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The SZZ algorithm is the dominant technique for identifying bug-inducing commits and serves as a foundation
for many software engineering studies, such as bug prediction and static code analysis, thereby enhancing
software quality and facilitating better maintenance practices. Researchers have proposed many variants to
enhance the SZZ algorithm’s performance since its introduction. The majority of them rely on static techniques
or heuristic assumptions, making them easy to implement, but their performance improvements are often
limited. Recently, a deep learning-based SZZ algorithm has been introduced to enhance the original SZZ
algorithm. However, it requires complex preprocessing and is restricted to a single programming language.
Additionally, while it enhances precision, it sacrifices recall. Furthermore, most of variants overlook crucial
information, such as commit messages and patch context, and are limited to bug-fixing commits involving
deleted lines.

The emergence of large language models (LLMs) offers an opportunity to address these drawbacks. In
this study, we investigate the strengths and limitations of LLMs and propose LLM4SZZ, which employs two
approaches (i.e., rank-based identification and context-enhanced identification) to handle different types of
bug-fixing commits. We determine which approach to adopt based on the LLM’s ability to comprehend the
bug and identify whether the bug is present in a commit. The context-enhanced identification provides the
LLM with more context and requires it to find the bug-inducing commit among a set of candidate commits. In
rank-based identification, we ask the LLM to select buggy statements from the bug-fixing commit and rank
them based on their relevance to the root cause. Experimental results show that LLM4SZZ outperforms all
baselines across three datasets, improving F1-score by 6.9% to 16.0% without significantly sacrificing recall.
Additionally, LLM4SZZ can identify many bug-inducing commits that the baselines fail to detect, accounting
for 7.8%, 7.4% and 2.5% of the total bug-inducing commits across three datasets, respectively.
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1 Introduction
Having been proposed in 2005, the SZZ algorithm [Śliwerski et al. 2005] and its variants have been
widely used in finding bug-inducing commits from bug-fixing commits. The original SZZ algorithm
assumes that the deleted lines in the bug-fixing commit cause the bug. It first locates the deleted
lines in the bug-fixing commit. Then, it uses the annotate command from the version control
system to trace back the commits that most recently added or modified these lines. Finally, it marks
the identified commits as bug-inducing commits. Many downstream tasks can be performed based
on bug-inducing commits, such as analyzing why the bugs occur [Aman et al. 2019; Bavota and
Russo 2015], predicting defects [Fan et al. 2019; Hata et al. 2012; Yan et al. 2020], and measuring the
factors that influence software quality [Chen and Jiang 2019; Tufano et al. 2017].
Although the SZZ algorithm has achieved great success, it still suffers from low precision.

Consequently, many variants have been proposed [Da Costa et al. 2016; Davies et al. 2014; Kim
et al. 2006; Neto et al. 2018; Tang et al. 2023] to address this problem. Some methods [Da Costa
et al. 2016; Kim et al. 2006; Neto et al. 2018] attempted to improve precision by removing noise
in bug-fixing commits using static analysis. Noise refers to changes that do not influence the
program’s behavior, such as blank lines, comments, or refactoring operations. These irrelevant
changes are unrelated to the bug, and tracing them back can lead to false positives in the output.
Other methods [Davies et al. 2014] try to improve precision by treating the commits identified by the
original SZZ algorithm as candidates and selecting the final bug-inducing commit from them. They
choose the final bug-inducing commit by considering factors such as commit dates or the number
of changed lines. To further improve precision, Tang et al. [Tang et al. 2023] introduced a deep
learning method that embeds changed lines based on their semantic meanings and relationships,
training a ranking model to identify the deleted lines most likely to cause the bug. However, this
approach significantly sacrifices recall.
Although previous studies have made some advancements, several limitations still exist. Limi-

tation 1: These methods overlook the commit message of the bug-fixing commit. Typically, the
commit message contains essential information on why the changes were made [Mockus and Votta
2000; Yan et al. 2016] and many of these messages describe how the bug occurs and how the commit
fixes it. This information is vital for understanding the commit and accurately locating buggy
statements. Limitation 2: These methods assume that only deleted lines cause bugs [Kim et al.
2006; Śliwerski et al. 2005; Tang et al. 2023], making them inapplicable to bug-fixing commits that
contain only added lines. Limitation 3: These methods focus solely on changed lines, ignoring the
context of the entire patch. Previous studies have shown that the context, including unmodified
lines near the changes, can provide crucial information for the model to understand the code [Chen
et al. 2019; Xia et al. 2023]. Sometimes, it might be the unmodified lines themselves that lead to the
bug, rather than the changed lines [Rosa et al. 2021]. Limitation 4: Methods that select the final
bug-inducing commit from a set of candidates often rely on heuristic assumptions [Davies et al.
2014], such as commit dates or the number of changed lines. These assumptions may not work in
all scenarios [Bao et al. 2022]. Ideally, we should determine the final bug-inducing commit based
on the root cause of the bug and the content of the candidate commit.
The emergence of Large Language Models (LLMs) presents an opportunity to address the

aforementioned limitations. Previous studies indicate that LLMs can effectively understand code
changes and commit messages [Li et al. 2024b; Xue et al. 2024]. One fundamental improvement is
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to utilize the LLM to analyze the root cause of the bug and identify buggy statements based on code
changes and the commit message. This process leverages the commit message, addressing limitation
1. When identifying buggy statements, the LLM can detect not only deleted lines but also unchanged
lines, addressing limitation 2. The enhanced approach then traces these buggy statements to obtain
a set of candidate commits and requires the LLM to select the bug-inducing commits from this set,
addressing limitation 4. Furthermore, we can provide the LLM with more context which solves
limitation 3. At first glance, this simple approach seems to address all the problems. However, several
challenges remain in this simple method. Challenge 1: LLMs struggle with complex bug-fixing
commits that involve numerous changes across multiple files and functions. These commits often
contain significant noise unrelated to the bug fix, undermining LLM’s performance. Challenge
2: We need to provide more information to help the LLM determine whether the bug exists. The
root cause of the bug and the content of the commit are often insufficient (see Section 3.2 and
Section 5.2).Challenge 3: When asking the LLM to determine whether a commit contains a bug, we
must carefully consider the context provided. An overly long context can degrade performance [Li
et al. 2023a], while a too-short context may omit crucial information necessary for the LLM to
understand the code [Chen et al. 2019; Xia et al. 2023]. Challenge 4: Many types of bugs remain
beyond the LLM’s understanding [Bouzenia et al. 2024; Parasaram et al. 2024], making it difficult
for LLMs to ascertain their presence in a commit. Treating these bugs the same way as those the
LLM can comprehend will adversely affect overall performance. For instance, if we determine that
the LLM can understand the bug and identify its presence in a commit, we can use it to select the
final bug-inducing commit from a set of candidates; otherwise, we cannot. Further details will be
discussed in Section 5.2. Therefore, a better approach is needed to solve those challenges to fully
leverage the potential of LLMs.
In this paper, we propose an LLM-based approach called LLM4SZZ. In the preparation phase,

we summarize the root cause of the bug and filter out irrelevant files based on the patch content
and the commit message. This step helps eliminate noise when handling large bug-fixing commits,
addressing challenge 1. Next, we assess the LLM’s ability to understand the bug and the ability
to determine whether it exists in the commit. Instead of directly asking the LLM to determine
whether a commit contains a bug, we employed a more complex strategy, consisting of several
parts. This approach is taken because we find that direct judgments are ineffective, see Section 5.2.
To evaluate this ability, we first provide the LLM with expanded context and require it to generate
a hint indicating whether the bug is present, addressing challenge 2. Before asking the LLM to
determine whether the bug exists, we refine the context to address challenge 3. We then present
the LLM with the root cause of the bug, the hint, and refined contexts for two versions of the
program: one buggy and one correct. If the LLM can accurately distinguish between the two
versions, we consider it capable; otherwise, it is not. Based on this ability assessment, we developed
two approaches: context-enhanced identification and rank-based identification, which resolves
challenge 4. In context-enhanced identification, we provide the LLM with more context and require
it to select the bug-inducing commit from a set of candidates. In rank-based identification, we
follow the methodology outlined in the previous study [Tang et al. 2023], asking the LLM to identify
buggy statements from the bug-fixing commit and rank them based on their relevance to the root
cause. To evaluate our method, we use three high-quality, developer-annotated datasets, ensuring
their accuracy. We assess our proposed method by answering the following questions:
RQ1: How effective is LLM4SZZ in identifying bug-inducing commits from bug-fixing

commits compared to baselines?

In this RQ, we compare LLM4SZZ with all baselines across three datasets to determine whether
LLM4SZZ can outperform the baselines in identifying bug-inducing commits. The experimental
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results demonstrate that LLM4SZZ surpasses all other baselines in F1-score, with a notable improve-
ment ranging from 6.9% to 16.0%. Furthermore, LLM4SZZ enhances both precision and F1-score
without significantly sacrificing recall.
RQ2: How effective are the key components of LLM4SZZ ?

We also conduct an ablation experiment to ensure that all key components of LLM4SZZ, namely
the context-enhanced assessment, the context-enhanced identification, and the rank-based identifi-
cation, contribute to its performance. Additionally, we demonstrate that utilizing LLMs directly on
the SZZ algorithm cannot yield satisfactory results.
RQ3: How effective is LLM4SZZ if we apply it on other open-source large languagemodels?

In this RQ, we aim to examine whether the core ideas of LLM4SZZ can be applied to other
open-source large language models. We implement LLM4SZZ using llama3-8b and llama3-70b. The
experimental results show that LLM4SZZ can be effectively applied to other LLMs, and better LLMs
can enhance its performance.

In summary, we make the following contributions:

• We provide insights into how large language models (LLMs) can enhance the performance of the
SZZ algorithm while also highlighting the limitations in this task.

• Based on these insights, we propose a novel approach to fully leverage the LLM’s capabilities,
which consists of two methods for locating bug-inducing commits, with the choice of method
being adaptive to the LLM’s ability to comprehend the bug.

• We implement LLM4SZZ on two popular programming languages and evaluate it on three
developer-annotated datasets. The experimental results show that LLM4SZZ outperforms all
other baselines across the datasets.

2 Background
In this section, we first introduce the SZZ algorithm’s variants. Then we present our motivation
examples.

2.1 SZZ algorithms
AG-SZZ. The AG-SZZ algorithm was proposed by Kim et al. [Kim et al. 2006]. They observed
that some changes in bug-fixing commits, such as blank lines, comments, and cosmetic changes,
do not affect the program’s behavior. Therefore, they excluded these changes when tracing back
deleted lines. Additionally, they utilized the annotation graph instead of simply using the annotate
command, as the annotation graph provides more detailed information about line changes and
movements.
MA-SZZ. Da Costa et al. proposed the MA-SZZ algorithm. [Da Costa et al. 2016]. They found that
the AG-SZZ algorithm mistakenly identifies commits with only meta-changes as bug-inducing
commits. Meta-changes refer to branch changes, merge changes, and property changes. Da Costa et
al. addressed this issue by connecting all meta-change nodes in the annotation graph to their prior
changes, ensuring that the MA-SZZ algorithm does not include meta-changes as bug-inducing
commits.
R-SZZ and L-SZZ. L-SZZ and R-SZZ, both based on the AG-SZZ algorithm, were proposed by
Davies et al. [Davies et al. 2014]. They improved the AG-SZZ algorithm by selecting only one
commit as the bug-inducing commit from the results produced by the AG-SZZ algorithm. R-SZZ
selects the commit with the most recent date, while L-SZZ selects the commit with the most changed
lines.
RA-SZZ. Neto et al. [Neto et al. 2018] proposed the RA-SZZ algorithm after discovering that
previous SZZ algorithms trace back changed lines related to refactoring operations when locating
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1    static void deferred_probe_timeout_work_func(struct work_struct *work)
2    {         
3   -          struct device_private *private, *p;
4   +         struct device_private *p;
5              driver_deferred_probe_timeout = 0;
6              driver_deferred_probe_trigger();
7              flush_work(&deferred_probe_work);
8   -          list_for_each_entry_safe(private, p, &deferred_probe_pending_list, deferred_probe)
9   -                     dev_info(private->device, "deferred probe pending\n");
10 +         mutex_lock(&deferred_probe_mutex);
11 +         list_for_each_entry(p, &deferred_probe_pending_list, deferred_probe)
12 +                      dev_info(p->device, "deferred probe pending\n");
13 +         mutex_unlock(&deferred_probe_mutex);
14 +         wake_up_all(&probe_timeout_waitqueue);
15    }
16    static DECLARE_DELAYED_WORK(deferred_probe_timeout_work, 
17          deferred_probe_timeout_work_func);

Fixing Commit: eed6e41813d in linux
driver core: Fix locking bug in deferred_probe_timeout_work_func(). list_for_each_entry_safe() is only useful if we are 
deleting nodes in a linked list within the loop. It doesn't protect against other threads adding/deleting nodes to the list in 
parallel.

1 files changed, 5 additions(+) and 3 deletions(-)
dd.c

Fig. 1. Motivation example one

bug-inducing commits. Since refactoring operations do not affect the program’s behavior, including
them may introduce noise. Therefore, they used two tools RefDiff [Silva and Valente 2017] and
Refactoring Miner [Tsantalis et al. 2018] to exclude refactoring modifications before tracing back
lines. However, this algorithm is limited to Java projects, as the two tools mentioned above cannot
work on other programming languages.
Neural-SZZ. Neural-SZZ, proposed by Tang et al. [Tang et al. 2023], is based on deep learning.
They observed that the previous methods fail to consider the semantic meaning of changed lines
and the relationships between them. To address this, they utilize the CodeBERT [Feng et al. 2020]
model to embed the changed lines, capturing their semantic meanings. Additionally, they use a
heterogeneous graph attention network (HAN) [Wang et al. 2019] to capture the relationships
between changed lines. After obtaining the embeddings of the changed lines, they employ the
RankNet [Burges 2010] model to select the deleted lines that are most likely to be the root cause of
the bug. Finally, they trace back the top N lines in the ranked list to locate bug-inducing commits.
The authors implemented the algorithm only for the Java programming language.

2.2 Potential and limitations of LLMs

In this subsection, we present motivation examples to demonstrate the potential and limitations
of LLMs in locating bug-inducing commits. We utilize the LLM GPT-4o-mini [OpenAI 2024] to
illustrate these examples.
LLMs have the potential to identify the root cause of the bug from the bug-fixing

commit and reduce false positives by pinpointing the bug-inducing commit from a set of

candidates. We illustrate this with the example presented in Figure 1, which involves a bug-fixing
commit 𝑒𝑒𝑑6𝑒41813𝑑 in Linux. We feed the prompt, "Based on the content of the bug-fixing commit,
analyze the root cause of the bug and output the code statements leading to the bug", along with
the content of the bug-fixing commit to the LLM. The LLM successfully predicts that the bug occurs
because the function list_for_each_entry_safe fails to protect the list when multiple threads
add or delete nodes in parallel. It identifies lines 8 and 9 as buggy statements, filtering out line 3.
Tracing back these two lines will yield two candidate bug-inducing commits, 𝑒𝑏7𝑓 𝑏𝑐9𝑓 𝑏11 and
25𝑏4𝑒70𝑑𝑐𝑐𝑒 . We then use the LLM to determine which candidate commit introduces the bug. The
LLM finds that the commit 𝑒𝑏7𝑓 𝑏𝑐9𝑓 𝑏11 introduces line 9 but only modifies the second parameter
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1      ZooKeeperInstance(Configuration config, ZooCacheFactory zcf) {
2          ArgumentChecker.notNull(config);
3          if (config instanceof ClientConfiguration) {
4            this.clientConf = (ClientConfiguration) config;
5          } else {
6            this.clientConf = new ClientConfiguration(config);
7          }
8          this.instanceId = clientConf.get(ClientProperty.INSTANCE_ID);
9      this.instanceName = clientConf.get(ClientProperty.INSTANCE_NAME);
10      if ((instanceId == null) == (instanceName == null))
11          throw new IllegalArgumentException("Expected exactly one of instanceName and instanceId to be set");
12        this.zooKeepers = clientConf.get(ClientProperty.INSTANCE_ZK_HOST);
13        this.zooKeepersSessionTimeOut = (int)AccumuloConfiguration.getTimeInMillis(clientConf.get(ClientProperty.INSTANCE_ZK_TIMEOUT));
14        zooCache = zcf.getZooCache(zooKeepers, zooKeepersSessionTimeOut);
15 +     if (null != instanceName) {
16 +     // Validates that the provided instanceName actually exists
17 +       getInstanceID();
18 +     }
19     }

Fixing Commit: c5153331c in Accumulo
Enforce a valid instance name on ZKI creation by calling getInstanceID(), which would throw a RuntimeException if the user passed in an 
instance name which did not exist in the zookeepers provided..….

4 files changed, 29 insertions(+), 8 deletions(-)
ZooKeeperInstance.java

Fig. 2. Motivation example two

of the dev_info function, which does not affect the existence of the bug. Consequently, we filter
out commit 𝑒𝑏7𝑓 𝑏𝑐9𝑓 𝑏11 and identify 25𝑏4𝑒70𝑑𝑐𝑐𝑒 as the final bug-inducing commit.

However, LLMs face challenges when handling large bug-fixing commits, so it is benefi-

cial to filter out irrelevant files before identifying buggy statements. This is demonstrated in
the second motivation example illustrated in Figure 2. This commit modifies four files, introducing
twenty-nine insertions and making eight deletions. Due to page limits, we only show the most
important part related to the identification of bug-inducing commits. The lines highlighted in
blue are added by us and are not in the original patch content. According to the commit message,
the bug arises because the program fails to call the getInstanceId function to enforce a valid
instance name and the bug is only related to the instanceName variable. If we directly input the
whole patch into the LLM and require it to identify the code statements leading to the bug, it
erroneously points the @Test(expected = RuntimeException.class) statement in another file
named ZooKeeperInstanceTest.java.
This example also demonstrates that LLMs have the potential to understand commit

messages and accurately locate buggy statements, but they need sufficient context. If we ex-
clude the other files and only feed the LLM with changes in the correct file ZooKeeperInstance.java,
the LLM still cannot output the correct code statements. Concretely, if we provide the LLM with the
commitmessage and the original patch content (lines 12 to 19 in Figure 2), it still incorrectly identifies
line 14 as buggy code statements. This is due to insufficient context. According to the commit mes-
sage, the bug is related to the variable instanceName. However, in the original patch content(lines
12 to 19), the only code statement related to the variable instanceName is line 15, which is used to
fix the bug. The full content of the ZooKeeperInstance constructor (lines 1 to 19 in Figure 2) con-
tains the statement this.instanceName = clientConf.get(ClientProperty.INSTANCE_NAME),
which relates to the instanceName variable. But this statement is not displayed in the original
patch. By providing the expanded context(lines 1 to 19), which includes the entire constructor, the
LLM can correctly identify the code statement in line 9.

3 Approach
Building on the motivation examples, we propose a new framework called LLM4SZZ to effectively
detect buggy statements and locate bug-inducing commits. Fig. 3 presents the overview of our
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SMU Classification: Restricted

Preparation Commits Identification

root 
cause

related 
files

… 
  flush_work(&deferred_probe_work);
  list_for_each_entry_safe(private, p, &deferred_probe_pending_list,    

deferred_probe)
+             dev_info(private->device, "deferred probe pending\n");

…

…
  flush_work(&deferred_probe_work);
  list_for_each_entry_safe(private, p,  &deferred_probe_pending_list, 
deferred_probe)
- dev_info(private->device, "deferred probe pending");
  …

Based on the commit message, the root cause 
and the patch provided below, you need to:
1. explain how the bug occurs, including code 
statements that are likely to lead to the bug 
and why. 
2. explain how the bug is fixed, including code 
statements fixing the bug and why. 

Prompt

LLM hints

and 𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇^ 1𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇refined contexts for

The code statements that lead to the bug are:
…
Reason:
…
The code statements that fix the bug are:
Reason:
…

bug-fixing
commit

Based on the summary and commit 
message, you need to:
1. analyze the root cause of the bug in 
detail. 
2. output the file name that is most 
likely to cause the bug.

Prompt

shuffle expanded
context

refine

You will be given details about a bug, including:
[a commit with refined context]
[root cause]
[LLM hints]
Based on these details, your task is to 
determine whether the provided code snippet 
contains the bug.

Prompt

ability check

Rank-based 
identificationshuffled 

patch

context 
expanding

LLM

1

2

3

4

Context-enhanced Assessment

Context-enhanced
identificationChange 

summary

buggy statements

Fig. 3. Overview of LLM4SZZ
framework, which consists of three parts: preparation, context-enhanced assessment, and commits
identification. In the preparation phase, we analyze the bug-fixing commit, identify the core files
related to the bug, and determine its root cause. During the context-enhanced assessment, we
assess whether the LLM can understand the bug and determine its presence in the commit. If the
LLM demonstrates this ability, we employ the context-enhanced identification approach during the
commit identification process; otherwise, we fall back to the rank-based identification approach.

3.1 Preparation
In this step, we use the large language model (LLM) to analyze bug-fixing commits. We aim to
summarize the root cause of the bug based on the bug-fixing commit and filter out irrelevant files.
In motivation example one, we have shown that irrelevant files undermine the LLM’s ability and
we need to filter them out.

Following the chain-of-thought (CoT) concept [Wei et al. 2022], we first require the LLM to
analyze the patch, summarizing the modifications and their interrelationships within the bug-fixing
commit. Next, we ask the LLM to identify the root cause of the bug and the related files based on
the modification summary and the commit message.

To enhance performance when handling large bug-fixing commits with multiple modified files,
we employ two additional approaches. First, we shuffle the sequence of modified files in the patch,
ensuring that each file has an equal chance of being identified as related to the root cause. Previous
studies [Liu et al. 2024] reveal that LLMs tend to ignore content in the middle of text when handling
long texts. Second, we run the LLM three times for the same question and shuffle the patch at each
run-time. This approach is similar to a voting system [Wang et al. 2022]. However, instead of only
considering files with majority votes, we take a more conservative approach: if a file name appears
in any of the LLM outputs, we regard it as related to the root cause. This strategy helps minimize
the risk of omitting important files. After this step, we obtain the root cause of the bug and filter
out all irrelevant files.

3.2 Context-enhanced assessment
In this section, we explain the necessity of the assessment and our approach to it. In the first
motivation example, we demonstrate that LLMs can determine whether a bug exists in a commit,
allowing us to use them to select the final bug-inducing commit from a set of candidates. The second
example illustrates that providing more context can enhance the LLM’s ability to understand the
patch and help identify buggy statements more accurately. However, previous studies in automatic
program repair have shown that LLMs still do not comprehend certain bugs [Bouzenia et al.
2024; Parasaram et al. 2024], even with enough context. This indicates that LLMs are unable to
determine whether these kinds of bugs exist in programs because they cannot understand the bugs.
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If LLMs cannot understand the bug even with additional context, providing more context becomes
meaningless, and alternative methods are required to address these cases. Therefore, it is crucial to
assess the LLM’s ability to comprehend the bug and identify its presence.
To assess the LLM’s ability to determine whether the bug exists, we need two versions of the

program: one containing the bug and another where it has been fixed. Therefore, an ideal approach
is to make use of the bug-fixing commit𝐶𝑓 𝑖𝑥 , where the version𝐶𝑓 𝑖𝑥

∧1 is buggy and version𝐶𝑓 𝑖𝑥 is
correct. Although we can directly require the LLM to assess whether the commit is buggy based on
the root cause of the bug, experimental results indicate that this approach yields low performance
(see section 4). Instead, we first require the LLM to generate a hint to assist in determining whether
the commit contains the bug. The hint includes detailed information about the code statements in
the patch. Its further specifics will be provided later in this section. Then, we separately feed the
hint and the bug-related contexts extracted from commit 𝐶𝑓 𝑖𝑥 and 𝐶𝑓 𝑖𝑥

∧1 to the LLM, asking it to
identify whether each version contains the bug. If the LLM even cannot identify the two versions
correctly using its own produced hint, we regard that the LLM is unable to comprehend the bug,
let alone select the final bug-inducing commit from a set of candidates.
As shown in Figure 3, the entire context-enhanced assessment process consists of four steps,

which are as follows:
❶ Context Expanding: First, we provide the LLM with sufficient context through a process

that we call context expanding. Previous studies have found that the contextual code is crucial for
providing information to the model [Chen et al. 2019; Xia et al. 2023]. However, the bug-fixing
commit often does not contain the full content of the changed functions. The partial content of
functions in the fixing commit may hinder the LLM’s ability to understand both the functions and
the modifications. Therefore, for each modified function, we expand its context by extracting the
full content of both buggy and fixed versions and generating their diffs. For modified lines outside
the function, we expand their context by extracting three unmodified lines around them. We have
presented an example of context expanding in the second motivation example, as illustrated in
Figure 2. Specifically, the code highlighted in blue represents new additions, and the others are
collected from the original patch. As indicated in Section 2.2, the buggy code this.instanceName
= clientConf.get(ClientProperty.INSTANCE_NAME) is not located in the original patch but in
the expanded context, indicating the necessity of the context expanding.

❷ Hint Generation: Next, we require the LLM to establish a hint to determine whether the bug
exists in a commit. Specifically, we ask the LLM to identify the code statements leading to the bug
and provide a reason. Additionally, we require the LLM to identify the code statements that fix the
bug and provide a reason. Note that we do not limit the LLM to choosing code statements only
from deleted lines. It can select any code statements from the expanded context.

❸ Context Refinement: Before assessing the LLMs’ ability to determine whether the bug exists
in a commit, we need to refine the expanded context to obtain the refined context. This step is
necessary because the expanded context may contain much irrelevant content that is not related
to the bug. For example, the expanded context might include an entire function with hundreds of
lines, while only a few lines are relevant to the bug. Feeding the expanded context directly to LLMs
may undermine their ability to assess the existence of the bug in a commit, as previous studies [Li
et al. 2023a] suggest that LLMs struggle with intricate tasks when handling long texts. Therefore,
we attempt to refine the expanded context. We first extract the buggy statements identified in the
hint from the file in commit 𝐶𝑓 𝑖𝑥

∧1. These buggy statements are then sorted in ascending order
based on their line numbers {𝑙1, 𝑙2, ... 𝑙𝑛 } in commit 𝐶𝑓 𝑖𝑥

∧1, where 𝑙1 is the smallest line number
and 𝑙𝑛 is the largest. Here, we define 𝑙𝑚𝑖𝑛 as 𝑙1 − 𝑁 and 𝑙𝑚𝑎𝑥 as 𝑙𝑛 + 𝑁 . N is a constant starting from
3 to ensure that lines 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 can be mapped to corresponding lines in commit 𝐶𝑓 𝑖𝑥 . If line
𝑙𝑚𝑖𝑛 or line 𝑙𝑚𝑎𝑥 cannot be mapped, we keep incrementing N. Then, we extract the content ranging
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SMU Classification: Restricted

1      driver_deferred_probe_timeout = 0;
2      driver_deferred_probe_trigger();
        
3      flush_work(&deferred_probe_work);
4 -    list_for_each_entry_safe(private, p, &deferred_probe_pending_list,
5 -                             deferred_probe)
6 -       dev_info(private->device, "deferred probe pending\n");
7      }
8      static DECLARE_DELAYED_WORK(deferred_probe_timeout_work, 
9          deferred_probe_timeout_work_func);

1       driver_deferred_probe_timeout = 0;
2       driver_deferred_probe_trigger();
3       flush_work(&deferred_probe_work);
4+     mutex_lock(&deferred_probe_mutex);
5+     list_for_each_entry(p, &deferred_probe_pending_list, 
6+                                   deferred_probe)
7+        dev_info(p->device, "deferred probe pending\n");
8+     mutex_unlock(&deferred_probe_mutex);
9+     wake_up_all(&probe_timeout_waitqueue);
10     }
11     static DECLARE_DELAYED_WORK(deferred_probe_timeout_work, 
12          deferred_probe_timeout_work_func);

eed6e41813d^1 eed6e41813d

The code statements that lead to the bug are:
list_for_each_entry_safe(private, p, &deferred_probe_pending_list, deferred_probe)
dev_info(private->device, "deferred probe pending\nn"); 
Reason: The provided code snippet is indeed buggy because it uses `list_for_each_entry_safe()` to 
traverse the `deferred_probe_pending_list` without protecting against concurrent modifications from 
other threads…
The code statements that fix the bug are:
mutex_lock(&deferred_probe_mutex); 
mutex_unlock(&deferred_probe_mutex); 
Reason: The provided code snippet correctly uses a mutex lock (`mutex_lock(&deferred_probe_mutex);`) 
before iterating over the `deferred_probe_pending_list` with `list_for_each_entry()`…

Hint

Fig. 4. An example of context-enhanced ability check

SMU Classification: Restricted
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Fig. 5. The workflow of context-enhanced identification

from the line number 𝑙𝑚𝑖𝑛 to the line number 𝑙𝑚𝑎𝑥 , forming the refined context for commit 𝐶𝑓 𝑖𝑥
∧1.

To obtain the refined context for commit 𝐶𝑓 𝑖𝑥 , we map lines 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 to their corresponding
line numbers 𝑙 ′𝑚𝑖𝑛 and 𝑙 ′𝑚𝑎𝑥 and extract the content between these two line numbers in commit
𝐶𝑓 𝑖𝑥 , forming the refined context for commit 𝐶𝑓 𝑖𝑥 .

❹ Ability Check: Finally, with the contexts for both commits obtained, we begin to check the
LLM’s ability to determine whether the bug exists in the commit. We provide the LLM with the root
cause of the bug, the hint collected above, and the refined contexts for two versions. If the LLM can
correctly identify the fixed version and the buggy version, we proceed to adopt context-enhanced
identification. Otherwise, we fall back to rank-based identification.

One example of the context-enhanced ability check is shown in Figure 4, which corresponds to
the motivation example one. Here, we set N to 3. The LLM identifies lines from 4 to 6 as buggy
statements in 𝑒𝑒𝑑6𝑒41813𝑑∧1. Therefore, 𝑙𝑚𝑖𝑛 is 1 and 𝑙𝑚𝑎𝑥 is 9. To generate the refined context for
this commit, we extract lines ranging from line 1 to line 9. We then map line 1 and line 9 to commit
𝑒𝑒𝑑6𝑒41813𝑑 , getting 𝑙 ′𝑚𝑖𝑛 as 1 and 𝑙 ′𝑚𝑎𝑥 as 12. Finally, we extract the lines between them, forming
the refined context in commit 𝑒𝑒𝑑6𝑒41813𝑑 . We feed the LLM with the root cause of the bug, the
hint, and two versions of the context. It identifies the context for commit 𝑒𝑒𝑑6𝑒41813𝑑∧1 as buggy
and the context for commit 𝑒𝑒𝑑6𝑒41813𝑑 as correct, demonstrating its ability to determine whether
the bug exists in a commit.

3.3 Commits identification
3.3.1 Context-enhanced identification. Given a bug-fixing commit, once we verify that the LLM
can understand the bug in it with the expanded and refined context, we apply context-enhanced

identification to identify the bug-inducing commits, as shown in Figure 5. First, we retrieve all
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SMU Classification: Restricted

+    driver_deferred_probe_trigger();
+    flush_work(&deferred_probe_work);

+    list_for_each_entry_safe(private, p, &deferred_probe_pending_list,     
deferred_probe)
+                 dev_info(private->device, "deferred probe pending");
+     }
+    static  DECLARE_DELAYED_WORK(deferred_probe_timeout_work, 
+              deferred_probe_timeout_work_func);

driver_deferred_probe_trigger();
  flush_work(&deferred_probe_work);
  
  list_for_each_entry_safe(private, p, &deferred_probe_pending_list, 

deferred_probe)
-             dev_info(private->device, "deferred probe pending");
  }
  static DECLARE_DELAYED_WORK(deferred_probe_timeout_work, 
            deferred_probe_timeout_work_func);

driver_deferred_probe_trigger();
  flush_work(&deferred_probe_work);
  
  list_for_each_entry_safe(private, p, &deferred_probe_pending_list,    

deferred_probe)
+             dev_info(private->device, "deferred probe pending\n");
  }
  static DECLARE_DELAYED_WORK(deferred_probe_timeout_work, 
            deferred_probe_timeout_work_func);

<empty>

eb7fbc9fb11 eb7fbc9fb11^1

25b4e70dcce
（initial commit） 25b4e70dcce^1

Candidate
commit1

Candidate
commit2

Fig. 6. An example of context-enhanced identification

buggy statements from the hint. We then trace back these buggy code statements, obtain a set of
candidate commits, and sort them in descending order by commit date, forming a candidate list
{𝐶1, 𝐶2, ... 𝐶𝑖 }. Next, we generate the refined context for each candidate commit following the same
process used in the ability check. For each candidate commit 𝐶 𝑗 , we create the context for both 𝐶 𝑗

and its previous version 𝐶∧
𝑗 1.

To enhance the LLM’s ability to determine whether the candidate commit 𝐶 𝑗 contains the bug,
we split the determination process into two steps. In the first step, we input the context of commit
𝐶 𝑗 and the buggy statements in the hint to the LLM, asking the LLM to determine whether the
commit contains the buggy code statements or code statements with similar semantic meanings to
the buggy code statements. If the LLM answers "no", we simply believe that the commit 𝐶 𝑗 does
not contain the bug. If the LLM answers "yes", we proceed to let it determine whether the commit
is buggy. In the second step, we feed the context of commit 𝐶 𝑗 , the root cause of the bug, and the
hint to the LLM, asking it to determine whether the commit contains the bug.
We utilize the LLM to check the candidate commits in the list from index 1 to 𝑖 . If we can find

an index 𝑓 , where the LLM believes that the context of the commit 𝐶𝑓 is buggy but 𝐶∧
𝑓
1 is not,

we designate it as the bug-inducing commit. If we can not find such a commit, we fall back to
rank-based identification conservatively.
Figure 6 provides an example, which corresponds to the first motivation example. Firstly,

LLM4SZZ traces back the buggy statements in the hint and finds two candidate commits, the
commit 𝑒𝑏7𝑓 𝑏𝑐9𝑓 𝑏11 (denoted as𝐶1) and commit 25𝑏4𝑒70𝑑𝑐𝑐𝑒 (denoted as𝐶2). We sort them based
on their commit date in descending order and get the candidates list {𝐶1, 𝐶2}. We first check the
contexts for commits 𝐶1 and 𝐶1

∧1, following the steps above and requiring the LLM to determine
whether the two versions are buggy. The LLM identifies that both the 𝐶1 and 𝐶1

∧1 versions of
the program contain the bug. Therefore, this candidate commit is not the bug-inducing commit.
LLM4SZZ then checks the commit 𝐶2 and 𝐶2

∧1 , following the same steps. Here, 𝐶2 is the initial
commit that introduces the file. Therefore, the context of𝐶2

∧1 is empty. The LLM finds the commit
𝐶2 contains the bug and the context of commit 𝐶2

∧1 contains no code statements and is not buggy.
Therefore, LLM4SZZ finally designates the commit 𝐶2 as the final bug-inducing commit.

3.3.2 Rank-based identification. Rank-based identification addresses cases where the LLM
cannot fully understand the bug and cannot determine whether the bug exists in the program.
Therefore, in this approach, we do not use LLMs to select the final bug-inducing commit from
candidate commits. Instead, we simply follow the idea of NerualSZZ [Tang et al. 2023] and proceed
as follows:

• Buggy Statements Identification: We first ask the LLM to identify buggy statements from
the bug-fixing commit based on the commit message and the root cause obtained in section
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Table 1. The statistics of the bugs and corresponding bug fixing commits in three datasets

Dataset Project #Bug-Fixing #Bug-Inducing #SMALL #LARGE

DS_LINUX linux 1,500 1,562 681 819

DS_GITHUB

systemd
qemu
gpac
unitime
JohnTheRipper
libvirt
opensips
...(279 more projects)

15
10
9
6
5
4
4

308

15
10
9
6
5
4
4

309

5
3
2
2
2
2
1

130

10
7
7
4
3
2
3

171

Total 361 362 146 207

DS_APACHE

accumulo
ambari
hadoop
lucene
oozie

35
38
53
70
45

55
44
57
145
50

7
1
6
3
3

28
37
47
68
42

Total 241 351 20 222

3.1. In this phase, we input only the root cause, the commit message, and the original changed
files obtained in section 3.1. We do not provide the LLMwith expanded context, as we observe
that if the LLM cannot understand the bug, additional context will undermine its performance
(see Section 5.2).

• Relevance Ranking: By utilizing a listwise rank algorithm [Sun et al. 2023] based on the
LLM, we rank these buggy statements according to their relevance to the root cause.

• Candidate Commits generation: For each file, we retrieve the top N code statements, trace
them back to their corresponding commits, and add these commits to our list of candidate
commits.

• Final Commit Designation:We then sort these candidate commits by their commit date
and designate the most recent commit as the bug-inducing commit. This approach aligns
with previous studies [Bao et al. 2022; Rodríguez-Pérez et al. 2020], which suggest that bugs
are typically introduced by recent commits.

4 Experiment setup
4.1 Dataset
To evaluate our method, we require high-quality datasets containing bug-fixing commits and their
corresponding bug-inducing commits. Previous research [Wen et al. 2019] has demonstrated that
datasets produced by the SZZ algorithm contain significant noise, leading us to discard these
datasets. Other available datasets are annotated by researchers [Davies et al. 2014; Neto et al. 2019].
While these datasets are of higher quality, researchers may not have the same level of knowledge
as developers about specific projects, which still can result in inaccuracies. To ensure accuracy, we
combined three developer-annotated datasets to form the final dataset for evaluating our method.
In these datasets, all bug-fixing commits and bug-inducing commits are annotated by developers,
and are extracted from bug reports or commit messages.
DS_LINUX refers to the dataset created by Lyu et al. [Lyu et al. 2024], which is based on

the Linux kernel. The researchers observed that Linux developers label bug-fixing commits with
their corresponding bug-inducing commits in the commit messages. They collected these commit
messages and built the dataset based on them. This dataset is notable for its size, containing 76,046
pairs of bug-fixing and bug-inducing commits. However, its drawback is that it is only related to
the Linux kernel.

DS_GITHUB refers to the dataset constructed from multiple repositories on GitHub, collected
by Rosa et al. [Rosa et al. 2021]. The authors mined GitHub by first locating the bug-fixing commits
and then identifying the corresponding bug-inducing commits based on the information left by
developers in the commit messages. This dataset is characterized by its inclusion of hundreds of
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repositories. However, its drawback is that each repository contains very few bug-fixing commits.
Moreover, this dataset includes many repositories with few stars.
DS_APACHE refers to the dataset created from several Apache projects, collected by Wen

et al. [Wen et al. 2019]. The researchers extracted the bug reports from several Apache projects,
obtaining bug-fixing commits and their corresponding bug-inducing commits based on the bug
reports and commit messages. This dataset contains several Apache projects with high star ratings,
and each project corresponds to a moderate number of bug-fixing commits.

Table 1 presents the statistics of the three datasets. Since the majority of the combined datasets
are comprised of C and Java projects, we include only C and Java projects in the final dataset. To
control experimental costs, we sample data from DS_LINUX following previous studies [Li et al.
2024a; Xue et al. 2024; Yang et al. 2024], using a 95% confidence level and a margin of error below 5%.
We sample 1,500 bug-fixing commits from a total of 76,046 commits, along with their corresponding
bug-inducing commits. This sample size is comparable to previous studies. For example, Li et al. [Li
et al. 2024a] sampled 381 commits from a total of 35,431 commits to evaluate their approach for
generating commit messages. Note that we do not sample data from DS_GITHUB and DS_APACHE.
We also provide information about the size of bug-fixing commits. Following previous studies [Bao
et al. 2022; Tang et al. 2023], if a bug-fixing commit contains more than five changed lines, we
categorize it as a large commit, otherwise, we categorize it as a small commit. From the table, we
observe that the number of small bug-fixing commits is roughly equal to the number of large bug-
fixing commits in DS_LINUX and DS_GITHUB, while most bug-fixing commits in DS_APACHE are
large. In summary, our dataset comprises multiple high-quality pairs of bug-fixing and bug-inducing
commits in various programming languages across numerous repositories.

4.2 Experiment Setting
Our experiment is conducted on a server equipped with two NVIDIA A800 GPUs and an Intel Xeon
6326 CPU, running on Ubuntu OS. We utilize gitpython [GitPython 2024] to extract patch content
and obtain the necessary information about commits. Additionally, we use the tree-sitter [treesitter
2024] parser to extract functions from the source code when generating the context. Although our
implementation focuses on the Java and C programming languages, LLM4SZZ is generic and can
be easily extended to other programming languages by altering the parser in tree-sitter.

For LLMs, we aim to balance cost and effectiveness for proprietary models. Therefore, we choose
GPT-4o-mini due to its low fees and relatively high effectiveness. We estimated that using GPT-4
would cost approximately $300 per round, which is prohibitively expensive. Our experiments
show that GPT-4o-mini is sufficient for our needs. For open-source LLMs, we use Llama3-8b and
Llama3-70b, which we downloaded from Hugging Face [HuggingFace 2024].To reduce randomness,
we set the temperature to 0.0 for both GPT-4o-mini and the open-source LLMs, aligning with
settings used in previous studies [Li et al. 2024a; Xu et al. 2024]. We also employ two strategies
to further address randomness. First, we repeat the entire experiment three times and calculate
the average metrics across the three runs. Second, our dataset consists of 2,102 test cases, which is
large enough to reveal statistical patterns and minimize the influence of individual test cases on
the final results.
We use the SZZ algorithms introduced in Section 2.1 as our baselines. Implementations of the

B-SZZ, AG-SZZ, MA-SZZ, L-SZZ, R-SZZ, and RA-SZZ algorithms are from the replication package
provided by Rosa et al. [Rosa et al. 2021]. The implementation of the NeuralSZZ algorithm is from
the replication package provided by Tang et al. [Tang et al. 2023]. We train the model using the
same training set as in the original paper and achieve nearly identical performance on its own test
set. We then apply the trained model to DS_GITHUB and DS_APACHE-j. To evaluate our approach
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Table 2. The performance comparisions between all methods in finding c bug-inducing commits

Method

DS_LINUX DS_GITHUB-c

Precision Recall F1-score Precision Recall F1-score

B-SZZ 0.452 0.578 0.507 0.361 0.656 0.466

AG-SZZ 0.448 0.553 0.495 0.410 0.592 0.484

MA-SZZ 0.421 0.538 0.472 0.335 0.624 0.436

R-SZZ 0.583 0.448 0.507 0.671 0.582 0.620

L-SZZ 0.560 0.430 0.486 0.486 0.422 0.452

LLM4SZZ 0.628 0.552 0.588 0.687 0.641 0.663

Table 3. The performance comparison between methods in finding java bug-inducing commits

Method

DS_GITHUB-j DS_APACHE

Precision Recall F1-score Precision Recall F1-score

B-SZZ 0.285 0.680 0.401 0.251 0.435 0.318

AG-SZZ 0.421 0.533 0.470 0.328 0.310 0.318

MA-SZZ 0.239 0.560 0.335 0.307 0.345 0.329

R-SZZ 0.538 0.467 0.500 0.497 0.288 0.364

L-SZZ 0.492 0.427 0.457 0.366 0.211 0.267

RA-SZZ 0.337 0.440 0.382 0.264 0.325 0.293

Neural-SZZ 0.556 0.486 0.520 0.563 0.364 0.442

LLM4SZZ 0.607 0.569 0.587 0.610 0.398 0.482

and baselines, we employ three widely used metrics: Precision, Recall, and F1-score, following the
methodology used in previous studies [Bao et al. 2022; Lyu et al. 2024].

5 Experiment results
In this section, we first demonstrate the effectiveness of LLM4SZZ (RQ1). Next, we evaluate the
impact of its key components (RQ2). Finally, we show that LLM4SZZ can be applied to other large
language models (RQ3).

5.1 RQ1. Effectiveness of LLM4SZZ in identifying bug-inducing commits
Table 2 and 3 present the results of LLM4SZZ and baselines in identifying bug-inducing commits in
C and Java projects, respectively. Since DS_GITHUB consists of both c projects and Java projects, we
split it into DS_GITHUB-c and DS_GITHUB-j, containing C projects and Java projects, respectively.
As shown in Table 2, for DS_LINUX, all baselines perform almost the same, mirroring the

experimental results in the original whole dataset [Lyu et al. 2024]. This suggests that our selected
dataset has the same statistical patterns as the original dataset. The B-SZZ and R-SZZ algorithms
achieve the highest F1-scores among all baselines. Specifically, B-SZZ achieves the highest recall,
while R-SZZ achieves the highest precision. We also analyze why B-SZZ outperforms its variants,
such as AG-SZZ, MA-SZZ, and L-SZZ in DS_LINUX. B-SZZ outperforms AG-SZZ because Linux
contains numerous bug-fixing commits related only to comments and configurations. While B-SZZ
successfully identifies these commits, AG-SZZ filters them out. Similarly, MA-SZZ assumes that
commits with only meta-changes are not bug-inducing, but DS_LINUX shows that developers
do label such commits as bug-inducing. L-SZZ, on the other hand, assumes the commit with the
most changed lines among those identified by AG-SZZ is the bug-inducing commit. However, this
assumption also often fails, as shown by the dataset. These limitations explain why these variants
perform worse than the B-SZZ algorithm. In DS_GITHUB-c, the R-SZZ algorithm performs the best,
significantly outperforming all other baselines, with an F1-score of 0.620. LLM4SZZ achieves the
highest precision and F1-score across these two datasets. In DS_LINUX, it improves precision by
7.7% and F1-score by 16.0% compared to the best baseline. In DS_GITHUB-c, it improves precision
by 2.4% and F1-score by 6.9%, respectively.
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Table 4. The performance comparisons in ablation study

Model

DS_LINUX DS_GITHUB DS_APACHE

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

LLM4SZZ-raw 0.470 0.609 0.531 0.441 0.659 0.528 0.402 0.393 0.397

LLM4SZZ-r 0.621 0.520 0.566 0.669 0.609 0.637 0.599 0.382 0.467

LLM4SZZ-re 0.560 0.511 0.534 0.633 0.567 0.598 0.584 0.383 0.463

LLM4SZZ-c 0.668 0.450 0.538 0.691 0.498 0.579 0.644 0.316 0.424

LLM4SZZ-h 0.680 0.379 0.487 0.564 0.307 0.397 0.523 0.195 0.284

LLM4SZZ 0.628 0.552 0.588 0.671 0.626 0.647 0.610 0.398 0.482

SMU Classification: Restricted

36%

64%

DS_LINUX

40%
60%

DS_GITHUB

42%
58%

DS_APACHE

Context-enhanced 
    identification

Rank-based 
identification

Fig. 7. The proportions of the two identification approaches in LLM4SZZ
From Table 3, we observe that the NeuralSZZ algorithm performs the best in precision and

F1-score among all baselines. This suggests that utilizing deep learning to rank code statements
is an effective way to enhance performance. LLM4SZZ also performs the best in precision and
F1-score in these two datasets. Specifically, it improves precision by 9.2% in DS_GITHUB-j and
8.3% in DS_APACHE. Additionally, it enhances the F1-score by 12.9% in DS_GITHUB-j and 9.0%
in DS_APACHE. This demonstrates the effectiveness of LLM4SZZ in handling large bug-fixing
commits, as most bug-fixing commits in DS_APACHE are large.

Combining the three datasets, we observe that the R-SZZ algorithm performs better than other
baselines except the Neural-SZZ algorithm. This is consistent with the finding of Rodriguez et
al. [Rodríguez-Pérez et al. 2020] that defects are typically introduced in the most recent changes.
Moreover, we can find that all baselines’ performance varies a lot in different datasets. For example,
R-SZZ outperforms other baselines a lot in DS_GITHUB-c but it performs almost the same as
B-SZZ in DS_LINUX. Neural-SZZ, the deep-learning based approach, also has the same problem. It
outperforms other baselines a lot in DS_APACHE but only shows a slight improvement over R-SZZ
in DS_GITHUB-j. In contrast, LLM4SZZ does not have the same problem. In the worst scenario,
it can still outperform other baselines by 6.9% in F1-score. Additionally, our method improves
precision and F1-score without sacrificing too much recall. In all three datasets, LLM4SZZ achieves
a higher recall than all other baselines, except for the B-SZZ algorithm.

RQ-1: LLM4SZZ is more precise in identifying bug-inducing commits compared to all baselines,
with an increase in precision from 2.4% to 9.2%. Additionally, LLM4SZZ achieves a significant
enhancement in F1-score, increasing by 6.9% to 16.0% compared to the best baselines. It also exhibits
more consistent performance across the three datasets. Furthermore, LLM4SZZ improves both
precision and F1-score without a substantial sacrifice in recall.

5.2 RQ2. Effectiveness of key components in LLM4SZZ

In this section, we investigate the effectiveness of key components in LLM4SZZ. In LLM4SZZ-raw,
we implement the most basic setting. First, we use the LLM to analyze the root cause of the bug,
and then locate the buggy statements based on this root cause. Finally, we trace back the buggy
statements to identify the commits that introduced them, marking these as bug-inducing commits.
In LLM4SZZ-r, we remove context-enhanced assessment and apply rank-based identification across
all test cases. The LLM4SZZ-re variant is built on LLM4SZZ-r by providing the LLM with expanded
context during rank-based identification, rather than the original patch. In LLM4SZZ-c, we similarly
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Table 5. The performance comparison between different language models

Model

DS_LINUX DS_GITHUB DS_APACHE

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

llama3-8b 0.607 0.536 0.569 0.648 0.595 0.620 0.567 0.371 0.449

llama3-70b 0.645 0.551 0.594 0.657 0.611 0.633 0.612 0.397 0.482

gpt-4o-mini 0.628 0.552 0.588 0.671 0.626 0.648 0.610 0.398 0.482

exclude context-enhanced assessment but utilize context-enhanced identification in all scenarios.
The LLM4SZZ-h variant is based on LLM4SZZ-c. It omits the hint and provides only the context of
the commit along with the root cause of the bug when asking the LLM to determine whether a
given commit contains the bug. This allows us to evaluate the contribution of the hint to the LLM’s
ability to identify the presence of the bug.
Table 4 presents the performance of the LLM4SZZ and its variants in identifying bug-inducing

commits. The best results are highlighted in bold. As shown in the table, the LLM4SZZ-raw variant
does not perform very well. This shows that utilizing the LLMs directly on the SZZ algorithm
can not improve the performance too much. For example, LLM4SZZ-raw only improves the F1-
socre by 4.7% compared to the best baseline R-SZZ and B-SZZ in DS_LINUX and it performs
much worse than NeuralSZZ in DS_APACHE. The LLM4SZZ-r variant, which adopts rank-based
identification in all scenarios, outperforms LLM4SZZ-raw in F1-score across all three datasets, with
improvements ranging from 6.5% to 20.6%. In contrast, LLM4SZZ-re performs worse than LLM4SZZ-
r in almost all metrics, indicating that if the LLM cannot comprehend the bug, providing additional
context undermines its performance. The table also shows that LLM4SZZ-c, which employs context-
enhanced identification in all test cases, improves precision compared to LLM4SZZ-r. However,
it may produce empty results in some test cases, leading to lower recall. Additionally, omitting
the hint during context-enhanced identification has a significantly negative impact on recall, as
evidenced by the performance of LLM4SZZ-h, which is inferior to LLM4SZZ-c in both recall and
F1-score.

Overall, LLM4SZZ outperforms all other variants in F1-score, highlighting that the combination
of rank-based identification and context-enhanced identification can enhance performance. This
also demonstrates the effectiveness of the context-enhanced assessment which evaluates the LLM’s
capabilities and determines the appropriate identification approach.We also provide the proportions
of the two identification approaches in LLM4SZZ across all three datasets. As shown in Figure 7,
context-enhanced identification is used more frequently in all three datasets. In DS_LINUX , 64% of
the total test cases utilize context-enhanced identification while in DS_GITHUB and DS_APACHE
about 60% of test cases adopt this approach.

RQ-2: The key designs of LLM4SZZ, including the context-enhanced assessment, the context-
enhanced identification and the rank-based identification, all contribute to the overall performance.
Compared to the rank-based identification, the context-enhanced identification makes a greater
contribution. Furthermore, the hint notably enhances the LLM’s ability to determine whether a
commit contains the bug. Additionally, utilizing LLMs directly in the SZZ algorithm does not
significantly improve performance.

5.3 RQ3. Effectiveness of LLM4SZZ on other LLMs
In this research question, we aim to examine whether the core ideas of our approach (e.g., prepa-
ration, context-enhanced ability check, and commits identification) can be applied to other open-
source large language models. For evaluation, we choose two additional open-source LLMs: llama3-
8b and llama3-70b. The configurations of these two LLMs are described in Section 4.2.
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1 if (i == MLX5_MAX_PORTS) {
2 -  if (ldev->nb.notifier_call)
3 +  if (ldev->nb.notifier_call) {
4   unregister_netdevice_notifier_net(&init_net, &ldev->nb);
5 +   ldev->nb.notifier_call = NULL;
6 +  }

Fixing Commit: 0b136454741 in linux
After returning from unregister_netdevice_notifier_dev_net(), set the notifier_call field to NULL so successive call to 
mlx5_lag_add() will function as expected.

1 files changed, 3 addition(+) and 1 deletion(-)
drivers/net/ethernet/mellanox/mlx5/core/lag.c

Fig. 8. An example where LLM4SZZ fails to choose the correct bug-inducing commit among candidates.

Table 5 presents the performance of different LLMs across three datasets. Among all LLMs,
llama3-8b performs the worst. Despite this, it still outperforms all baselines that are not based on
LLMs in RQ1, suggesting that our method can be effectively applied to other large language models.
Llama3-70b outperforms llama3-8b in all datasets, which is understandable given that llama3-70b
contains more parameters. This also suggests that better LLMs can enhance the performance of
LLM4SZZ.
Compared to gpt4o-mini, llama3-70b performs better in DS_LINUX, worse in DS_GITHUB,

and similarly in DS_APACHE. In DS_LINUX, llama3-70b outperforms gpt-4o-mini in precision
and F1-score. To understand the performance differences, we investigate the test cases where the
two models produced different results. We find that llama3-70b tends to be conservative when
locating buggy statements and produces an empty result if it is uncertain. For instance, llama3-70b
produces results for 1,334 test cases in DS_LINUX, while gpt-4o-mini produces results for 1,373
test cases. In DS_LINUX, gpt-4o-mini and llama3-70b identified almost the same number of true
bug-inducing commits, resulting in higher precision for llama3-70b. In DS_GITHUB, many bug-
inducing commits can only be found by tracing back unmodified code statements, while llama3-70b
tends to conservatively identify deleted lines as buggy statements. Therefore, in DS_GITHUB,
gpt-4o-mini outperforms llama3-70b in both precision and recall.

RQ-3: The core ideas of LLM4SZZ can be applied to other large language models and better LLMs
can enhance the performance of LLM4SZZ.

6 Discussion
6.1 Failure Analysis
In this section, we manually analyze the test cases where LLM4SZZ fails to identify their bug-
inducing commits correctly. We randomly select 50 test cases from all failed test cases. After the
analysis, we summarize the failed reasons as follows:
Bug-inducing commits cannot be found even by tracing back all lines in the expanded

context. As we mentioned above, LLM4SZZ provides LLMs with more context to help them locate
buggy statements. If changes are within functions, we expand the context by providing LLMs with
the full content of the function. Otherwise, we provide it with the three nearest code statements to
the changed lines. However, there are still some bug-inducing commits that cannot be found even
by tracing back all lines in the expanded context.

In 27 test cases, LLM4SZZ fails to find bug-inducing commits due to this issue. In eight of these
cases, the bug-fixing commits and their corresponding bug-inducing commits modify completely
different files. In the remaining cases, the bug-fixing and bug-inducing commits modify the same
files but different functions. Although expanding the context further might help find these bug-
inducing commits, an excessively long context will undermine the overall performance of LLM4SZZ,
as mentioned earlier.
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Table 6. The performance comparisions between all methods in extended datasets

Method

DS_LINUX DS_GITHUB

Precision Recall F1-score Precision Recall F1-score

B-SZZ 0.443 0.592 0.507 0.416 0.669 0.513

AG-SZZ 0.480 0.532 0.505 0.480 0.581 0.526

MA-SZZ 0.407 0.532 0.461 0.401 0.595 0.479

R-SZZ 0.601 0.458 0.519 0.621 0.520 0.566

L-SZZ 0.564 0.430 0.488 0.548 0.459 0.500

LLM4SZZ 0.642 0.579 0.609 0.646 0.604 0.624

Failing to locate buggy statements correctly. LLM4SZZ fails to find correct bug-inducing
commits in 11 cases due to this issue. One main reason for this is that LLM4SZZ focuses only on
modified lines in the context. Sometimes, it is the unmodified code statements in the context that
lead to the bug. Although we provide more context to LLMs to avoid this issue, they still face
challenges in accurately locating buggy statements.
Failing to choose the correct bug-inducing commit among all candidates. The remaining
12 test cases fail because LLM4SZZ does not identify the correct bug-inducing commit among
all candidates. The main reason is that LLM4SZZ fails to determine whether a commit contains
the bug. The bug-fixing commit 0𝑏136454741 in Figure 8 is a typical example. From the commit
message, LLM4SZZ first locates two buggy statements, lines 2 and 4, resulting in two candi-
date commits: 𝑒387𝑓 7𝑑5𝑓 𝑐𝑐 and 7907𝑓 23𝑎𝑑𝑐1. Commit 𝑒387𝑓 7𝑑5𝑓 𝑐𝑐 introduces line 4 and re-
places the former function unregister_netdevice_notifier_dev_net with the current function
unregister_netdevice_notifier_net . The LLM determines that although returning from the
function unregister_netdevice_notifier_dev_net requires setting the notifier_cal field to
null, this does not imply the same for the function unregister_netdevice_notifier_net as they
are different functions. Therefore, it determines that commit 𝑒387𝑓 7𝑑5𝑓 𝑐𝑐ˆ1 does not contain the
bug, and LLM4SZZ incorrectly identifies 𝑒387𝑓 7𝑑5𝑓 𝑐𝑐 as the bug-inducing commit.

6.2 Data Leakage
Since all three datasets were collected before the release of LLMs like GPT-4o-mini [OpenAI
2024], there is a potential issue that the performance improvement of LLM4SZZ may result from
data leakage. To address this concern, we extend two of the datasets. To extend DS_GITHUB,
we follow the same approach as the original paper [Rosa et al. 2021]. Specifically, we iterate
through all commits in the dataset’s projects, identifying those whose commit messages contain
keywords such as "fix" "bug" and "introduce". These commits are added to a candidate list. As
GPT-4o-mini’s knowledge is limited to data available up to October 2023 [OpenAI 2024], we exclude
all commits dated before this cutoff. We initially identify 186 candidate commits. Each commit
is then manually reviewed to confirm its relevance to bug fixing and to ensure the existence of
corresponding bug-inducing commits. After this filtering process, we obtain 148 verified bug-fixing
commits and their associated bug-inducing commits. To extend the DS_LINUX dataset, we adopt
the method used in the original study [Lyu et al. 2024]. Bug-fixing commits in Linux typically
include the keyword "Fixes:" followed by the commit ID of the bug-inducing commit. Using a
regular expression, we identify commits with this pattern. Commits dated before October 2023 are
excluded, resulting in 9,913 bug-fixing commits. From these, we randomly sample 500 commits
for the experiment, ensuring a 95% confidence level and a margin of error under 5%, the same
as section 4.2. For DS_APACHE, extending the dataset is more challenging as it is based on bug
reports that lack a fixed format for identifying bug-inducing commits. In the original study, all bug
reports were manually analyzed, which required significant human effort. Given that our objective
is to demonstrate that the performance improvement of LLM4SZZ is not due to data leakage, the
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Table 7. Statistics related to the scalability of LLM4SZZ

DATASET llm calls token numbers time

DS_LINUX 9.8 14,489 30.43s

DS_GITHUB 10.3 14,890 20.20s

DS_APACHE 13.67 24,023 28.14s

extended datasets of DS_GITHUB and DS_LINUX are sufficient for this purpose. Therefore, we opt
not to extend DS_APACHE.
Table 6 presents the experimental results of LLM4SZZ and the baselines for identifying bug-

inducing commits across the extended datasets. The best results are highlighted in bold. Among
the baselines, the R-SZZ algorithm achieves the best performance in two datasets. In DS_LINUX,
R-SZZ performs comparably to the B-SZZ and AG-SZZ algorithms, while in DS_GITHUB, it
significantly outperforms all other baselines. From the table, we observe that LLM4SZZ consistently
outperforms all baselines. Specifically, in DS_LINUX, it improves precision by 6.8% and the F1-
score by 17.3% compared to the best-performing baseline. Similarly, in DS_GITHUB, LLM4SZZ
improves precision by 4.0% and the F1-score by 10.2%. These results demonstrate that LLM4SZZ’s
performance improvements are not caused by data leakage.

6.3 Scalability
Table 7 presents statistics on the scalability of LLM4SZZ, including the average number of LLM
calls, the average number of tokens consumed, and the average time required to process a bug-
fixing commit. The average number of LLM calls and the average token consumption are primarily
determined by the size of the bug-fixing commit. Bug-fixing commits in DS_APACHE are generally
larger than those in DS_GITHUB and DS_LINUX, which results in higher LLM call frequencies and
greater token consumption for DS_APACHE.
Additionally, the table shows that LLM4SZZ requires approximately 30 seconds to handle a

bug-fixing commit. This is longer than the processing time of some baselines, such as the B-SZZ
algorithm, because these baselines rely on basic assumptions or simple heuristic rules. However,
when compared to more complex techniques like RA-SZZ, which employs program analysis to
detect refactorings, LLM4SZZ is significantly faster. Our experiment indicates that RA-SZZ takes
an average of 78.4 seconds to process a single bug-fixing commit, nearly 2.6 times longer than
LLM4SZZ.

The total time cost of LLM4SZZ consists of two components: the time for LLM calls and the time
required to retrieve relevant project information. For example, LLM4SZZ retrieves file contents
from specific commits in the project, which contributes to the time cost. This explains why the
average processing time for bug-fixing commits in DS_LINUX is longer than that in DS_GITHUB
and DS_APACHE, even though DS_LINUX requires fewer LLM calls. The Linux project’s large size
increases the time required for information retrieval, leading to higher overall processing times.
Although this larger size results in increased time, the overal time remains acceptable, indicating
that LLM4SZZ is feasible for large projects. We also investigate whether there are any extremely
long bug-fixing commits that exceed the LLM’s token limit. Our results show that there is only one
such commit in the Hadoop project, and it has minimal impact on overall performance.

6.4 Bugs that LLMs fail to understand
In this section, we analyze the test cases in which LLMs fail to understand the bug and fall back
to rank-based identification. We randomly select 50 such test cases from the total of 797 failed
cases and manually examine the characteristics of the bugs. Among these, 38 test cases are from
DS_LINUX, 7 from DS_GITHUB, and 5 from DS_APACHE. We categorize the bugs into two types:
those with an excessively large context and those requiring subtle changes to resolve.
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Table 8. The statistics of extra bug-inducing commits identified by LLM4SZZ

Count DS_LINUX DS_GITHUB DS_APACHE

only-additions 97 15 3

with-deletions 25 12 6

total 122 27 9

Bugs involving an excessively large context. LLM4SZZ performs context refinement before
requiring the LLM to determine whether the commit contains a bug. However, even after refinement,
the context can remain excessively large. In 32 of the analyzed test cases, the context ranges from
330 to 1,887 lines of code. This overwhelming long context hinders the LLM’s ability to accurately
detect the bug.
Fixing the bug requires subtle changes. The remaining 18 failed test cases arise from the LLM’s
difficulty in detecting subtle changes. For example, some bug-fixing commits only reorder code
statements. In such cases, the LLM may incorrectly assume that both versions contain the same
statements, misidentifying them as buggy. Similarly, bug fixes involving minimal changes, such as
altering a single word in a long string, are also challenging for the LLM to detect.

6.5 Can LLM4SZZ find extra bug-inducing commits?
In this section, we examine whether LLM4SZZ can identify extra commits that all baselines cannot.
Table 8 presents the statistics of the extra bug-inducing commits that baselines fail to find. LLM4SZZ
identifies 109 extra bug-inducing commits in DS_LINUX, 31 in DS_GITHUB, and 10 in DS_APACHE,
accounting for 7.8%, 7.4%, and 2.5% of the total bug-inducing commits, respectively.
We classify these bug-fixing commits into two categories: those containing only added lines

and those containing deleted lines. From the table, we observe that LLM4SZZ effectively identifies
bug-inducing commits from those with only added lines. Additionally, techniques employed in
LLM4SZZ, such as context expanding, facilitate the discovery of extra bug-inducing commits from
bug-fixing commits with deleted lines. In DS_LINUX, the majority of extra bug-inducing commits
are identified from bug-fixing commits with only added lines. Conversely, in DS_GITHUB, the
number of extra bug-inducing commits found from bug-fixing commits with only added lines is
nearly equal to those identified from bug-fixing commits with deleted lines.

6.6 Threats to Validity
Internal Validity. The LLMs may produce random outputs during the experiment. To minimize
bias, we set the same parameters for all models. Additionally, we repeat the experiment three times
and select the majority result as the final output. We also conduct our experiment on large-scale
datasets to counteract the randomness. These datasets consist of two programming languages and
a total of 2,104 test cases.
External Validity. One potential limitation is that we implement and evaluate LLM4SZZ on only
two programming languages, C and Java. However, the majority of bug-fixing commits in the
three datasets are written in these two languages. Another concern is that DS_LINUX is created
by randomly selecting test cases from the original dataset. To mitigate bias, we selected a total of
1,500 test cases, achieving over a 95% confidence level with a confidence interval of 3. The third
threat is the assumption that most bugs are fully fixed and introduced with a single commit. While
this assumption holds for most test cases in the three datasets, it may not reflect all real-world
scenarios. In the future, we plan to collect additional datasets to address this limitation.

7 Related work
LLMs in SE. LLMs have been applied to numerous tasks in software engineering [Fan et al.
2023; Hou et al. 2023], such as code generation, software testing and software mountainance. In
code generation, researchers have proposed generation models like CodeX [Chen et al. 2021],
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AlphaCode [Li et al. 2022] and Codegen [Nijkamp et al. 2022]. They have also improved the
performance of code generation using techniques such as chain of thought reasoning [Jiang et al.
2023; Zhang et al. 2023], static analysis [Ahmed et al. 2024] and finetuning [Shin et al. 2023].
LLMs can also be used to generate new test cases, showing higher coverage [Deng et al. 2023;
Hu et al. 2023]. Combing with techniques such as differential testing, they can generate more
failure-inducing test cases [Li et al. 2023b]. In software maintenance, LLMs can be used in tasks
such as fault localization [Kang et al. 2023; Wu et al. 2023], bug reproducing [Feng and Chen 2024],
bug severity predicting [Mashhadi et al. 2023] and program repair [Xia and Zhang 2022, 2023a,b].
SZZ algorithm evaluation. The SZZ algorithm and its variants have been extensively evalu-
ated by many researchers. Initially, evaluations are based on datasets manually annotated by
researchers [Davies et al. 2014]. However, building such datasets is time-consuming and may not
yield accurate results. To address these challenges, researchers have proposed datasets based on
developers’ annotations. They extract these annotations from bug reports [Wen et al. 2019] and
commit messages [Lyu et al. 2024; Rosa et al. 2021].
SZZ algorithm application. The SZZ algorithms have been widely used in empirical studies,
including software quality [Çaglayan and Bener 2016], code smells [Palomba et al. 2018], code
reviews [Bavota and Russo 2015; Kononenko et al. 2015], and developer collaboration [Bernardi et al.
2018]. The SZZ algorithm has also been applied to just-in-time defect detection [Jiang et al. 2013;
Kamei et al. 2012; McIntosh and Kamei 2018]. Researchers use the SZZ algorithm to identify bug-
inducing commits in projects, which are then used to train models and evaluate their effectiveness.

8 Conclusion and future work
In this study, we propose a novel approach named LLM4SZZ, which utilizes large language models
(LLMs) to locate bug-inducing commits based on bug-fixing commits. The core idea of LLM4SZZ
is to adopt different approaches for identifying bug-inducing commits based on the LLM’s ability
to comprehend the bug. During the ability assessment, we provide the LLM with both expanded
and refined contexts to assist it in locating buggy statements and determining whether the bug
exists. Based on the assessment results, we then employ either rank-based identification or context-
enhanced identification. We evaluate LLM4SZZ using three high-quality datasets, and experimental
results show that it outperforms all other baselines in F1-score and can identify extra bug-inducing
commits that the baselines cannot detect. In the future, we plan to extend LLM4SZZ to support
additional programming languages and collect more high-quality datasets of bug-fixing commits
along with their corresponding bug-inducing commits. Additionally, we intend to fine-tune the
LLMs to enhance their ability to comprehend bugs and determine their presence in a commit.
Furthermore, we aim to leverage the LLMs to identify bug-inducing commits based on bug-fixing
commits, even in cases where they do not modify the same files or functions.
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