Who Will Leave the Company?

A Large-Scale Industry Study of Developer Turnover by Mining Monthly Work Report

Lingfeng Bao*, Zhenchang Xing!, Xin Xia¥, David Lo, Shanping Li*
*College of Computer Science and Technology, Zhejiang University, China
fResearch School of Computer Science, Australian National University, Australia
{Department of Computer Science, University of British Columbia, Canada
§School of Information Systems, Singapore Management University, Singapore
{lingfengbao, xxia, shan}@zju.edu.cn, zhenchang.xing@anu.edu.au, davidlo@smu.edu.sg

Abstract—Software developer turnover has become a big chal-
lenge for information technology (IT) companies. The departure
of key software developers might cause big loss to an IT company
since they also depart with important business knowledge and
critical technical skills. Understanding developer turnover is very
important for IT companies to retain talented developers and
reduce the loss due to developers’ departure. Previous studies
mainly perform qualitative observations or simple statistical
analysis of developers’ activity data to understand developer
turnover. In this paper, we investigate whether we can predict the
turnover of software developers in non-open source companies by
automatically analyzing monthly self-reports. The monthly work
reports in our study are from two IT companies. Monthly reports
in these two companies are used to report a developer’s activities
and working hours in a month. We would like to investigate
whether a developer will leave the company after he/she enters
company for one year based on his/her first six monthly reports.

To perform our prediction, we extract many factors from
monthly reports, which are grouped into 6 dimensions. We apply
several classifiers including naive Bayes, SVM, decision tree,
kNN and random forest. We conduct an experiment on about
6-years monthly reports from two companies; this data contains
3,638 developers over time. We find that random forest classifier
achieves the best performance with an F1-measure of 0.86 for
retained developers and an Fl-measure of 0.65 for not-retained
developers. We also investigate the relationship between our
proposed factors and developers’ departure, and the important
factors that indicate a developer’s departure. We find the content
of task report in monthly reports, the standard deviation of
working hours, and the standard deviation of working hours of
project members in the first month are the top three important
factors.

Keywords-developer turnover, prediction model, mining soft-
ware repositories

I. INTRODUCTION

Software developers are the key asset of an Information
Technology (IT) company. For the continuous and stable
growth of the company, it is crucial to maintain a stable
body of committed and experienced software developers.
Unfortunately, throughout the development of an IT company,
the influx and retreat of software developers, which refer to
turnover, are very frequent. Witaker reports that up to 20% of
IT software developers turnover each year [1]. Jiang and Klein
find that there are almost 25% to 35% turnover rate in a study

Xin Xia is the Corresponding author

of 101 information system professionals [2]. A survey of 1,000
full-time workers conducted by the online recruitment firm
Headhunter.net reports that 78% would take a new position if
the right opportunity comes along and 48% of those who are
employed are looking for new jobs [3].

If developer turnover is not properly handled, it may affect
the success of a software project and cause significant loss
for company, because software developers could depart with
a lot of critical knowledge and experience. Hence, being able
to predict who will leave the company early would enable
the opportunity to retain the talented software developers and
reduce the loss when they leave. Researchers have investigated
developer turnover to understand developers’ motivation of
departure. Many factors can affect developer turnover, such
as personal expectation [4], organizational commitment [5],
developers’ experience and knowledge [6], etc. Some re-
searchers also investigate the impact of developers turnover
on software quality [7], [8]. Mockus also finds a relationship
between developer turnover and productivity in commercial
projects [9].

However, most of existing studies are conducted in the
open source communities, and only perform some qualitative
observations and/or simple quantitative analysis of developers’
activity data collected during software project management.
Different from existing studies, in this paper we want to
investigate whether we can predict the turnover of software
developers in non-open-source companies by analyzing the
developer activity data and leveraging data mining techniques.

There are many different kinds of developer activity data
collected during software project management. In this study,
the data we use is developers’ monthly work reports, which
are from two IT companies (named Company C1 and C2).
Company CI1 currently has more than 500 employees and
Company C2 has more than 2000 employees. Both of them are
outsourcing companies, and have a large number of projects
that require different business knowledge and techniques.
These two companies have established business model and
rigorous project management process. They also have close
collaboration with our research group so that we can access
its sensitive developer data for the study. We formulate the
prediction task of developer turnover as a binary classification
problem based on the developers’ monthly work reports.

TABLE 1
EXAMPLES OF MONTHLY REPORTS

Example 1 Example 2 Example 3
Month 2011-02 2011-02 2011-10
Employee ID 1 2 3
Employee Name | DI D2 D3
Project Name Pl P2 P3

1.Learn the technology about the Flex3, using
Flex Builder3 and taking some exercise.
2.Reading the Screen Design of the 1580 project
Tasks and the corresponding usecases.

3.Learning JSF, Primefaces and do exercise.
4.Learning about Maven, Nexus and do some
exercise.

1 Disussed the use cases about the Ruby project
2 Complete Uls of the prototype project
3 Learn something about JSF.

Report Management Development

Hours 128 184

44

Monthly reports in these two companies are submitted at the
end of a month, which usually contain a developer’s major
accomplishments or activities, and the working time in the
month. A developer’s monthly report must be confirmed and
approved by his/her project manager. Notice that the working
hours differences in monthly reports do not affect developers’
salary. Project managers use monthly reports to understand
the activities and workload of each member in the project,
evaluate the project process in current month, and make the
plan for the next month.

Table I shows three examples of monthly reports in the
Company C1. Each monthly report has following fields:
month, employee id, employee name, project name, tasks and
hours. The tasks field refers to the description of work of a
developer in a month written by the developers themselves.
The content of tasks has no strict requirements. Hence, the
writing style of tasks could be very different. For instance, the
tasks field in example 1 and 2 of Table I list the developers’
work in details, while the description of tasks in example 3 is
very short and simple. Moreover, the content of fasks could
be empty. The different written style of tasks may be due
to different reasons, such as the personality of developers,
their attitude towards to the work and monthly report, or
the developer may fill in the monthly report with few details
simply because there is too much other work to do. The hours
field refers to the working time of a developer that he works
for the project in this month. A developer could work for
more than one project in one month. In this situation, the
developer is required to fill a monthly report for each project.
Moreover, working hour is important to a company especially
an outsourcing company, since the company will use it to
charge money from the clients. Also at the end of the project,
project managers will count all of the working hours and check
whether the costs overrun the budget.

In this paper, our goal is to predict whether a developer will

leave the company or not after certain period of time based on
the developers’ monthly report data. Since every new develop-
er in these two companies has a six-month probationary period,
we use the first six monthly reports after the developers enter
into the company to predict the developer turnover. As the
two companies do not keep records of developers’ departure,
we consider a developer has left the company if there are no
monthly reports submitted after certain time point. Therefore,
our prediction task is defined as follows:
Given a developer’s first six monthly report data, can we ef-
fectively predict whether the developer will leave the company
or not (i.e. not-retained vs. retained) after he/she enters the
company for one year?

We collect about 6 years monthly report data from the
two IT companies, which contains 3638 developers and more
than 400 projects. Among these 3638 developers, there are
1045 developers from Company C1 and 2593 developers from
Company C2. We extract 67 features from the monthly report
data which belong to six dimensions: 1) working hours of each
month, 2) overall statistics of working hours, 3) statistics of
task reports, 4) readability of task reports, 5) project statistics
of each month, and 6) overall project statistics. Based on these
extracted features, we would like to investigate the following
three research questions:

RQ1: Can we effectively predict whether a developer will
leave the company after he/she enters the company for one
year based on monthly report data?

We apply several classic classifiers including naive Bayes,
SVM, decision tree, kNN and random forest, and conduct an
experiment on about 6-years monthly report data from two
companies that contains 3,638 developers over time. We find
that we can effectively predict whether a developer will leave
the company based on monthly report data. The random forest
classifier has the best performance which achieves F1-scores
for predicting retained and not-retained developers of 0.86 and
0.65 on the combined dataset, respectively.

RQ2: Do the characteristics of retained and non-retained
developers differ? How these relationships are different
between not-retained and retained developers?

We compare the values of each factors between selected
not-retained developers and retained developers by applying
the Mann-Whitney U test at p — value = 0.01 and calculating
Cliff Delta. We find that developers who leave the company
are significantly different from developers who stay at the
company in 31 out of the 67 factors, including the working
hours of the first and the sixth month, the content of task
report, and the variance of working hours.

RQ3: What are the important factors that could indicate,
with high probability, that a developer will leave the
company?

To compare the importance of the factors, we learn a
random-forest classifier using the factors to identify whether
a developer will leave or not. Correlation and redundancy
analysis are applied to better model the integrated impact of
factors on developers’ departure. We find that the mean of
the number of token in task report, the standard deviation
of working hours, and the standard deviation of working
hours of project members in the first month are the top three
important factors in determining the likelihood of a developer’s
departure.

TABLE I
THE MONTHLY REPORT DATA

Company C1 | Company C2 | C1 + C2
Total 1,045 2,593 3,638
Retained 699 (66.9%) 1,670 (64.4%) | 2,369 (65.1%)

Not-Retained

346 (33.1%)

923 (35.6%)

1,269 (34.9%)

Paper Structure: The remainder of the paper is structured
as follows. Section II describes our monthly report data and
experiment setup. Section III presents the results of three re-
search questions. Section VI reviews related work. Section VII
concludes the paper and discusses future directions.

II. CASE STUDY SETUP
A. Monthly Report Dataset

We collect about six year monthly report data from our
two studied companies which ranges from January 2010 to
November 2015. The monthly report dataset contains more
than 5,000 developers who ever submit monthly reports'. We
exclude developers who submit less than 6 monthly reports
since there is no enough data to extract features for prediction
model. In our study, we extract features based on a developer’s
first six month reports then predict whether he/she will leave
in the company in the future. We do so because a developer’s
probationary period is six month in these two companies.
The developers who leave within 6 months do not carry
much knowledge of the company and are likely to be asked
to leave (due to poor performance). Finally, among them,
3,638 developers submit 6 or more monthly reports, including
1,045 developers from Company C1 and 2,593 developers
from Company C2, as shown in Table II. Furthermore, these
developers work for more than 400 projects, which contain
different business knowledge and techniques.

To investigate whether we can predict an developer will
leave the company, we divide the developers in our monthly
report dataset into two groups: those who leave the company
after he/she enters company in one year, and those who still
stay in the company after one year. Finally, There are 1,269
developers (346 and 923 developers from Company C1 and
C2, respectively) who leave the company in one year after
he/she enters the company and 2,369 developers (699 and
1,670 developers from Company C1 and C2, respectively) still
stay at the company after one years work.

B. Factors Potentially Affecting Developers’ Departure

In this study, we consider a developer’s first six month
report data and extract 67 features along six dimensions, that
might be correlated with developers’ departure. We describe
the meaning of each factor in Table III.

Working Hours of Each Month refers to a developer’s
working hours reported in the monthly report for each month.
The working hours are correlated with a developer’s workload.
Software developers are often asked to take heavy workload
and have tight deadlines. Heavy workload might be a factor
which affects a developer’s departure. On the other hand, if a
developer’s working hours are less than normal working hours,

'Due to information security policy of the company, the data is sensitive,
and we cannot provide the detailed number

160

140

120

Hour

100
80

60
1 2 3 4 5 6

Month

Fig. 1. The Average Reported Hours of The First Six Months

he/she might perform other non-work-related stuff and does
not focus on his/her work. This might be an indicator of a
developer’s departure. Figure 1 shows the average reported
hours of the first six month over the whole dataset. We find
the average reported hours of the first month (77.15 hours) are
much less than that of the other months. As discussed with the
HR department of these two companies, we find since there
will be many new employee training courses in the first month,
thus the working hours are greatly reduced. There is also a dip
from the 5th month to the 6th month, this might be because
the employees also need to attend some training courses at the
last part of the probationary period.

Overall Statistics of Working Hours refers to factors that are
based on the overall statistics of working hours in a developer’s
first six month. We calculate five kinds of statistics of working
hours, including the sum, mean, median, standard deviation
and maximum of the first six month working hours for each
developer.

Statistics of Task Report refers to factors that are calculated
based on the text information of task report written by the
developers. The written style of task report could be very
different, which might indicate a developer’s character and
working attitude. For example, a developer, who writes the
monthly report in much detail, is usually very conscientious.
Otherwise, a simple task report might imply that the developer
does not focus on his/her work or is dissatisfied with the
work. We count the length of each monthly report (i.e.
the number of characters in the report), and calculate five
kinds of statistics, including the sum, mean, median, standard
deviation and maximum of length of text of task report for
each developer. Sometimes, some “lazy” developers copy the
text of previous task reports or write similar task reports. So,
we also tokenize and stem the text of task report, and calculate
the sum, mean, median, standard deviation and maximum of
number of distinct tokens in the monthly report for each
developer. In our whole monthly report dataset, the average
values of task_len_mean and token_mean are 40.12 and 6.37,
respectively. This means the length of description of monthly
reports is usually not very long.

Readability of Task Report refers to the ease with which
a reader can understand the task report. The readability of
a text is measured by the number of syllables per word
and the length of sentences. Readability measures can be
used to tell how many years of education a reader should
have before reading the text without difficulties [10], [15].
Amazon.com uses readability measures to inform customers
about the difficulty of books. We use readability features of

TABLE III

FACTORS POTENTIALLY AFFECTING DEVELOPER DEPARTURE

[Dimension [Factor Name | Explanation
\ Working Hours of Each Month \ hour{N} \ working hours of one month, N is from 1 to 6 (to indicate the Ist to 6th month)
hour_sum the sum of the first six month working hours
hour_mean the average of the first six month working hours
Overall Statistics of Working Hours | hour_median the median of the first six month working hours
hour_std the standard deviation of the first six month working hours
hour_max the maximum working hours in the first six month

task_len_sum

the sum of length of text of task reports

task_len_mean

the mean of length of text of task reports

task_len_median

the median of length of text of task reports

task_len_std

the standard deviation of length of text of task reports

task_len_max

the maximum of length of text of task reports

Readability of Task Report

coleman_liau

automated_readability_index

dale_chall

difficult_words

linsear_write

gunning_fog

Statistics of Task Report task_zero the number of monthly report whose lenght of task is 0
token_sum the sum of the token number of task reports
token_mean the mean of the token number of task reports
token_median the median of the token number of task reports
token_std the standard deviation of the token number of task reports
token_max the maximum of the token number of task reports
Sflesch
smog
kincaid

these metrics are used to measure the readability of a text using different
formulas which are usually based on the the number of syllables per word
and the length of sentences [10]-[17]

Project Statistics of Each Month

p{N}_person

the number of persons in the project that the developer is working for in N** month
, where N is from 1 to 6

p{N}_hour_mean

the mean of working hours of project members in N** month

p{N}_hour_sum

the sum of working hours of project members in N*"* month

p{N}_hour_std

the standard deviation of working hours of project members in N*** month

p{N}_person_change

the number of changed person compared with the previous month in N*® month

Opverall Project Statistics

project_num

the number of projects which a developer works for in the first six month

multi_project

whether the developer works for multiple projects in one month

avg_person_change

the average changed person number in projects in the first six month

less_zero

the number of month in which the changed person number in projects is less than 0

equal_zero

the number of month in which the changed person number in projects is equal than 0

larger_zero

the number of month in which the changed person number in projects is larger than 0

task report as a complementary of statistics features of task
report since we think readability could also be an indicator
of a developer’s working attitude. In our study, we use the
following nine readability measures: Flesch [10], SMOG (sim-
ple measure of gobbledygook) [11], Kincaid [12], Coleman-
Liau [13], Automated Readability Index [14], Dale-Chall [15],
difficult words [15], Linsear Write [16], Fog [17]. We calculate
these readability measures using a python package named
textstat [18]. In our monthly report dataset, the average value
of Flesch is 98.97, which indicates very easy to read. The
result is very close to other readability metrics.

Project Statistics of Each Month refers to factors that
represent the information of a project which a developer is
working on for each month. The working environment and
other members in the project might have very important effect
on a developer’s working experience. For example, the good
collaboration with other members in the project can improve a
developer’s work efficiency and experience. For each month,
we calculate the following measures of the project which the
developer is working for: the number of project members, the
sum, mean and standard deviation of working hours of project
members, and the number of changed developers. The number
of project members is an indicator of project size. Small
project size usually means more workload to each individual
in the project. The working hours of project members could
reflect the overall workload in the project. And the number of
changed developers might indicate the stability of the project.

The developers often prefer stay at a stable project. Notice that
sometimes a developer could work for more than one project
in a month. In this situation, we only consider the project on
which the developer spends longest time.

Overall Project Statistics refers to factors that are based
on the overall project statistics in a developer’s first six
months of work. We count the number of project in the
first six months for each developer (project_num) and check
whether a developer take part in more than one project in
a month (multi_project), since the experience of working for
multiple projects is different from that of working for only
one project and multiple projects might mean higher workload.
We also count the number of developer changed in the project
which a developer works for (avg_person_change, less_zero,
equal_zero, larger_zero), since the stability of the project
might have impact on the working experience of a developer.

C. Prediction Model

For our monthly report data, we use our proposed factors
to train a classifier to predict whether a developer will leave
the company after he/she enters the company in one year.
We study different classifiers which are widely used in soft-
ware engineering research [19]-[23], including Naive Bayes,
Support Vector Machine (SVM), Decision Tree, K-Nearest
Neighbor (kNN), and Random Forest.

Naive Bayes: Naive Bayes classifiers [24] are a family of
simple probabilistic classifiers based on applying Bayes’ the-

orem with strong (naive) independence assumptions between
the features. The major advantage of naive Bayes classification
is its short computational training time, since it assumes
conditional independence.

SVM: Support Vector machine (SVM) [25] is developed from
statistical learning theory, and it constructs a hyperplane or
a set of hyperplanes in a high- or infinite-dimensional space,
which are used for classification. SVM selects a small number
of critical boundary instances as support vectors for each label
(in our case, the labels are not-retained and retained), and
builds a linear or non-linear discriminant function to form
decision boundaries with the principle of maximizing the
margins among training instances belonging to the different
labels.

Decision Tree: C4.5 is one of the most popular decision tree
algorithms [24]. A decision tree contains nodes and edges;
each node in the decision tree represents a factor in the input
factor space, while each branch in the decision tree represents
a condition value for the corresponding node. A decision tree
algorithm classifies data points by comparing their factor with
various conditions captured in the nodes and branches of the
tree.

K-Nearest Neighbor: K-Nearest Neighbor is an instance-
based algorithm for supervised learning, which delays the
induction or generalization process until classification is per-
formed [24]. We use the Euclidean distance as the distance
metric, and since the performance of kNN may be impacted
by different values of k, we set k from 1 to 10, and report the
best performance (in terms of Fl-score) among the 10 values
of k.

Random Forest: Random forest is a kind of combination
approach, which is specifically designed for the decision tree
classifier [26]. The general idea behind random forest is to
combine multiple decision trees for prediction. Each decision
tree is built based on the value of an independent set of random
vectors. Random forest adopts the mode of the class labels
output by individual trees.

D. Evaluation Metric

For each developer, there would be 4 possible outcomes:
a developer is classified as not-retained when he/she truly
leaves the company in one year (true positive, TP); he/she
can be classified as not-retained when he/she does not leave
the company in one year (false positive, FP); he/she can be
classified as retained when he/she truly leaves the company
in one year (false negative, FN); or he/she can be classified
as retained when he/she does not leave the company in one
year (true negative, TN). Based on these possible outcomes, we
calculate the accuracy, precision, recall, F1-score for each label
to evaluate the performance of classifiers which are introduced
in II-C.

Accuracy: the number of correctly classified developers (both

not-retained and retained) over the total number of developers,

. _ TP+TN
ie. Acc = 7prrpyTNTEN

Not-Retained Precision: the proportion of developers that are
correctly labeled as not-retained among those labeled as not-

retained developers, i.e. P(L) = %.

Not-Retained Recall: the proportion of not-retained develop-

ers that are correctly labeled, i.e. R(L) = %'

Retained Precision: the proportion of developers that are
correctly labeled as retained among those labeled as retained
developers, i.e. P(NL) = %

Retained Recall: the proportion of retained developers that

are correctly labeled, i.e. R(NL) = %.

F1-score: summary measure that combines both precision
and recall - it evaluates if an increase in precision (recall)
outweighs a reduction in recall (precision). For F-measure
. PO _ 2xP(L)xR(L)
of not-retained developers, it is F(L) = “PuyrRI) -
And for F-measure of refained developers, it is F(NL) =
w W th dicti 1t 1
PINL+R(NL) - We compare the prediction results using
the Fl-score, which is the harmonic mean of precision and
recall. This follows the setting used in many software analytics

studies [19]-[21], [27]-[31].

AUC: In addition to the F1-score, we also use the Area Under
the Receiver Operating Characteristic Curve (AUC) to evaluate
the effectiveness of our approach. AUC is a commonly-used
measure to evaluate classification performance, and many oth-
er software engineering studies also use AUC as an evaluation
metric [22], [23], [30], [32]. The larger the AUC is, the better
is the performance of a classification algorithm.

III. EXPERIMENT RESULTS

In this section, we present and discuss the answer to three
research questions we proposed in Section L.

A. (RQI) Can we effectively predict whether a developer will
leave after he/she enters the company for one year based on
monthly report data?

Motivation: In order to retain talented software developers
and reduce the loss due to the departure of key developers,
we would like to effectively predict whether developers will
leave company after they enter the company for certain time
period. Therefore, we use our proposed factors extracted from
developers’ monthly report and apply different prediction
models to examine whether it is feasible to build accurate
models that help to predict developers’ departure.

Approach: We use the Weka tool [33] to implement these
prediction models. We use 10-fold cross validation to estimate
the results of these prediction models. In 10-fold cross vali-
dation we randomly divide the dataset into ten folds. Of these
ten folds, nine folds are used to train the classifier, while the
remaining one fold is used to evaluate the performance. The
class distribution in the training and testing datasets is kept
the same as the original dataset to simulate real-life usage of
the algorithm. To evaluate their perfomance, we use accuracy,
precision, recall, Fl-score, and AUC metrics. The reported
performance of the models is the average of 10-fold cross
validation. The above approach is applied both on the monthly

TABLE IV
THE ACCURACY AND AUC OF PREDICTION MODELS

Accuracy AUC
Company C1 | Company C2 [C1 + C2 [Company CI | Company C2 [C1 + C2
[Random Prediction [50.0% [50.0% [50.0% [0.50 [0.50 [0.50]
Naive Bayes 66.6% 55.8% 57.7% 0.70 0.70 0.70
SVM 67.2% 64.7% 65.5% 0.51 0.51 0.51
Decision Tree 74.5% 71.5% 71.9% 0.74 0.68 0.68
KNN 77.5% 72.9% 74.6% 0.75 0.71 0.72
Random Forest 81.7% 79.5% 79.7 % 0.84 0.81 0.82
TABLE V
PRECISION, RECALL, AND F1-SCORE ON RETAINED DEVELOPERS FOR FIVE PREDICTION MODELS
Company C1 Company C2 Cl+C2

Precison | Recall [F1 Precison | Recall [F1 Precison | Recall [F1

[Random Prediction | 067 | 0350 [057 | 064 | 050 [056 [065 [050 | 057]
Naive Bayes 0.81 0.65 0.72 0.82 0.40 0.54 0.82 0.45 0.58
SVM 0.67 0.99 0.80 0.65 0.99 0.79 0.65 0.99 0.79
Decision Tree 0.81 0.81 0.81 0.77 0.79 0.78 0.78 0.80 0.79
KNN 0.83 0.83 0.83 0.79 0.79 0.79 0.80 0.81 0.81
Random Forest 0.81 0.94 0.79 0.93 0.85 0.87 0.79 0.93 0.86

TABLE VI
PRECISION, RECALL, AND F1-SCORE ON NOT-RETAINED DEVELOPERS FOR FIVE PREDICTION MODELS
Company C1 Company C2 Cl+ C2

Precison | Recall [F1 Precison | Recall [F1 Precison | Recall [F1

[Random Prediction | 033 | 050 [040 | 036 | 050 [042] 035 | 050 [041 |
Naive Bayes 0.50 0.70 0.58 0.44 0.84 0.58 0.44 0.81 0.57
SVM 0.80 0.01 0.02 0.79 0.01 0.02 0.88 0.01 0.02
Decision Tree 0.62 0.60 0.61 0.61 0.58 0.59 0.60 0.58 0.59
KNN 0.66 0.66 0.66 0.62 0.62 0.62 0.64 0.63 0.63
Random Forest 0.83 0.57 0.67 0.81 0.55 0.66 0.81 0.55 0.65

report data from Company C1 and Company C2. Furthermore,
we combine the two companies’ monthly report data into a
single dataset, then apply the same approach on it. We also
choose a baseline model, i.e. random prediction, to compare
our proposed prediction models. In random prediction, it
randomly predicts developers’ departure. The precision for
random prediction is the percentage of not-retained or retained
developers in the data set. Since the random prediction model
is a random classifier with two possible outcomes (e.g., not-
retained or retained developers), its accuracy, AUC, and recall
are 0.50.

Results: Table IV shows the accuracy and AUC of the five
different prediction models we apply. We find that the accura-
cies and AUCs of all 5 classifiers are larger than the baseline
model, i.e. random prediction. For the results of accuracy, we
find that the accuracies of 3 out of 5 classifiers, i.e., decision
tree, KNN and random forest, are larger than 70% on all of
three datasets. Moreover, the random forest classifier has the
highest accuracy on all of three datasets. For the results of
AUC, we also find the random forest achieves the highest AUC
among these five classifiers. The AUCs of the random forest
on these three datasets are all larger than 0.8, while all AUCs
of other four classifiers are less than 0.8. We also find that the
results of accuracy and AUC on the two company datasets and
the combined dataset is very close. From Table IV, we can see
the random forest achieves the best overall performance.

Table V shows the precision, recall, F1-score of the baseline
model and these 5 classifiers for predicting retained develop-
ers. The number with bold text in the table is the largest for
each column. We find all classifiers have good performance

on the dataset of Company Cl1, i.e. all Fl-scores are larger
than 0.7, and are also much larger than that of the baseline
model. On the dataset of Company C2 and the combined
dataset, all classifiers also have very good performance except
Naive Bayes, since the recall of Naive Bayes is very low, only
0.45. All other classifiers’ Fl-scores for predicting retained
developers are very high, which are close to or higher than
0.80, which is much larger than that of the baseline model. In
short, we think the random forest classifier achieves the best
performance, since it has the highest Fl-score on the dataset
of Company C2 and the combined dataset, i.e. 0.87 and 0.86,
respectively, and its F1-score on the dataset of Company Cl1 is
0.79, which is very close to the highest F1-score, 0.83, which
is from KNN classifier.

Table VI shows the precision, recall, F1-score of the base-
line model and these 5 classifiers for predicting not-retained
developers. We find that the results of these 5 classifiers for
predicting not-retained developers on the two company dataset
and the combined dataset is very similar. The random forest
classifier also has the best performance which has the highest
F1-scores on all the three dataset. While the SVM classifier has
very bad performance as its recalls are very low, which are all
lower than 0.1. The F1-scores of other 3 classifiers are close to
or higher than 0.60, while the F1-score of the baseline model
is only about 0.40. In summary, we find that the random forest
has the best performance on predicting whether a developer
will leave the company after he/she enters the company in one
year or not.

To measure whether the improvement of these 5 classifiers
over random prediction is statistically significant, we apply

TABLE VII
RELATIONSHIP BETWEEN FACTORS AND DEVELOPERS’ DEPARTURE WITH
SIGNIFICANT DIFFERENCE

[Dimension | Factor Name [Rel. [d-value |
Working Hours hourl - 0.194
of Each Month hour6 - 0.153

. hour_sum - 0.192

Gy s o -man o
hour_std + 0.290

task_len_sum - 0.317

task_len_mean - 0.320

task_len_median - 0.294

task_std - 0.255

Statistics of task_len_max - 0.297
ask report task_zero + 0.312
token_sum 0.305

token_mean - 0.308

token_median - 0.280

token_std - 0.245

token_max - 0.291

flesch + 0.283

kincaid - 0.287

coleman_liau - 0.313

Readability of automated_readability_index - 0.292
task report dale_chall - 0.313
difficult_words - 0.297

linsear_write - 0.298

gunning_fog - 0.289

pl_hour_mean - 0.148

pl_hour_std + 0.247

Project Statistics p2_hour_std + 0.192
of Each Month p3_hour_std + 0.188
p4_hour_std + 0.187

p5_hour_std + 0.164

p6_hour_std + 0.190

Wilcoxon signed-rank test [34] at 95% significance level on 10
folds of F1-scores. We also use Bonferroni correction [35] to
counteract the results of multiple comparisons. We find all p-
values are smaller than 0.05 which indicates the improvement
is statistically significant at the confidence level of 95%.

We can effectively predict whether a developer will leave the
company based on monthly report data. The random forest
classifier has the best performance which achieves F1-score
for retained and not-retained developers of 0.86 and 0.65
on the combined monthly report data, respectively.

B. (RQ2) Do the characteristics of retained and non-retained
developers differ? How these relationships are different be-
tween retained and not-retained developers?

Motivation: We have proposed 67 factors that could potential-
ly affect a developer’s departure. In this research question, we
are interested in investigating how each factor is related with
the developers’ departure. The company leader and manager
can use the results of this question to understand whether the
characteristics of retained and non-retained developers differ
and take proactive actions.

Approach: We compare the values of each factors between
selected not-retained developers and retained developers. We
first analyze the statistical significance of the difference be-
tween the two groups of developers, i.e. not-retained develop-
ers and retained developers, by applying the Mann-Whitney
U test at p — value = 0.01. To show the effect size of the
difference between the two groups, we calculate Cliff Delta,

which is a non-parametric effect size measure. Cliff defines a
delta of less than 0.147, between 0.147 to 0.33, between 0.33
and 0.474, and above 0.474 as negligible, small, medium, and
large effect size, respectively.

Results: Table VII shows the factors that have p — value <
0.01 and d > 0.147 (i.e., statistically significant difference
with at least a small effect size). In Table VII, the column Rel.
is short for relationship, “+” means developers who leave the
company have significantly higher value on this factor while “-
” means developers who stay in the company have significantly
higher value on this factor. We find that the not-retained and
retained developers have significant difference in 31 out of the
67 factors. The effect size is small for all the factors. Note that
relationship between factors and developers’ departure with
non-significant difference is not included in the table.

For working hours of each month dimension, the working
hours of the first and sixth month can differentiate not-retained
developers from retained developers. This suggests that the
company might pay attention to the work of developers in the
first month and the last month of probation period. For overall
statistics of working hours dimension, the retained developers
have significantly higher value on factors hour_sum and
hour_mean while the not-retained developers have signifi-
cantly higher value on factor hour_std. We find that the total
working hours of not-retained developers are less than those of
retained developers and the variance of working hours of not-
retained developers is larger than that of refained developers.

For statistics of task report dimension and readability of
task report dimension, most of the factors have statistically
significant difference except smog. Notice that the lower value
of flesch means more difficult to read, which is opposite from
all other readability metrics. So, only flesch shows positive
correlation with developers’ departure. Not-retained develop-
ers usually write less content of task and are more prone to
submit empty monthly report than retained developers. The
readability of task report of not-retained developers is often
worse than those of retained developers.

For project statistics of each month dimension, the average
working hours of project members in the first month can
differentiate not-retained developers from retained developers.
Furthermore, not-retained developers have significantly higher
value on the variance of working hours of project members for
each month. This might suggest us that the working environ-
ment has big impact on developers’ departure. If the workload
among project members is very different, the turnover of the
project may increase. Therefore, project managers should pay
attention to balance the workload between project members.

Not-retained developers are significantly different from re-
tained developers in 31 out of 67 factors. Generally, not-
retained developers have less working hours in the first and
the sixth month (i.e., the start and end of the probation
period), write less content in task report of monthly reports.
Moreover, there is larger variance of working hours of
project members in their projects for not-retained develop-
ers.

TABLE VIII
GROUPS OF VARIABLES THAT HAVE CORRELATIONS LARGER THAN 0.7

[Group |

hour_median, hour_sum, hour_mean

linsear_write, token_sum, token_std, task_len_mean, token_mean,
token_median, automated_readability_index, dale_chall, task_len_std,
coleman_liau, task_len_sum, task_len_max, kincaid, task_len_median,
flesch, difficult_words, token_max, gunning_fog, task_zero
pS_hour_sum, p6_person, p6_hour_sum, p2_person, p3_person,
p4_person, p5_person, p2_hour_sum, p4_hour_sum, p3_hour_sum

C. (RQ3) What are the important factors that could indicate,
with high probability, that a developer will leave the company?

Motivation: Although a developer’s departure is impacted by
multiple factors, some factors might be more influential on
developers’ departure than others, which need more attention.
Therefore, in this research question, we would like to find out
these important factors. Companies can use these important
factors to make proactive plan to retain developers and prevent
risks which are caused by developers’ departure.

Approach: Random forest has been proved to have the best
performance on predicting a developer’s departure in RQI.
Therefore, we only consider to identify the most impor-
tant factors in the random forest model. Comparing with
the random forest model in RQI1, we first perform variable
selection to build another random forest classifier because
correlated variables might lead to poor models which are hard
to interpret [36]. Variable selection process contains two steps:

Step 1: Correlation Analysis. We use a variable clustering
analysis, implemented in a R package named Hmise, to
construct a hierachical overview of the correlations among the
factors. For sub-hierarchies of factors with correlation larger
than 0.7, which is the same setting to a previous study [37], we
select only one variable from the sub-hierarchy for inclusion
in our model. In particular, out of 67 factors, there are 32
factors which are belong to three groups of variables that have
correlations larger than 0.7 (see Table VIII). We use three
variables and remove other variables from the relevant group,
i.e. hour_mean, token_mean, pS_hour_sum. There are 38
factors left after correlation analysis. The final hierarchical
overview is presented in Figure 2.

Step 2: Redundancy Analysis. Correlation analysis reduces
collinearity among the factors, but it may not detect all of
redundant factors, i.e., factors that do not have a unique
signal relative to the other factors. Redundant factors in an
explanatory model will interfere with one another, distorting
the modeled relationship between the factors and predictors.
We remove redundant factors by using the implementation
provided by the redun function in the rms R package. In
particular, from the leftover 38 factors through correlation
analysis, we remove hour4, equal_zero because they can be
represented using other factors.

After two steps of removing redundant variables, we have
36 remaining factors. Then we use the bigrf R package to
implement the random forest classifier. We also use 10-fold
cross validation to evaluate the effectiveness of the model.
To identify the important factors in determining developers’

o

nour_mean

=)

hour_std

change
change j
change —

on_change

hour4d]

hour_max
ouré —

0

0
on
on
on

mmmmmm

:’7

6_person_change
hour_sum
hour5
hour:std
hour_std
hour:std
hourl
hour_std

um
hour2
hour_mean
hour3
hour_mean
mog
hour:mean

0.7 0.6 0.5 0.4 03 0.2 0.1 0.0

Spearman p?

p4_per

p5_per:

pl_per
6_hour_std

hour_std

hour_mean

equal_zel

pl|
p2

p3_person_change

avg_person_change
4_hdur_mean

larger;_zero
p
p5.

project,
mutli_project
p5
pl_person
hour_sum
p6_hour:mean —
p3_|
token_mean
p5.
p
p3_]
p4.
PL
p2.

pL

Fig. 2. Cluster factors after correlation analysis

departure, we use the varimp function in bigrf package to
compute the importance of a factor in training process based
on out of the bag (OOB) estimates, which is an internal error
estimate of a random forest classifier [38]. The underlying
idea is to permute each factor randomly one by one and see
whether the OOB estimates will be reduced significantly or
not.

For each run of the 10-fold cross validation, we get an
importance value for each factor. To determine the factors
that are the most important for the whole dataset, we take
the important values from all 10 runs and apply the Scott-
Knott test [39]. This test takes as input a set of distributions
(one for each variable) and identifies groups of variables that
are statistically significantly different from one another.

Results: The 10-fold cross validation shows the random forest
using selected factors can infer retained developers with an
Fl-measure of 0.857 and not-retained developers with an F1-
measure of 0.664. This result is similar with that of the random
forest using all proposed factors in RQ1.

Figure 3 shows the Scott-Knott test results when comparing
the importance value of factors. Different groups of variable
whose importance values are statistically significant different
from other groups of variables (p—value < 0.05). We find that
the mean of the number of token in task report (token_mean),
the standard deviation of working hours (hour_std), and the
standard deviation of working hours of project members in
the first month (pl_hour_std) are the top three important
factors that influence the random forest model. This result is
consistent with the results in RQ2 (see section III-B). The
effect size of these three factors is bigger than that of other
factors (see Table VII).

Notice that we use the factor token_mean to represent
factors that are related to task report but removed in correlation
analysis step. The more content written in the task report of
monthly report, the more likely a developer stay in the compa-
ny. The detailed task report might indicate that a developer is
more conscientious on work and prefers to stay in the company
and grows up with the company together. Larger variance of
working hours may imply the working state of the developer is
not very stable and such kinds of developers are more likely to
leave the company. Moreover, the imbalance of working hours
of project members in the first month might leave a bad first
impression on the project and the company. This implies that
working environment has big impact on developer turnover.
These factors help most in determining the developer who
leaves the company after he/she enters the company for one
year.

_ Means grouped by color(s)

Means
489
I
—
-
-

Fig. 3. Scott-Knott test results when comparing the importance values
of factors, divided into distinct groups that have a statistically significant
difference in the mean (p — value < 0.05)

The mean of the number of token in task report, the standard
deviation of working hours, and the standard deviation of
working hours of project members in the first month are the
top three important factors in determining the likelihood of
a developer’s departure

IV. THREATS TO VALIDITY

Threats to internal validity refer to errors in our code and
experiment bias. We use the default setting in Weka to train our
classifiers, which is similar to the setting of prior work [30].
We also double check our code, however, there may exist some
errors that we do not notice. Moreover, to mitigate the bias
of results selection, we run the 10-fold cross-validation and
present the average performance. Another threat to internal
validity is the setting that we use the first six monthly reports
to predict a developer’s departure after he/she enters the
company for one year. This is because every developer in the
studied companies has a six-month probationary period and
most of them at least submit six monthly reports. Admittedly,
excluding developers who do not submit 6 monthly reports
might skew the dataset.

Threats to external validity relate to the generalizability of
our findings. In this study, our monthly reports are from two
IT companies. Thus, it is unclear whether the same results
still hold for other developers from other companies. However,
we analyze more than 3,000 developers’ monthly reports and
these developers belong to more than 400 projects which
use different programming languages and business knowledge.
Moreover, monthly report is a common practice and often used
in project management.

Another threats to external validity relate to the general-
izability of our extracted features. In this paper, we extract
67 factors which are categorized into 6 dimensions from two
independent companies. These two companies use different
monthly reporting systems, and we focused on the general
factors, and tried to avoid to extract the specific factors which
only exist to a specific monthly reporting system. After we
extracted the factors, we also discuss with the people in the
HR departments® whether these factors are reasonable and
available to other IT companies. And all of them agree that
it is possible to extract the similar features from other IT

2Some HRs worked in multiple IT companies before they join C1 or C2.

companies. Regarding the factors that we have considered,
there might be additional factors that could be more relevant to
developers’ departure. In the future, to reduce these threats, we
plan to investigate more developers from different companies
and consider more factors.

Threats to construct validity refer to the suitability of
our evaluation measures. We use F1 and AUC scores which
are also used by prior studies to evaluate the effectiveness
of various software engineering studies [19]-[23]. Thus, we
believe there is little threat to construct validity.

V. DISCUSSION

First, previous studies often use survey or interview to inves-
tigate the factors that have impact on developer turnover [40].
In this study, we show that data-driven approach can be used to
effectively predict developer turnover by mining some kinds of
activity data of developers, i.e. monthly report of developers.
Comparing with previous studies that use survey or interview,
the data-driven approach is more quantitative and objective.

Second, our findings might be complementary of previous
studies. The factors found in our study is low level and easily
calculated. The high level factors considered in prior studies
(e.g. person expectation, job satisfaction, etc) are usually hard
to measure. Moreover, we believe our low level factors may
reflect some high level factors; for example, more working
hours, which usually means more pressure on developers, is
like to decrease job satisfaction of developers. In the future, we
will investigate the connection between our low level factors
and high level factors. Furthermore, we believe that more
data from developers’ daily work can be used to extract more
features to help us study developer turnover and understand
the underlying motivations of developers staying or leaving a
company. Such daily work data can be tracked using software
application instrumentation methods [41]-[45]. For example,
MYLAR (currently referred to as MYLYN) listens to Eclipse
IDE selection and view services to monitor programmer
activities in the Eclipse workbench [46]. ActivitySpace can
unobtrusively tracks developer interaction with the working
environment during the work [47]. We can use such kinds
of developer interaction data for various studies on developer
behavior and company management, including the study of
developer turnover. We can also investigate the behavior of
developers who are predicted to leave the company using more
interaction data.

Third, monthly report is a very common practice in many
IT companies, however, there are limited investigations on
mining monthly report. Our paper presents the first study on
how to leverage knowledge behinds monthly reports to predict
developer turnover. We hope our study can inspire more
researches on mining monthly reports. Also, based on monthly
reports, we can also develop other automated tools, e.g., we
can use topic modelling [48] to analyze the development trends
of a project, and we can even predict whether a project will be
successful by aggregating project members’ factors extracted
from monthly reports.

Finally, our tool can also help to reduce the potential risks
in a project team, and help to detect and train potential
excellent employees. For example, if our tool predict that a
developer will leave the company, his/her project manager
can: (1) encourage and communicate with him/her frequently,
and increase the salary or bonus to retain the developer (if
he/she has much potential and is hardworking); (2) involve
another developer as a backup, to avoid the risk due to the
developer resignation. On the other hand, if a developer is
predicted to stay at the company, the PM could consider to
give him/her more resources (e.g., increase salary or bonus)
and train him/her to be a potential leader of a project team.

Besides, project manager can use the results of our tool as
a complement to productivity measures, since developers who
want to leave the company may not focus on their work and
tend to write poor quality code. Project manager can give more
training to developers who are predicted to stay in a team,
and care less about developers who are predicted to leave the
company.

VI. RELATED WORK

In this section, we briefly review the related works on the
reasons and impact of developer turnover.

A. Reasons of Developer Turnover

Researchers have developed a number of significant theo-
retical models to better understand employee turnover, such
as Price-Mueller model [49] and Jackofsky and Slocum’s
integrated process model [50]. According to Mobley [51], the
determinants of employee turnover can be simplified into four
general classes: 1) the external economy, which affects the
availability of alternative jobs; 2) organizational factors, such
as leadership, the reward system, and job design; 3) indi-
vidual non-work variables, like a spouse’s career and family
considerations; 4) individual work-related variables, such as
values, expectations, abilities, satisfaction, commitment, and
intentions.

A lot of studies have been conducted to understand de-
veloper turnover in software engineering community. Yu et
al. find that the objective attribute of open source software
(OSS) project and personal expectations are the two most
important factors to predict turnover [4]. Schilling et al.
analyze the contribution behavior of former Google Summer
of Code and report that the level of development experience
and conversational knowledge is strongly associated with
developer retention [6]. Hynninen et al. conduct a survey
with developers and find that developer turnover can be an
important manifestation of low commitment [5]. Sharma et
al. consider both the developer and project level factors and
suggest that past activity, developer role, project size and
project age are important predictors of turnover [52]. Different
from previous studies which mainly focus on open source
projects, we extract a number of factors from monthly work
reports which are used for project management in an industrial
company and use data mining technique to predict developer
turnover.

B. Impact of Developer Turnover

Obviously, employee turnover could cause economic loss
to companies. Pekala reports that firms in the U.S pay more
than $140 billion annually in recruiting, training, and ad-
ministrative expenses to replace employees who leave [3].
In online communities and collaborative platforms, such as
Wiki projects, the departure of contributors has a negative
effect on the community and causes social capital losses [53].
However, employee turnover could be a good opportunity
for organizations, as leavers are those most dissatisfied with
the current organization, and those who remain enjoy better
conditions and performance [54]. Moderate levels of turnover
could bring fresh level of activities, novel knowledge, and
liveliness for the online communities [55], [56].

Developer turnover could cause knowledge loss in software
development group. Izquierdo-Cortazar et al. propose some
measures of knowledge loss [57], such as the evolution of
orphan lines of code lastly edited by a developer who left
the team. Fronza et al. propose a wordle to visualize the
level of cooperation of a team and mitigate the knowledge
loss due to turnover [58]. According to a survey conducted
by Hall et al. [59], developer turnover might be related
to project success. Developer turnover also has impact on
software quality [7], [8]. Mockus finds that only leavers have
relationship with software quality since the loss of knowledge
and experience [7]. On the contrary, Foucault et al. find that
newcomers have a relationship with quality and leavers do not
have such relationship [8].

VII. CONCLUSION

In this paper, based on large-scale monthly work reports
from two IT companies, we use data mining technique to
investigate whether a developer will leave the company after
he/she enters into the company for one year. The monthly
reports we used are submitted by 3,638 developers in about
6 year period. Our study reveals the most effective classifier
(i.e., random forest) for the prediction of developers’ depar-
ture. Our study also identifies the key relationship between
various dimensions of factors and developers’ departure, and
the important factors which indicate a developer’s departure.
The model from our work can potentially help a company
to effectively predict the potential of a developer’s departure
and take proactive actions to retain talented developers; for
example, by better managing workload variance among project
members. In the future, we will collect more monthly reports
to verify our approach. We will also consider more activity
data from developers and extract more factors to investigate
developer turnover in more IT companies.

ACKNOWLEDGMENT

This research was supported by NSFC Program (No.
61602403 and 61572426), and National Key Technology R&D
Program of the Ministry of Science and Technology of China
(No. 2015BAH17F01).

[1]
[2]

[3]
[4]

[5]

[6]

[7]
[8]

[9]
[10]
(11]
[12]

[13]

[14]
[15]
[16]
(17]
[18]
[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

REFERENCES

A. Whitaker, “What causes it workers to leave,” Management Review,
vol. 88, no. 9, p. 8, 1999.

J. J. Jiang and G. Klein, “Supervisor support and career anchor impact
on the career satisfaction of the entry-level information systems profes-
sional,” Journal of management information systems, vol. 16, no. 3, pp.
219-240, 1999.

N. Pekala, “Holding on to top talent,” Journal of Property management,
vol. 66, no. 5, pp. 22-22, 2001.

Y. Yu, A. Benlian, and T. Hess, “An empirical study of volunteer
members’ perceived turnover in open source software projects,” in 45th
Hawaii International Conference on System Science (HICSS). 1EEE,
2012, pp. 3396-3405.

P. Hynninen, A. Piri, and T. Niinimaki, “Off-sitt commitment and
voluntary turnover in gsd projects,” in IEEE International Conference
on Global Software Engineering. 1EEE, 2010, pp. 145-154.

A. Schilling, S. Laumer, and T. Weitzel, “Who will remain? an eval-
uation of actual person-job and person-team fit to predict developer
retention in floss projects,” in Proc. HICSS. 1EEE, 2012, pp. 3446-
3455.

A. Mockus, “Succession: Measuring transfer of code and developer
productivity,” in Proc. ICSE. IEEE, 2009, pp. 67-77.

M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri,
“Impact of developer turnover on quality in open-source software,” in
Proc. FSE. ACM, 2015, pp. 829-841.

A. Mockus, “Organizational volatility and its effects on software defect-
s, in Proc. FSE. ACM, 2010, pp. 117-126.

R. F. Flesch, How to write plain English: A book for lawyers and
consumers. Harpercollins, 1979.

G. H. Mc Laughlin, “Smog grading-a new readability formula,” Journal
of reading, vol. 12, no. 8, pp. 639-646, 1969.

J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom,
“Derivation of new readability formulas (automated readability index,
fog count and flesch reading ease formula) for navy enlisted personnel,”
DTIC Document, Tech. Rep., 1975.

M. Coleman and T. L. Liau, “A computer readability formula designed
for machine scoring.” Journal of Applied Psychology, vol. 60, no. 2, p.
283, 1975.

R. Senter and E. A. Smith, “Automated readability index,” DTIC
Document, Tech. Rep., 1967.

E. Dale and J. S. Chall, “A formula for predicting readability: Instruc-
tions,” Educational research bulletin, pp. 37-54, 1948.

“Linsear write,” http://www.csun.edu/~vcecn006/read 1 .html#Linsear.
R. Gunning, “{The Technique of Clear Writing},” 1952.

“textstat,” https://pypi.python.org/pypi/textstat.

T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Proc.
ASE. 1IEEE, 2013, pp. 279-289.

S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181-196, 2008.

J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc. ICSE.
IEEE Press, 2013, pp. 382-391.

A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in Proc. MSR. 1EEE, 2010, pp. 1-10.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485-496, 2008.

J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip ef al., “Top 10 algorithms in
data mining,” Knowledge and information systems, vol. 14, no. 1, pp.
1-37, 2008.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high ac-
curacy prediction of reopened bugs,” Automated Software Engineering,
vol. 22, no. 1, pp. 75-109, 2015.

X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,” IEEE
Transactions on Software Engineering, vol. 42, no. 10, pp. 977-998,
2016.

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

(51]

[52]

[53]

[54]

X. Xia, D. Lo, X. Wang, and X. Yang, “Collective personalized
change classification with multiobjective search,” IEEE Transactions on
Reliability, vol. 65, no. 4, pp. 1810-1829, 2016.

X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting crashing
releases of mobile applications,” in Proc. ESEM. ACM, 2016, p. 29.
X. Xia, D. Lo, E. Shihab, and X. Wang, “Automated bug report
field reassignment and refinement prediction,” IEEE Transactions on
Reliability, vol. 65, no. 3, pp. 1094-1113, 2016.

X. Yang, D. Lo, X. Xia, and J. Sun, “Condensing class diagrams with
minimal manual labeling cost,” in Computer Software and Applications
Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 1. 1EEE, 2016,
pp. 22-31.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and 1. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009.

F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80-83, 1945.

H. Abdi, “Bonferroni and §idak corrections for multiple comparisons,”
Encyclopedia of measurement and statistics, vol. 3, pp. 103—107, 2007.
M. N. Audris Mockus and H. Sharp, “Best practices and pitfalls for
statistical analysis of se data,” in Proc. ICSE. 1EEE, 2014.

Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the charac-
teristics of high-rated apps? a case study on free android applications,”
in Proc. ICSME. 1EEE, 2015, pp. 301-310.

D. H. Wolpert and W. G. Macready, “An efficient method to estimate
bagging’s generalization error,” Machine Learning, vol. 35, no. 1, pp.
41-55, 1999.
“Scott-knott test,”
ScottKnott.pdf.

S. G. Westlund and J. C. Hannon, “Retaining talent: Assessing job sat-
isfaction facets most significantly related to software developer turnover
intentions,” Journal of Information Technology Management, vol. 19,
no. 4, pp. 1-15, 2008.

T.-H. Chang, T. Yeh, and R. Miller, “Associating the visual represen-
tation of user interfaces with their internal structures and metadata,” in
Proc. UIST, 2011, pp. 245-256.

A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, L. Li,
and J. L. Herlocker, “TaskTracer: a desktop environment to support
multi-tasking knowledge workers,” in Proc. IUI, 2005, p. 75.

E. Harpstead, B. A. Myers, and V. Aleven, “In search of learning:
facilitating data analysis in educational games,” in Proc. CHI, 2013,
p.- 79.

W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless, “Edit wear
and read wear,” in Proc. CHI, 1992, pp. 3-9.

J. H. Kim, D. V. Gunn, E. Schuh, B. C. Phillips, R. J. Pagulayan, and
D. Wixon, “Tracking real-time user experience (TRUE): a comprehen-
sive instrumentation solution for complex systems,” in Proc. CHI, 2008,
pp. 443-451.

M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proc. AOSD, 2005, pp. 159-168.

L. Bao, D. Ye, Z. Xing, X. Xia, and X. Wang, “Activityspace: a
remembrance framework to support interapplication information needs,”
in Proc. ASE. IEEE, 2015, pp. 864-869.

D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, pp. 77-84, 2012.

J. L. Price, “Reflections on the determinants of voluntary turnover,”
International Journal of manpower, vol. 22, no. 7, pp. 600-624, 2001.
E. F. Jackofsky and J. W. Slocum, “A causal analysis of the impact
of job performance on the voluntary turnover process,” Journal of
Organizational Behavior, vol. 8, no. 3, pp. 263-270, 1987.

W. H. Mobley, “Employee turnover: Causes, consequences, and control,”
1992.

P. N. Sharma, J. Hulland, and S. Daniel, “Examining turnover in open
source software projects using logistic hierarchical linear modeling
approach,” in IFIP International Conference on Open Source Systems.
Springer, 2012, pp. 331-337.

X. Qin, M. Salter-Townshend, and P. Cunningham, “Exploring the
relationship between membership turnover and productivity in online
communities,” arXiv preprint arXiv:1401.7890, 2014.

D. Krackhardt and L. W. Porter, “When friends leave: A structural
analysis of the relationship between turnover and stayers’ attitudes,”
Administrative science quarterly, pp. 242-261, 1985.

https://cran.r-project.org/web/packages/ScottKnott/

[55]

[56]

(571

S. Ransbotham and G. C. Kane, “Membership turnover and collaboration
success in online communities: Explaining rises and falls from grace in
wikipedia,” MIS Quarterly-Management Information Systems, vol. 35,
no. 3, p. 613, 2011.

L. Dabbish, R. Farzan, R. Kraut, and T. Postmes, “Fresh faces in the
crowd: turnover, identity, and commitment in online groups,” in Proc.
CSCW. ACM, 2012, pp. 245-248.

D. Izquierdo-Cortazar, “Relationship between orphaning and produc-
tivity in evolution and gimp projects,” ence, Eindhoven University of

(58]

[59]

Technology, The Netherlands., p. 6.

I. Fronza, A. Janes, A. Sillitti, G. Succi, and S. Trebeschi, “Cooperation
wordle using pre-attentive processing techniques,” in Proc. CHASE.
IEEE, 2013, pp. 57-64.

T. Hall, S. Beecham, J. Verner, and D. Wilson, “The impact of staff
turnover on software projects: the importance of understanding what
makes software practitioners tick,” in Proceedings of the 2008 ACM
SIGMIS CPR conference on Computer personnel doctoral consortium
and research. ACM, 2008, pp. 30-39.

