encoding features of

vulnerability descriptions and commit messages, respectively.

BERT can map the textual content into a deep semantic

vector space, thus substantially boosting the performance of

many natural language processing tasks [31]. Beside, we only

need to perform a simple fine-tuning process before applying

BERT in downstream tasks. The output of the BERT is a

768-dimensional vector, which is too high for the transitional

classifiers used in the study. Thus, we adopt a fully connected
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Fig. 3. Encoder Module

layer to compress the vectors generated by BERT into 32

dimensions.

To fine-tune the BERT model, we use vulnerability-commit

match and mismatch as the training targets. Vulnerability

descriptions and commit messages passed through the encoder

module will be encoded into two 32-dimensional encoding

vectors. Two vectors then will be spliced together and pass

through the output layer, consisting of a fully connected layer

and a softmax layer. We use the cross-entropy loss function to

narrow the difference between the prediction and the ground

truth. Finally, we use the encoder module to generate 32-

dimensional encode features for the vulnerability and the code

commit, respectively.

F. Voting Rank Fusion
We get 100 features in total for each pair of a vulnerability

and its fixing commit after feature extraction, including 36

handcrafted features and 64 deep textual features. Then, we

train three classification models (i.e., XGBoost, LightGBM,

and CNN) and perform a model fusion to make the final

prediction.

Identifying security patches is a classification problem on

extremely imbalanced data. Given a vulnerability, only few

commits are security patches (a.k.a, positive cases), while the

rest of the commits are all negative cases. Traditional ma-

chine learning models can easily underfit and fail to separate

positive and negative samples correctly. Therefore, we choose

XGBoost and LightGBM in this study, which has shown

promising performance on imbalanced data [21], [22].

In addition, we choose the CNN model to build a classifier.

However, instead of the commonly used loss function for

classification models such as cross-entropy, we choose the

focal loss function [32], an excellent loss function widely used

in recent years to deal with imbalanced image classification

tasks. The cross-entropy function is a direct summation of the

cross-entropy of each training sample with the same weight.

To cope with imbalanced data, a common method is to set

the weight values of positive and negative samples, i.e., to

set higher weight values for small samples and lower weight

values for large samples. However, by setting the weights,

we can only control the weights of positive and negative

samples, but there is still no way to control the weights of

easy and hard to classify samples, so focal loss adopts the

use of sample prediction probability as the weight value. The

specific formula is as follows, while γ is tunable focusing

parameter. Thus, the CNN model can better focus on hard-to-

classify data.

FocalLoss(p, y) =

{
−(1− p)γ log(p), if y = 1

−(p)γ log(1− p), otherwise
(1)

Each classifier predicts a matching probability score for

each pair of a vulnerability and its fixing commit in the pre-

diction phase. We use a voting-based ranking fusion method

named Voting Ranking to combine the results of the three

classifiers. Compared with the data fusion methods commonly

used in previous papers [33], VCMATCH based on our voting-

based ranking fusion method achieves better performance (see

RQ4 in Section IV-D). For a vulnerability, we have the rank

of each candidate commit based on the matching probability

score for the three classifiers, denoted as rankxgb, ranklgb,

and rankcnn. Then we take the two closest values from

these three rank values of the commit, denoted as rank1,

rank2, representing the two most trustworthy ranks. Finally,

we calculate the average of rank1 and rank2, denoted as

rankavg . We resort the commits based on the rankavg and

get the new rank of the commits.

IV. EVALUATION

A. Experiment Setup
We evaluate our proposed approach on the collected dataset

that contains 1,669 vulnerabilities from 10 OSS projects (see

Section III-B).

To train the prediction models, we use the pairs of these

1,669 vulnerabilities and their corresponding fixing commits

as the positive samples. We follow the same way used in the

study of PatchScout [10] to construct the negative samples,

i.e., we randomly sample 5,000 other commits in the code

repository as the negative samples for each positive sample.

Specifically, We use the same method to generate features of

positive and negative samples. For example, for each sample,

we count the number of files that exist in both commit

sample and vulnerability description, and use trained encoder

module to generate textual information of all samples. In total,

our training set has 8,346,669 pairs of vulnerabilities and

commits. We use an Ubuntu 18.04 64-bit machine (with 187

GB memory, 4 Intel Xeon Silver 4216 processors and 1 Titan

RTX GPU) for model training.

To evaluate the models, we perform a five-fold cross-

validation as it is commonly used in many previous pa-

pers [34]–[37]. All the vulnerabilities in the dataset are shuf-

fled and equally divided into five folds. The negative samples

corresponding to a vulnerability are assigned to the fold that

contains it. Training and testing are performed five times (i.e.,

five runs). For ith run, the ith fold is used as the testing set

and the other four folds are combined as the training set. We

calculate the mean value of every metric (see Section IV-C)

in the five runs as the final result.
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TABLE III
RECALLS OF EACH MODEL. STATISTICALLY SIGNIFICANT RESULTS ARE INDICATED WITH *(P-VALUE <0.05) AND **(P-VALUE <0.01).

Top K 1 2 3 4 5 6 7 8 9 10

Logistic Regression 10.43%** 12.70%** 14.56%** 16.06%** 17.44%** 18.87%** 20.13%** 20.97%** 21.99%** 23.13%**
Linear Regression 65.97%** 73.16%** 75.67%** 77.77%** 78.37%** 79.15%** 80.94%** 81.25%** 82.09%** 82.38%**
PatchScout (non-PHP) 66.31%** 74.96%** 78.28%** 80.55%** 83.64%** 84.74%** 85.63%** 86.32%** 86.74%** 87.49%**
PatchScout 71.12%** 77.95%** 81.43%** 83.40%** 86.10%** 87.06%** 87.84%** 88.44%** 88.80%** 89.45%**
XGBoost 88.67%* 91.85%* 93.83%* 94.49%* 95.21%* 95.57%* 95.87%* 96.29%* 96.58%* 96.70%*
LightGBM 86.01%** 90.77%** 92.27%** 93.11%** 94.19%** 94.61%** 94.97%** 95.27%** 95.45%** 95.74%**
CNN 85.80%** 89.51%** 90.95%** 91.91%** 92.51%** 93.17%** 93.59%** 94.01%** 94.19%** 94.31%**
VCMATCH (NON-PHP) 86.80% 90.51% 92.78% 93.61% 94.30% 94.71% 95.12% 95.67% 96.01% 96.29%
VCMATCH 88.86% 92.03% 94.01% 94.73% 95.33% 95.69% 96.05% 96.52% 96.82% 97.06%

TABLE IV
MANUAL EFFORTS OF EACH MODEL

Top K 1 2 3 4 5 6 7 8 9 10

Logistic Regression 1.0000 1.8957 2.7687 3.6231 4.4627 5.2882 6.0994 6.8981 7.6884 8.4685
Linear Regression 1.0000 1.3403 1.6087 1.8520 2.0743 2.2906 2.4991 2.7028 2.9013 3.0695
PatchScout (non-PHP) 1.0000 1.3314 1.5834 1.7952 1.9841 2.1419 2.2886 2.4263 2.5571 2.6837
PatchScout 1.0000 1.2888 1.5093 1.6950 1.8610 2.0000 2.1294 2.2510 2.3667 2.4787
XGBoost 1.0000 1.1132 1.1947 1.2564 1.3116 1.3595 1.4038 1.4451 1.4823 1.5164
LightGBM 1.0000 1.1390 1.2312 1.3085 1.3774 1.4356 1.4895 1.5398 1.5872 1.6327
CNN 1.0000 1.1420 1.2468 1.3373 1.4182 1.4931 1.5614 1.6255 1.6854 1.7435
VCMATCH (NON-PHP) 1.0000 1.1260 1.2145 1.2803 1.3377 1.3882 1.4346 1.4768 1.5135 1.5467
VCMATCH 1.0000 1.1114 1.1911 1.2510 1.3038 1.3505 1.3936 1.4332 1.4679 1.4997

B. Baselines
We implement PatchScout [10] by ourselves as a baseline

model since the replication package of PatchScout is not

available. PatchScout uses the GumTree tool [38] to get

code commit characteristics and generate the Patch Likelihood

feature. But GumTree does not support PHP language [39]. So,

we set the value of Patch Likelihood to be 0.5 for the commits

in the PHP projects. Additionally, we also apply our approach

and PatchScout on all the vulnerabilities except those in the

PHP projects. And we also performed a 5-fold cross-validation

on non-PHP projects to avoid wrong choice of parameter. We

also choose the linear regression model, the logistic regression

model, XGBoost, LightGBM, and the CNN model as baseline

models.

C. Evaluation Metrics
We use top-k recall and manual effort to evaluate the

performance of VCMATCH and the baseline models, which

is the same as the study of PatchScout.

Recall@K refers to the ratio of the number of patches located

in the top-K results to the number of all patches. Higher

Recall@K score means better performance.

Manual Effort@K refers to the number of results that need

to be manually checked to get the right patch. If the right

patch is in top-K, the manual effort will be the rank of the

patch; otherwise, the manual effort will be K, which represents

checking all K results but cannot get the right patch. When

K is equal to 1, the values of Manual Effort must be equal to

1 since there is only one patch we need to check. Manual
Effort@K is calculated as follows, while n is the number

of test cases: Manual Effort@K =

∑n
i=1min(ranki,K)

n . Less

Manual Effort@K score means better performance.

D. Experiment Results
In this section, we present the experiment results by answer-

ing the following research questions:

RQ1: Can VCMATCH effectively and efficiently locate secu-

rity patches for OSS vulnerabilities?

Table III and IV show the results of Recall@K and Manual
Effort@K (K is from 1 to 10) for VCMATCH and the baseline

models, respectively. As shown in these two tables, the logistic

regression model achieves the worst performance compared

with the other models. Its recalls are much smaller than those

of the other models, and manual efforts are much larger than

those of the other models, indicating that the logistic regression

model cannot be used in practice.

In terms of Recall@K and Manual Effort@K, PatchScout

outperforms the linear regression model, but achieves worse

performance than the three classifiers used in VCMATCH. And

PatchScout (non-PHP) still achieves worse performance than

VCMATCH (non-PHP). Those indicates that the features used

by VCMATCH can improve the performance of identifying

security patches. Among these three classifiers, XGBoost

outperforms LightGBM and CNN. Its recalls are more than

90% when K is greater than 1. By leveraging the voting rank

method to combine the results of the three classifiers, VC-

MATCH achieves the best performance in terms of all metrics.

Recall@1, Recall@10, and Manual Effort@10 of VCMATCH

are 88.86%, 97.06%, and 1.4997, respectively. Compared with

PatchScout, VCMATCH has a higher Recall@1, Recall@10,

and Manual Effort@10, improving 17.74%, 7.61%, and 0.979,

respectively. We apply Wilcoxon signed-rank test [40] with

Bonferroni correction [41] to investigate whether VCMATCH

has significant improvement compared to PatchScout. We

also compute the Cliff’s delta. We find that the improve-

ments on recall@K and manual effort@K are statistically

significant(p− values ≤ 0.05) at the confidence level of 95%

and of a large effect size on the metrics(|d|>0.474).

Overall, VCMATCH can effectively and efficiently locate

security patches for vulnerabilities and outperform the state-

of-art approach PatchScout and the baseline models.
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TABLE V
RECALLS OF THE VCMATCH MODELS WITHOUT EACH FEATURE DIMENSION. STATISTICALLY SIGNIFICANT RESULTS ARE INDICATED WITH *(P-VALUE

<0.05) AND **(P-VALUE <0.01).

Top K 1 2 3 4 5 6 7 8 9 10

LOC 84.00%** 89.39%** 91.85%** 93.71%* 93.95%** 94.73%* 95.75%* 95.87%* 95.87%* 96.11%*
Identity 83.64%** 89.16%** 90.65%** 92.33%** 93.53%** 93.77%** 94.67%** 94.85%** 94.91%** 95.51%**
Location 65.85%** 75.61%** 78.85%** 80.95%** 82.98%** 83.76%** 85.14%** 85.86%** 85.92%** 86.34%**
Token 79.03%** 83.16%** 86.46%** 88.56%** 89.16%** 90.53%** 91.91%** 92.03%** 92.45%** 92.93%**
Vulnerability Encode 84.24%** 88.56%** 90.23%** 92.33%** 93.53%** 94.37%** 95.15%** 95.27%** 95.27%** 95.51%**
Commit Encode 77.65%** 83.76%** 85.44%** 87.36%** 87.78%** 88.74%** 90.11%** 90.23%** 90.47%** 91.31%**

VCMATCH 88.86% 92.03% 94.01% 94.73% 95.33% 95.69% 96.05% 96.52% 96.82% 97.06%

RQ2: How important is each dimension of features used by

VCMATCH?

VCMATCH uses two categories of features: handcrafted fea-

tures and deep textual features. Handcrafted features include

four-dimensional features: LOC dimension, identity dimen-

sion, location dimension, and token dimension. Deep textual

features include vulnerability description encoding features

and commit message encoding features. In this research ques-

tion, we want to investigate the importance of each dimension

of features in the vulnerability commit matching process.

Six variants of the VCMATCH model are re-trained, each

deleting one feature dimension. We also perform five-fold

cross-validation to evaluate these variants of the VCMATCH

model. As we find that Recall@K and Manual Effort@K is

consistent in RQ1, we only use Recall@K in this RQ. To

understand the impact of these dimensions of features, we

also apply Wilcoxon signed-rank test [40] with Bonferroni

correction [41] to analyze the statistical significance of the

improvement of the original VCMATCH on the variant without

one feature dimension. We use Cliff’s delta to measure the

effect size of the improvement.

Table V present the top-k recalls of these variants. The origi-

nal VCMATCH outperforms all the variant models, indicating

that every feature dimension contributes to the VCMATCH

model. The location feature dimension is the most discrimina-

tive dimension, with the top 1 recall dropping by 23.01% and

cannot reach 90% of recall at the top 10. Among the features

in location dimension, the information about the file name,

file path, and function name in the vulnerability description is

useful to locate the corresponding code changes. On the other

hand, the time interval can help exclude lots of irrelevant code

commits. The commit encoding feature dimension also plays

an important role in identifying security patches. The top-

1 recall decreases by 11.21% after dropping this dimension

of features, indicating the importance of using deep textual

features to capture semantic information.

However, the LOC feature dimension and vulnerability

encoding feature dimension only slightly improve the per-

formance of VCMATCH. For LOC feature dimension, many

common code commits usually have similar lines of code to

the security patches, so this dimension can not effectively

distinguish whether a code commit is a vulnerability patch or

not. For vulnerability encoding feature dimension, the positive

and negative samples corresponding to each vulnerability have

the same vulnerability encoding features, so those features

cannot be effectively used.

Furthermore, we find that the improvement of the original

VCMATCH on the variants without one feature dimension is

statistically significant(p − values ≤ 0.05) and of a large

effect size on the metrics(|d|>0.474). Thus, the location

feature dimension and commit encoding feature dimension are

the two most discriminative dimensions. However, using all

dimensions of features is better.

RQ3: How effective is VCMATCH in cross-project setting?

In RQ1 and RQ2, we build the prediction models based

on all the historical data of the the projects in our dataset.

However, a new project may not have enough historical data

for building a model. Hence, in this research question, we want

to know the effectiveness of VCMATCH on locating security

patches for vulnerabilities in a cross-project setting. For each

project, we built the VCMATCH model on the data of the

other nine projects, then use the model to identify the security

patches for this project.

Table VI presents the recalls of cross-project identification

for VCMATCH. We sort the projects by Recall@1 in this table.

Except for the project Moodle, Jenkins, and ImageMagick, the

top-k recalls of VCMATCH on the other projects are close to or

more than 90%, indicating a good performance of VCMATCH

in cross-project setting. The recalls of VCMATCH on the

Wireshark project even reach 100% when K is greater than 2.

For the project Moodle and Jenkins, the recalls of VCMATCH

are much smaller than 90% when K is small. But when K
becomes larger (K ≥ 7), the recalls increase to nearly 90%.

However, VCMATCH performs poorly for the ImageMagick

project, with only 25% recall@1 and 63.46% recall@10. We

analyzed the data of the ImageMagick project and found that

the underlying reason might be that many commit messages

in this project do not contain much useful textual information

but only contain an issue or pull request URL. Thus, for

many handcrafted features used by VCMATCH such as the

location features and the token features, VCMATCH can not

extract the important information. Also, the commit encoding

features cannot capture the semantic information. Therefore,

the VCMATCH model built on the other projects cannot

effectively identifying security patches for the vulnerabilities

in the ImageMagick project.

Thus, VCMATCH can effectively locate security patches

for vulnerabilities in the cross-project setting for most of the

projects except ImageMagick.

RQ4: How effective is our ranking fusion method compared

with other model fusion methods’?
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TABLE VI
RECALLS OF VCMATCH IN CROSS-PROJECT SETTING

Top K 1 2 3 4 5 6 7 8 9 10

Wireshark 98.68% 99.34% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
phpMyAdmin 96.84% 97.89% 97.89% 97.89% 98.95% 98.95% 98.95% 98.95% 98.95% 98.95%
FFmpeg 94.42% 97.21% 98.60% 98.60% 98.60% 98.60% 98.60% 98.60% 98.60% 98.60%
OpenSSL 93.48% 94.57% 94.57% 94.57% 94.57% 96.74% 96.74% 96.74% 96.74% 96.74%
QEMU 89.36% 91.49% 93.62% 94.33% 94.33% 94.33% 95.04% 95.04% 95.04% 95.04%
Linux 87.76% 89.86% 91.96% 93.71% 94.41% 94.76% 95.10% 95.10% 95.10% 95.45%
php-src 87.58% 94.12% 94.77% 95.42% 96.08% 96.08% 96.08% 96.08% 96.73% 96.73%
Moodle 70.59% 80.67% 83.19% 86.55% 86.55% 86.55% 87.39% 87.39% 87.39% 89.08%
Jenkins 58.33% 69.44% 73.15% 78.70% 81.48% 83.33% 87.04% 87.96% 87.96% 89.81%
ImageMagick 25.00% 35.26% 41.67% 44.87% 50.00% 55.13% 57.05% 60.26% 61.54% 63.46%

TABLE VII
RECALLS OF VCMATCH USING DIFFERENT MODEL FUSION METHODS

Top K 1 2 3 4 5 6 7 8 9 10

Borda count 88.02% 92.09% 93.59% 94.79% 95.21% 95.69% 95.93% 95.99% 96.11% 96.35%
CombSUM 88.68% 92.39% 93.77% 94.85% 95.27% 95.69% 95.99% 96.41% 96.70% 97.00%
Max 88.50% 92.27% 93.83% 94.73% 95.27% 95.62% 95.99% 96.35% 96.58% 96.76%
Min 87.48% 90.59% 92.09% 92.99% 93.71% 93.95% 94.49% 94.79% 95.03% 95.15%
Voting Rank 88.86% 92.03% 94.01% 94.73% 95.33% 95.69% 96.05% 96.52% 96.82% 97.06%

VCMATCH uses a new model fusion method named voting

rank to combine the results of the three classifiers. However,

many model fusion methods have been proposed in previous

studies [33]. Thus, in this research question, we want to

investigate whether our model fusion method is more effective

than the previous fusion methods.

There are six model fusion methods used in the study

of Zhang et al. [33], i.e., Min, Max, CombANZ, CombMNZ,

CombSUM, and Borda count. The Min and Max method

rank the data based on the smallest and largest probability

among base models, respectively. CombANZ ranks the data

based on the average of non-zero probabilities of the base

models. CombMNZ ranks the data based on the sum of base

models’ non-zero probabilities multiply non-zero probabili-

ties’ number, while CombSUM based on the sum of base

models’ probability results. Borda count first ranks based

on each model probability, and then ranks based on the sum of

previous rank results. Since there is no non-zero probabilities

in our task, the ranking results of CombANZ, CombMNZ, and

CombSUM are the same. Thus, we only use CombSUM in the

evaluation.

We build the VCMATCH models using different model fu-

sion methods. Table VII presents the recalls of the VCMATCH

models using these fusion methods. The VCMATCH model

based on our voting-based rank fusion method achieves the

best performance in terms of all top-k recalls except when K
is equal to 2 and 4.

V. DISCUSSION

A. Implications

We have the following implications based on the findings

in the study:

More aspects of features can help locating security patches
for vulnerabilities. In addition to the features used by Patch-

Scout [10], we use extra features in our proposed model. The

experiment results in RQ2 show that these new features can

improve the performance of identification of security patches,

such as some simple LOC features. So, many other features

from different aspects can be used to locate security patches

for vulnerabilities, such as the statistical models that capture

the naturalness of vulnerable code [42], the information gen-

erated by program analysis techniques, and the human factors

of developers.

Deep semantic information is useful to match vulnera-
bilities and code commits. The experiment results in RQ1

and RQ2 show that the deep textual features for vulnerability

description and commit messages play an important role in

identifying security patches. In the future, we can also use

deep learning techniques to represent the code change in

commits [43], [44].

More information, more accurate the prediction models
of identification of security patches for vulnerabilities
is. As shown in RQ3, VCMATCH performs poorly for the

ImageMagick project since many commit messages in this

project contain less textual description and only have issue

or pull request URLs. Thus, to achieve better performance,

we need to extract the content from the URLs mentioned

in the commit messages or vulnerabilities. Furthermore, we

recommend developers provide detailed information in commit

messages and vulnerability descriptions, which help locate

security patches easily.

B. Threats to Validity.

Internal Validity. One of the threats to validity is the potential

errors in the vulnerability-commit matching dataset we collect.

There might be cognitive biases when labeling vulnerability

patches. Liu et al. [25] found that some vulnerabilities were

assigned wrong and inaccurate. To mitigate this threat, we

randomly sampled 10% of patch commits and confirmed that

all of them are correctly labeled by inspecting the correspond-

ing materials such as documentation and bug reports. Another

threat is that there might be errors in the implementation of

VCMATCH and the baseline models. We double-checked and

fully tested the code, but there could still exist some errors we

did not find.
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External validity. The main threat to external validity is

the generalizability of VCMATCH. We evaluate VCMATCH

with 1,669 vulnerabilities from 10 popular OSS projects,

covering different programming languages. The number of

vulnerabilities involved in our study is also larger than that

used in the study of PatchScout (i.e., 685 OSS CVEs). In the

future, we plan to evaluate VCMATCH on more vulnerabilities

from different kinds of OSS projects.

VI. RELATED WORK

A. Vulnerability Data Collection
In the field of data-driven research, data collection is also

one of the focuses of research work. A suitable data set is

conducive to the smooth development of research work.With

the development of vulnerability research in recent years,

many vulnerability data sets to assist research have also

emerged.

Mitropoulos et al. [45] statically analyzed the Maven soft-

ware repositories and established a Java package vulnerability

database. Its indicators include the version of the Java package,

specific metadata, dependencies, etc. Based on static analysis

tools, Zheng et al. [46] used differential analysis to annotate

code functions and segments and created a C/C++ data set

D2A. Apart from this, most of the data sets are derived from

CVE and NVD. Fan et al. [47] crawled data from CVE

and constructed a C/C++ data set Big-Vul. Li et al. [48]

collected two types of vulnerability (buffer error vulnerability

and resource management error vulnerability) from CVE and

NVD and created CDG data set. Jimenez et al. [49] proposed

VulData7, a vulnerability data collection framework, which

can collect four code repository data from NVD. Ponta et al.

[50] generated Java data sets from NVD and project-specific

web resources. Unlike other data sets that only contain a single

programming language, Nikitopoulos et al. [51] created a data

set containing more than 40 programming languages. Bhandari

et al. [52] proposed a framework which can automatically

collect and manage vulnerabilities. The data set contains de-

tailed code and vulnerability information, such as vulnerability

type, vulnerability severity level, vulnerability function, and

vulnerability file, which reduces the difficulty for developers to

obtain data. Xu et al. [53] propose a scalable binary-level patch

analysis framework named SPAIN to automatically identify

security patches in binaries.After collecting the data, Guan et

al. [54] processed the data further by extracting the CFG and

DFG of the code and creating the CPG-based vulnerability

data set. Researchers can directly apply graph neural networks

to predict source code vulnerabilities.

All these works identify the vulnerability information and

security patch information, but cannot associate them together.

Different from these works, VCMATCH supports locating the

security patches of a specified vulnerability.

B. Security Patch Study
The research on vulnerability security patches helps re-

searchers to acknowledge the patches’ distribution and de-

velopment cycle, developers’ fixing vulnerability behavior,

get vulnerable code to predict vulnerabilities in the software

projects and so on.

Bosu et al. [55] find that the majority of vulnerable code

changes are written by the senior developers. Nappa et al.

[56] discover that the time interval of the same vulnerability

patch on different software varies greatly, up to 118 days

and the patching rate of different software is also different.

Farhang et al. [57] find that the update frequency of severity-

level vulnerabilities is more stable, compared with the update

frequency of all vulnerability patches. They also find that the

patch release data is earlier than the data of disclosure in

public data sets for 94% Android vulnerabilities. Xiao et al.

[58] study patch signatures and use it to detecting recurring

vulnerabilities. Li et al. [59] analyze the whole patch develop-

ment life cycle. Hwang et al. [60] conduct study on Solidity

patches and live contracts, finding many Solidity developers

ignore the importance of Solidity patches. Lin et al. [61],

Partenza et al. [62], and Zhou et al. [63] get the vulnerability

code through vulnerability patches and use abstract syntax

trees to predict vulnerabilities. With the development of code

cloning detection technology, many researchers [5], [64], [65]

use similar vulnerability codes to predict vulnerabilities.

These work study and learn about security patches, or

obtain the vulnerability code based on patches to predict

the vulnerability. We conduct the patch study from a new

perspective. We train a vulnerability patch identification model

based on existing vulnerability patches to help developers

discover patches.

VII. CONCLUSION AND FUTURE WORK

The matching of vulnerabilities and security patches is con-

ducive to researchers to carry out better vulnerability-related

research, and it also helps developers understand how to fix

various vulnerabilities correctly. In this paper, we propose a

model named VCMATCH, which based on six-dimensional

features. According to the experiment results, the combination

of shallow statistical features and deep semantic features dra-

matically improves the effectiveness of the VCMATCH model.

We can find that our VCMATCH model has achieved great

success through comparative experiments and is better than the

existing vulnerability-commit matching methods. Besides, the

VCMATCH model also achieves good results in cross-project

forecasting. In future research work, we plan to expand the

data through web content such as bug reports and GitHub

issues. Vulnerability references often involve bug reports,

GitHub issue links. These links may contain data related

to vulnerabilities or software code. Crawling and reasonably

extracting critical data can further enrich the commit data,

enhancing the model’s effect on software repositories lacking

commit messages.
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