
More Effective JavaScript Breaking Change Detection via

Dynamic Object Relation Graph

DEZHEN KONG, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China
JIAKUN LIU, School of Information Systems, Singapore Management University, Singapore
CHAO NI, School of Software Technology, Zhejiang University, China
DAVID LO, School of Information Systems, Singapore Management University, Singapore
LINGFENG BAO∗†, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China

JavaScript libraries are characterized by their widespread use, frequent code changes, and a high tolerance for
backward incompatible changes. Awareness of such breaking changes can help developers adapt to version
updates and avoid negative impacts. Several tools have been targeted to or can be used to detect breaking
change detection in the JavaScript community. However, these tools detect breaking changes using different
ways, and there are currently no systematic reviews of these approaches. From a preliminary study on popular
JavaScript libraries, we find that existing approaches, including simple regression testing, model-based testing
and type differencing cannot detect many breaking changes but can produce plenty of false positives. We
discuss the reasons for missing breaking changes and producing false positives.

Based on the insights from our findings, we propose a new approach named Diagnose that iteratively
constructs an object relation graph based on API exploration and forced execution-based type analysis.
Diagnose then refine the graphs and reconstruct the graphs in the newer versions of the libraries to detect
breaking changes. By evaluating approach on the same set of libraries used in the preliminary study, we find
that Diagnose can detect much more breaking changes (60.2%) and produce fewer false positives. Therefore,
Diagnose is suitable for practical use.

CCS Concepts: • Software and its engineering→ Software maintenance tools; Software libraries and
repositories.

Additional Key Words and Phrases: JavaScript, Breaking Changes, NPM

ACM Reference Format:

Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao. 2025. More Effective JavaScript Breaking
Change Detection via Dynamic Object Relation Graph. Proc. ACM Softw. Eng. 2, ISSTA, Article ISSTA103
(July 2025), 22 pages. https://doi.org/10.1145/3728980

1 Introduction

JavaScript libraries are widely used in many programming fields [27, 29, 45], such as Web frontend,
desktop applications, etc. The NPM registry hosts millions of JavaScript libraries. A key strength
of the NPM ecosystem is its high tolerance for breaking changes. However, the NPM ecosystem
∗Corresponding author.
†Also with Hangzhou High-Tech Zone (Binjiang) Blockchain and Data Security Research Institute.

Authors’ Contact Information: Dezhen Kong, The State Key Laboratory of Blockchain and Data Security, Zhejiang University,
Hangzhou, China, timkong@zju.edu.cn; Jiakun Liu, School of Information Systems, Singapore Management University,
Singapore, Singapore, jkliu@smu.edu.sg; Chao Ni, School of Software Technology, Zhejiang University, Ningbo, China,
chaoni@zju.edu.cn; David Lo, School of Information Systems, Singapore Management University, Singapore, Singapore,
davidlo@smu.edu.sg; Lingfeng Bao, The State Key Laboratory of Blockchain and Data Security, Zhejiang University,
Hangzhou, China, lingfengbao@zju.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTISSTA103
https://doi.org/10.1145/3728980

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0001-7627-1294
HTTPS://ORCID.ORG/0000-0002-7273-6709
HTTPS://ORCID.ORG/0000-0002-2906-0598
HTTPS://ORCID.ORG/0000-0002-4367-7201
HTTPS://ORCID.ORG/0000-0003-1846-0921
https://doi.org/10.1145/3728980
https://orcid.org/0000-0001-7627-1294
https://orcid.org/0000-0002-7273-6709
https://orcid.org/0000-0002-2906-0598
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0003-1846-0921
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3728980

ISSTA103:2 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

(a) A Breaking Change Documented in Changelog
of Mongoose 6.0.0

(b) A Breaking Changes Documented in Commit
Message of Socket.io

Fig. 1. Examples of Documented Breaking Changes

recommends developers adhere to semantic versioning [42]. This means they should differentiate
between version updates that introduce breaking changes and those that do not include incompatible
code changes. In practice, developers can document breaking changes in changelogs and commit
messages. For example, Figure 1a and 1b show the breaking changes documented in a changelog
and a commit message, respectively.

To comply with semantic versioning [42], library developers should be aware of breaking changes
in advance, and if downstream developers are informed about breaking changes as soon as possible,
they can adapt to such version updates more smoothly. Therefore, there are various approaches
available for detecting potential breaking changes in JavaScript libraries. However, the approaches
for JavaScript breaking change detection are limited by their intrinsic design, For example, the
regression testing based tools Dont-break [10], NoRegrets [27] (and NoRegrets+ [29]) are
subject to insufficient test cases, and provide supports for a limited range of language specification.
Additionally, in JavaScript, breaking changes can be complicated to analyze due to many JavaScript’s
dynamic nature (e.g., runtime module initialization, dynamic exportation [35]), and JavaScript-
specific features (e.g., prototype chain, widely used higher order functions). Current approaches
may not be able to deal with such complicated breaking changes.

To this end, we preliminarily evaluate the effectiveness of the aforementioned approaches, and
a synthesized type differencing tool based on a TypeScript type inference tool [24] for detecting
type-related breaking changes in 40 popular JavaScript libraries sampled from those with the
highest number of dependents in the NPM registry. We find that simple regression testing tool
Dont-break can hardly ever detect breaking changes. The model-based regression testing approach
NoRegrets misses many breaking changes but produces false positives. Similarly, the synthesized
type inference-based approach Tsinfer-node overlooks a proportion of breaking changes due to
insufficient type analysis, while also producing a higher number of false positives. We also discuss
the reasons for missing breaking changes and produce false positives, e.g., no sufficient client code,
no enough API exploration, and inaccurate type analysis. Correspondingly, we provide insights for
further improvements.
Based on the insights, we propose an automated approach named Diagnose (standing for

Dynamic Object Relation Graph Generation for Node.js Libraries) to detect potential API changes.
The overall process is iteratively constructing an object relation graph based on API exploration
and forced execution-based type analysis. Diagnose then refines the graph by refining input value
types, adding input from example code and pruning the graph. Specifically, Diagnose iteratively
explores the object hierarchy of the imported library and adds nodes to the object relation graph.
Through type analysis, Diagnose adds edges that represent the call relationship between nodes.
And then the object relation graph will be refined to make types more accurate and reflect practical

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:3

usage. Finally the breaking changes can be detected by reconstructing the dynamic object relation
graph in the newer version of the library.
We also evaluate our approach on the 40 popular JavaScript libraries sampled from the NPM

registry. The results show that Diagnose can detect much more breaking changes than existing
tools, and report only 9 false positives. The results also illustrate that Diagnose can construct and
reconstruct dynamic object relation graphs in a reasonable time, hence is more effective in practical
use.

2 Background

2.1 Breaking Changes in JavaScript

With JavaScript libraries evolving and new versions released, incompatible changes are probably
introduced. A number of studies have uncovered the general characteristics of breaking changes
and their effects on the software ecosystem. For example, the research works [8, 40, 45] have
demonstrated the widespread occurrence of breaking changes in the NPM ecosystem and their
effects on client applications. Venturini et al. [45] found that in their sampled packages, 11.7% of
all client packages and 13.9% of their releases are impacted by breaking changes. Notably, 44% of
the breaking changes are introduced in minor or patch releases. However, according to Semantic
Versioning [42], developers should not introduce breaking changes in non-major releases. Bogart et
al. [1, 2] found that coarse-grained motivations for making breaking changes comprise requirements
and context changes, bugs and new features, rippling effects from upstream changes, and technical
debt from postponed changes.

The studies mentioned above illustrate the effects of breaking changes on the NPM ecosystem, but
the detection of breaking changes is challenging. One of the challenges is due to the complicated
syntactic features of JavaScript, making the analysis of JavaScript libraries more difficult. For
example, unlike other statically typed languages, dynamic property access and native function
calls in JavaScript are not simple to analyze [4]. Another challenge is about test suites in detecting
breaking changes. In several prior works about breaking change detection [27, 46], researchers
collected breaking changes by running downstream test cases: if a test case of a downstream project
could not pass with a newer provider (after the code change), then the code change was identified
as a breaking change. However, not all providers are dependent on many client applications. If a
code change lacks a triggering test case in client applications, we cannot determine whether it is
actually incompatible. On the other hand, client code may not follow the specification of providers
and incorrectly access APIs, e.g., passing an improper value to a function, which will result in
undefined behavior, including test failure, but it does not reflect a breaking change.

2.2 Existing Approaches for Breaking Change Detection

To the best of our knowledge, there are three types of tools can be utilized to detect breaking
changes in JavaScript libraries. We provide a brief overview of them in this section.

Simple Regression Testing. The basic approach to detect breaking changes is to use regression
testing. Specifically, if a test suite can pass under the old source code but fail under the new source
code, it indicates that the new source code (after the code change) contains breaking changes.
Dont-break [10] is a regression testing-based tool that verifies whether the test cases in dependent
projects fail. If the current version of a library has some test cases that fail while the previous
version does not, the current version may contain breaking changes. However, Dont-break needs
manual configuration of dependent projects and can consume a significant amount of time in
executing all test cases [29].

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

ISSTA103:4 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

Model-based Regression Testing. Model-based testing is a testing technique that generatesmodels

that describe some behavior of a system. Mezzetti et al. proposed NoRegrets [27] and later Møller
et al. enhanced it and proposed NoRegrets+ [29]. These two approaches generate models about
dynamic access paths from the executions of client test code. Their core idea is that an API call
should access the same set of properties and return the same type before and after the code
change. Compared to simple regression testing, their approaches can capture more runtime-type
information.

Example 1. Considering the following code:
1 let lib = require('foo');

2 let o = lib.func('bar');

3 assert(o.num === 0);

Then their approach can generate the following constraints:
(1) The call to require('foo').bar should return an object.
(2) The returned object of the call require('foo').bar() should contain a property num, which is a

number.
The breaking changes can be discovered by analyzing the generated API models of two versions.

In contrast to NoRegrets, the major improvement of NoRegret+ is that it does not need to
rerun all test cases and generate a new API model for the updated version of the library. However,
sufficient test cases are still necessary to generate a good model. Since NoRegrets+ is designed
to be the enhanced version of NoRegrets and can make use of more test cases, we only evaluate
NoRegrets+ in our study.

Type Differencing. By comparing the types of the different versions of a JavaScript, we can
straightforwardly know the potential breaking changes. Since TypeScript was proposed, JavaScript
developers can write TypeScript declaration files (with the extension d.ts) for existing JavaScript
libraries, without rewriting all JavaScript source code files using TypeScript. The GitHub repository
DefinitelyTyped [9] hosts the TypeScript declaration files published by JavaScript developers, and
modern IDEs can make use of type declaration files to intelligently indicate supported types when
developers call the APIs in the JavaScript libraries.

Example 2. In the JavaScript library joi, client code can use the APIs as follows:
1 let schema = joi.string ().uri({ scheme : 'http'});

2 schema.validate (...);

Accordingly, developers can write the type declarations1 shown in Figure 2. In this example, the
return type of joi.string() corresponds to the interface StringSchema, and the type should have a
property named uri (which is a function, accepting an argument of the type UriOptions). When
the authors of joi would like to support a new option, they can add it to the interface UriOptions.
After the type declarations are generated for the two consecutive versions of a library, type-related
breaking changes can be obtained by comparing the generated type declaration files between the
two versions.

There are several tools that can help generate such type declaration files, including Tsinfer [24],
Dts-gen [11] and Dts-generator [6]. The tools are not designed for breaking changes, but can
help us identify potential breaking changes with the similar criteria in contrast to NoRegrets+ (e.g.,
if an additional property is read, we consider it as a breaking change). Tsinfer is an automatic tool
that generates TypeScript declaration files for a JavaScript library [24]. Tsinfer is built on top of
1See https://github.com/definitelyTyped/definitelyTyped/blob/master/types/hapi__joi/index.d.ts#L329.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://github.com/definitelyTyped/definitelyTyped/blob/master/types/hapi__joi/index.d.ts#L329

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:5

1 interface StringSchema <TSchema = string > extends AnySchema <TSchema > {

2 uri(options ?: UriOptions): this;

3 // more declarations

4 }

5

6 interface UriOptions {

7 scheme ?: string | RegExp | Array <string | RegExp >;

8 // more declarations

9 }

Fig. 2. Type Declaration for joi

Tscheck [14], based on heap snapshot analysis after the library is dynamically loaded into memory.
It then gathers class hierarchy by exploration of the runtime snapshot and employs a static analysis
for all functions in the snapshot. It also collects some information by dynamically calling some
functions, e.g., the type of returned objects. The other tools, i.e., dts-gen and dts-generator work
similarly.

While the type declaration generation is not designed for type-related breaking change detection,
we can compare the generated types before and after the version updates, using the similar criteria
as NoRegrets+, e.g., regarding the additional requirement of a property of an argument, and the
removal of an exported object as breaking changes.

3 Preliminary Study

To illustratively understand the challenges in detecting breaking changes for JavaScript libraries,
we present a preliminary study and discuss the key challenges in detecting such changes. We focus
on the effectiveness of the approaches (Q1) and the reasons why these tools miss breaking changes
(Q2) and produce false positives (Q3).

3.1 Experimental Settings

Library Selection. Given the vast number of JavaScript libraries in the whole NPM registry
(over one million), and considering the unpopular libraries lack dependent projects (making them
unsuitable for evaluating NoRegrets+ and Dont-break), we focused on identifying the top 1,000
JavaScript libraries with the highest number of clients. Similar to Møller et al.’s selection process
[29], we randomly select 40 JavaScript libraries from the NPM registry ranked within 1,000 (we do
not consider those that cannot be packaged into a CommonJS module, since we focus the libraries
that can be used as a CommonJS module in the Node.js environment for compatibility). The selected
libraries include some of well-known ones, e.g., async, moment (due to space limitation, we put
the details of them into our replication package [23]). We ensure that all of the selected libraries
have well-maintained changelogs, which assist us in identifying breaking changes acknowledged
by developers.

Breaking Change Collection. Before evaluating the tools, we use the same method as adopted
by Møller et al. [28] to identify the breaking change statements in software documentations, i.e.,
changelogs and commit messages. Specifically, they manually analyzed the documented breaking
changes and used an API path access language to formally describe what APIs can be affected by a
breaking change. Note that we do not consider the breaking changes that are not concerned with
JavaScript source code, e.g., modifying package.json or dropping support for a specific version of
Node.js. We manually identify 176 breaking changes in the 40 JavaScript libraries. Note that some

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

ISSTA103:6 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

Table 1. Effectiveness of different Approaches on part of the benchmark libraries (due to space limitation, the
detailed information is in the replication package [23])

Library

Dont-break NoRegrets+ Tsinfer-node

Detected FP Detected FP Detected FP

async 1/12 0 3/12 5 2/12 6
execa 0/13 0 6/13 4 6/13 4
jsonwebtoken 0/2 0 0/2 1 0/2 0
find-up 0/2 0 1/2 0 0/2 0
camelcase 0/0 0 0/0 0 0/0 0
moment 0/1 0 1/1 0 0/1 1
qs 0/0 1 0/0 2 0/0 2
path-to-regexp 0/0 0 0/0 2 0/0 3
has-flag 0/0 0 0/0 0 0/0 0
uuid 1/1 0 1/1 0 1/1 0
Not listed 7/145 0 7/145 25 5/145 30
Total 9/176 1 19/176 42 14/176 46

libraries do not have breaking changes, but we still retain them because they can help us evaluate
whether the breaking change detection tools produce false positives.

Evaluation Settings. We here detail the evaluation settings for different approaches. Since Tsinfer-
node loads the JavaScript code and monitors the runtime behavior in browsers, we re-implement
to support Node.js libraries and ES6 features (the re-implemented version is called Tsinfer-node).
For NoRegrets+, we also re-implement it using JavaScript to make it more configurable. Since
NoRegrets+ takes the imported object by require function as a starting point, we package the
ES6 modules into CommonJS modules using rollup2 (since certain versions of some libraries are
difficult to convert into CommonJS modules, we only consider the versions of libraries that can be
successfully configured). When we run Dont-break and NoRegrets+, we follow the settings that
is provided by Møller et al. [29], e.g., considering at most 2,000 clients for a benchmark library. For
Tsinfer-node, we compare the generated function signatures from two versions and regard the
signature changes as breaking changes.

Detection Result Analysis. After running the tools on our selected libraries, we collect the detected
breaking change information (e.g., in a version, an export function’s behavior is changed for certain
test cases, note that different tools report different types of information), and check whether the
reported information can match one of the breaking changes in our collected ones. If no information
can match a breaking change that is documented in the changelog or commit message, we consider
it as a missed breaking change, i.e., false negative. If the reported information cannot match any of
our identified breaking changes, we say that it is a false positive. We manually and independently
check whether the reported information actually related to breaking changes, and then we hold
meetings to resolve the disagreements. We use thematic analysis steps recommended by Cruzes et al.
[7] to summarize the reasons why the tools produce false positives and false negatives. Specifically,
the authors write some phrases to describe each false-positive and false-negative, and obtain a
series of phrases to describe a false positive or false negative case. Then, by clarifying each phrase’s

2https://rollupjs.org

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://rollupjs.org

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:7

meaning, we can combine the phrases with similar meanings into one. Thus there is a collection of
themes. Then, we try to cluster the similar themes (if possible). Finally, the themes are determined.

3.2 Result and Discussion

Q1: Effectiveness. We present the numbers of detected (missing) breaking changes and false
positives of the approaches on part of the benchmark libraries in Table 1 for detailed analysis (the
detailed numbers for each library are put in our replication package [23]). If an approach cannot
be applied to a library, we consider the number of missing breaking changes as the total count of
breaking changes in that library.
The simple regression testing tool dont-break can hardly ever detect breaking changes since

there are often not sufficient client projects. NoRegrets+ can detect more breaking changes but
produce a number of false positives. Similarly, Tsinfer-node also detects a small part of breaking
changes while produces a number of false positives. To sum up, the current tools can detect a
proportion of breaking changes but miss a large number of breaking changes, and may produce
false positives.

Q2: Missed Breaking Changes. We here discuss why the existing approaches miss breaking
changes.

• For Dont-break, the main reason is that the APIs in the JavaScript libraries are not accessed
by client code. Even for the frequently used APIs, Dont-break may not detect the related
breaking changes since the API change is subtle. For example, considering Logger constructor
in winston, dont-break does not detect such a breaking change in 3.0.0: the handleExceptions
property of the first argument of Logger is no longer supported,3 since the client code does
not use this property.

• For NoRegrets+, similar to Dont-break, NoRegrets+ also cannot detect the breaking
changes related to APIs that are not frequently used. For example, for async, 6 of 12 identified
breaking changes are related to the APIs not accessed by client code (e.g., async.memoize,
async.doDuring). While for a part of changes in the APIs accessed by client code, NoRegrets+
can detect them, some breaking changes on these APIs cannot be detected, since they are
related to subtle behavior change. For example, inmongoose 5.0.0, the property rawResult of the
property options of Query is no longer supported, and many functions in Query.prototype no
longer process the property passRawResult in the input argument named options4. However,
since NoRegrets+ only regards the additional property read as a breaking change, hence this
change is missed.

• For Tsinfer-node, the main reason is that Tsinfer-node does not effectively explore the
APIs in a JavaScript library, hence it misses breaking changes in some APIs. The other reason
is that the type analysis is not accurate, i.e., generating a lot of any and void types, hence
there seem no type difference between the original and the updated APIs.

Q3: False Positives. We here discuss the reasons for false positives for the evaluated approaches.
• For NoRegrets+, the reason for generating false positives is that NoRegrets+ identifies all
additional property reads as breaking changes (although in fact they are not all breaking).
There are two typical example. Inmongoose 6.0.0, the internal structure of the objects inherited
from Document is refactored: the new property $__schema is added. The new API imple-
mentations will read the new property, then NoRegrets+ regards it as a breaking change.

3https://github.com/winstonjs/winston/commit/a470ab5
4https://github.com/automattic/mongoose/issues/5869

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://github.com/winstonjs/winston/commit/a470ab5
https://github.com/automattic/mongoose/issues/5869

ISSTA103:8 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

In immutable 4.0.0, the functions in the library may additionally read many internal proper-
ties like @@__IMMUTABLE_ITERABLE__@@ compared to version 3.x, and NoRegrets+
regards the additional reads when calling the collection-related APIs, e.g., immutable.Map,
immutable.Seq, as breaking changes.

• For Tsinfer-node, the major reason for generating false positives is that Tsinfer-node is not
aware native types of arguments (if there is no documentation about the function). It only
generates an interface declaration for a string or array parameter. For example, if one parameter
should be an array, Tsinfer-node infers that it should have a method push and a property
length. If after the code change, another native function in Array.prototype is called, e.g., sort,
Tsinfer-node will generate a different interface to represent the parameter specification.
However, the argument is still an array. Therefore, the tool Tsinfer-node produces a lot of
false positives.

Insights. From the above study, we can gain the following insights that guide the improvements
of breaking change detection.
(1) With respect to the limitations of three approaches, the new detection approach should explore

the APIs in a JavaScript library and systematically organize them.
(2) With respect to NoRegrets+ and Tsinfer-node, the property changes can not be directly

identified as potential breaking changes since they are possibly for internal use.
(3) With respect to Tsinfer-node, during the analysis, such parameters should be correctly

identified as native types.
(4) With respect to NoRegrets+ and Dont-break, we should not rely on the test suites too much

since they are often not sufficient to produce behavior differences in regression testing.
(5) With respect to Tsinfer-node, the breaking change detection tool should employ more

accurate type analysis.

4 Our Approach: Diagnose

Based on our insights from the preliminary study, we propose an approach named Diagnose that
detects breaking changes with the help of the dynamic object relation graph. In each iteration, it
adds nodes from object exploration and the results of type analysis. In Section 4.2, we describe the
dynamic object relation graph and the overall procedure of how to build such a graph. In Section
4.1 and 4.3, we provide the details of type analysis and refinement with example code, which are
the critical processes in the overall algorithm.

4.1 Forced Execution-based Enhanced Type Analysis

The type analysis is based on a forced execution framework [16, 21]. The original purpose of
forced execution is to make the program continually run rather than interrupted by runtime errors.
However, Diagnose mainly uses forced execution to record the possible property information
during the execution and explore possible input types by multiple forced execution runs. Compared
with type differencing tool Tsinfer-node, Diagnose utilize forced execution to generate effective
input values rather than simply calling the functions (cf. insights 4 and 5).
Our forced execution focuses on the parameters of accessible functions. Similarly to previous

works [16, 21], our basic idea is to set a fake value for arguments into a function since their
type information is not determined, and the properties of fake values will be specified during
the execution. We achieve this by recording operations on those fake values. For example, when
an argument is an operand in an arithmetic operation, it is coerced to a number, and thus the
argument can be determined to be a number, and the result of the operation is a fake number. When
the property prop of the argument (currently a fake value 𝑣) is accessed, the result can be either

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:9

undefined or a new fake value. If the operation returns a new fake value, the fake value’s property
prop refers to the new fake value.

The critical operations in forced execution are detailed as follows. These operations are related
to well-known JavaScript language features.
Property read operations For an operation that attempts to read property 𝑝 from a fake value 𝑣 ,

if 𝑝 is a string, there are the following cases:
(1) If the fake value 𝑣 has been inferred to be a string, the concrete value of 𝑣 is determined to

be a randomly generated string 𝑠 . The operation returns 𝑠[𝑝].
(2) If the fake value 𝑣 has been inferred to be an array, the concrete value of 𝑣 is determined to

be an array 𝑎 filled in with some randomly generated objects (or strings, numbers, etc.). The
operation returns 𝑎[𝑝].

(3) If the fake value 𝑣 has been inferred to be a number since the numbers in JavaScript are not
extensive, the operation returns Number.prototype[𝑝].

(4) If the type of fake value 𝑣 is not determined, the operation can return undefined, or return a
new fake value and set 𝑣[𝑝] to the new fake value.

However, when the property 𝑝 is a well-known symbol [31], Diagnose considers three typical
cases:

(1) Symbol.toStringTag [34], the operation can return strings that represent the built-in types,
e.g., 'String', 'Number', 'Object', 'Function', 'Date', or a random string. If a string that repre-
sents a built-in type is returned, the type of the fake value is determined. If a random string
is returned, the fake value is determined to be an object.

(2) Symbol.toPrimitive [33], a function is returned to create primitive values: if the input hint is
'number', the function returns a random number and determines the fake value 𝑣 to be that
random number. If the input hint is 'string', the function returns a random string, and 𝑣 is
determined to be the random string.

(3) Symbol.iterator [32], the fake value 𝑣 is inferred to be an array, with a series of random
values. The operation returns a generator function is returned to yield these random values
one by one.

Property write operations For an operation that attempts to set property 𝑝 to 𝑒 on a fake value
𝑣 , if 𝑜 has been determined to be a number or a string, the operation makes no sense since
strings and numbers in JavaScript are sealed. Otherwise, the property 𝑝 is set to 𝑒 .

Typeof operations This operation corresponds to JavaScript typeof operator on a fake value 𝑣 . It
can return one of 'string', 'number', and 'object'. If the operation returns 'string', 𝑣 is set to be a
fake string. If the operation returns 'number', 𝑣 is set to be a fake number.

Call operations This operation is recorded when a fake value 𝑣 is invoked, hence 𝑣 is determined
to be a function, and a new fake value is returned. When 𝑣 has been determined to be a string,
a number, or an array, the operation throws an error since it cannot be invoked.

Instanceof operations The operation corresponds to instanceof operator in JavaScript [30]. If the
expression “𝑣 instanceof 𝑓 ” returns true, 𝑣 is determined to inherit from 𝑓 .prototype, otherwise
𝑣 is not changed after the operation.

GetOwnKeys operations The operation occurs when JavaScript built-in function Object.keys5 is
applied to a fake value 𝑣 . The fake value 𝑣 is determined to be an object, and Diagnose may
choose to generate a series of fake key-value pairs to fill in the fake object. Then the operation
returns the array of current keys.

The following example shows how Diagnose records the operations in forced execution.

5https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys

ISSTA103:10 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

1 class Command {

2 command(nameAndArgs , actionOptsOrExecDesc , execOpts) {

3 let desc = actionOptsOrExecDesc;

4 let opts = execOpts;

5 if (typeof desc === 'object ' && desc !== null) {

6 opts = desc;

7 desc = null;

8 }

9 opts = opts || {};

10 const [, name , args] = nameAndArgs.match (/([^]+) *(.*)/);

11 const cmd = this.createCommand(name);

12 if (desc) {

13 cmd.description(desc);

14 cmd._executableHandler = true;

15 }

16 if (opts.isDefault) this._defaultCommandName = cmd._name;

17 ...

18 }

19 }

Fig. 3. Method command in commander

Example 3. Consider the code from the method command in class Command6 (shown in Figure
3), we describe how the property of input arguments are determined in the execution. Note that
before command is called, the arguments and this are set to fake values.
(1) In Lines 3 and 4, the second and the third arguments are assigned to desc and opts, respectively.
(2) In Lines 5 to 8, there is a typeof operation on the fake value referenced by the local variable

desc. In one execution, the operation returns 'object', therefore the fake value is determined to
be an object rather than a string or number, and then the fake value is assigned to opts as the
option object.

(3) In Line 9, the local variable opts is not changed since opts currently points to an object.
(4) In Line 10, the property match of the fake value referenced by nameAndArgs is called as a

function, i.e., there is a property read operation on the object referenced by nameAndArgs,
and a call operation on the object referenced by nameAndArgs.match. Hence the fake value
should have match method, which accepts a regular expression and returns an array.

(5) In Line 11, the property createCommand of the fake object referenced by this is called with
a fake value (referenced by name), hence the fake object referenced by this should have the
property createCommand, which is a function.

(6) During the execution of createCommand, the property _registerCommand of this is ac-
cessed (not shown in Figure 3), and the referenced object is called. Therefore, the object
referenced by this should have a property named _registerCommand, which is a function. In
addition, the returned object of the function createCommand should contain the property
copyInheriteSettings, which is a function.

(7) In Line 12, since desc is null now, the if branch is skipped.
(8) In Line 16, the property isDefault of opts is accessed, hence there is a property read operation

on the object referenced by opt, and in this execution, the operation returns a new fake value,
hence the fake object referenced by opts has the property isDefault.

To sum up, in this execution:
6https://github.com/tj/commander.js/blob/master/lib/command.js

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://github.com/tj/commander.js/blob/master/lib/command.js

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:11

{

this:

'{ createCommand: function () { return {

copyInheritedSettings: function () { }

} }, _registerCommand: function () {

} }',

arguments:

[

'{ match: function () { return [{}, {},

{}] } }',

'{ isDefault: {} }'

]

}

(a) Possible Input 1

{

arguments: [

'{ match: function () {

return [{}, {}, {}] } }

',

'\" fakestring \"',

'{ isDefault: {} }'

]

}

(b) Possible Input 2 (this is omitted)

Fig. 4. Possible Input for the method command in class Command (the content of each field is the code to
construct the corresponding object, which can be used to restore the corresponding object in the reconstruction
phase)

(1) this should refer to an object having properties createCommand and _registerCommand.
(2) The first argument should have a match method, which returns an array containing three

objects.
(3) The second argument is inferred to be an ordinary object that may contain isDefault property.
(4) The third argument can be any value, i.e., there can be only two arguments when the method

command is called.
For this execution, we can gain some knowledge of the arguments. However, only some charac-

teristics are not determined. Specifically, the first argument’s propertymatch is still a fake function,
and the second argument’s property isDefault is still a fake value. Therefore Diagnose replaces
the fake values with randomly generated values. Diagnose then calls the method command with
all arguments filled in with actual values and retains the argument sets that can obtain a non-error
result. Diagnose also records the type returned from a function call. Finally, Diagnose obtains a
series of input argument sets for a function to create Call edges (described in Section 4.2). During
the execution, the built-in libraries related to I/O (e.g., fs, http, net) are mocked, like the previous
work using forced execution [25].

As an example, Diagnose may create the input data shown in Figure 4a (represented in JSON
format, this field and arguments field contain the content of the this and arguments used to call
the corresponding function, respectively).

Since an operation on a fake value can have multiple effects, and a fake value might be implicitly
coerced to a random primitive value, Diagnose can try to explore multiple execution paths. For
example, if the typeof operation in Line 5 returns 'string', the second argument will be determined
to be a string and the third argument to be an object having a property named isDefault. After the
execution, Diagnose can create another set of input data, shown in Figure 4b (this is omitted since
it is the same as this in Figure 4a).

4.2 Constructing Dynamic Object Relation Graph

In a CommonJS module, functions and other objects are usually organized in an exported object.
Diagnose employs the dynamic object relation graph to maintain the structure of a JavaScript
library and iteratively explore the JavaScript library (cf. insight 1). In this section, we detail the
design of such structure and how to construct object relation graphs.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

ISSTA103:12 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

1

2

3

4

5

6

7

EventEmitter.prototype

Array

String

[[Prototype]]

Command

program

prototype

[[Prototype]]

command

option

parse

[[Prototype]]

_args

_args

Start Object Type OwnProp Call HasProp

Fig. 5. Part of Dynamic Object Relation Graph for Commander (the input values on Call edges are omitted
due to space limitation).

In a dynamic object relation graph, there are three types of nodes, i.e., Start, Object and Type,
three types of edges, i.e., Call, OwnProp and HasProp. Specifically, the Start nodes and Object

are associated with an object in the heap snapshot, and OwnProp and HasProp edges have a label.
We detail each type of node and edge as follows.

• Start node: A Start node represents the loaded module in a dynamic object relation graph.
• Object node: An Object node represents an ordinary object in the heap snapshot after the
library is loaded (including built-in objects like String and Object). The Start node is a special
Object node.

• Type node: A Type node serves as the return type of functions in a library. It will be added
during the forced execution-based type analysis process (in Section 4.1). The Type node can
point to a series of Object nodes as its argument types and return type.

• Call edge: A Call edge connects an Object node and a Type node, which means that the
Object node can be called as a function and can return an object whose type is represented by
Type node. A Call edge is linked with a set of input arguments (including this) for a function
call, which is described in Section 4.1.

• OwnProp edge: An OwnProp edge indicates an own member of an object. If the object
represented by a node 𝐴 has an own property,7 referring to an object 𝐵, then there is a
OwnProp edge from 𝐴 to 𝐵. The own property can be a special property [[Prototype]], which
refers to the prototype of the object.8

• HasProp edge: A HasProp edge links a Type node to another Type node which represents the
type of a property, or Object node which represents the fixed value of a property.

7Own properties refer to those properties directly defined on an object, not inherited from the prototype.
8The property [[Prototype]] cannot be pragmatically used. See https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Inheritance_and_the_prototype_chain.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:13

The high-level process of object relation graph construction is as follows. Diagnose iteratively
selects an object from the work list until the work list is empty or the max iteration time is reached.
In each iteration, there are two critical processes:

• Diagnose explores more objects via property access, then adds them to the work list.
• If the object is a function, Diagnose does forced execution-based type analysis, and creates
type nodes. More objects may be detected in this process and if they are not visited, they will
be added to work list.

After the object is processed, it is set to be visited. We explain the two critical processes as follows.

The process of exploring objects via property access. The procedure is roughly a breadth-first
search starting from an unvisited node in the work list. Diagnose finds new nodes via own properties.
Diagnose then creates nodes for all reachable and unvisited objects (except built-in objects, e.g.,
Object) and adds them to the work list (if unvisited) for subsequent processes. We use the dynamic
object relation graph in Figure 5 to illustrate the process:
(1) Node 1 represents the starting object, i.e., the imported library. Assuming that the loaded

library is assigned to the variable lib, i.e., var lib = require('commander'). There is a self loop
on Node 1, since lib and lib.program refer to the same object.

(2) Nodes 2 represent the object referenced by own properties Command of the object represented
by Node 1, respectively. Node 2 can be accessed via lib.Command.

(3) The object represented by Node 2 is a function and can be called as a constructor, hence it has
an own property named prototype, which refers to the object represented by Node 3. Hence,
Node 3 can be accessed via lib.Command.prototype.

(4) The object represented by Node 3 has a number of properties representing a function, e.g.,
command, option and parse, represented by Node 4, 5 and 6 respectively.

(5) The prototype of the object represented by Node 3 is EventEmitter.prototype [36], which is
a JavaScript built-in object. Hence Node 3’s OwnProp edge named [[Prototype]] points to
EventEmitter.prototype.

(6) Regarding the object represented by Node 1, its prototype is the object represented by Node 3,
hence there is an OwnProp edge named [[Prototype]] from Node 1 to 3.

The process of forced execution based analysis. In the process, Diagnose performs a type
analysis for the objects that are functions and not visited. Diagnose creates Call edges and Type

nodes according to the analysis results. In type analysis, new objects may be detected, e.g., one
property of the returned object is a new prototype object in the return type. In this case, Diagnose
will create new Object nodes for these objects.
Example 4. In Figure 5, the object represented by Node 2 and Nodes 4 to 6 are functions:
(1) The returns objects of the function represented by Node 2 have a fixed set of properties and

a common prototype. Hence Diagnose creates a Type node (Node 7) and a Call edge from
Node 2 to 7. Since the common prototype can be represented by Node 3, Diagnose creates a
HasProp edge named [[Prototype]] from Node 7 to 3. Additionally, Diagnose creates a series
of HasProp edges starting from Node 7 (we here only show two edges, i.e., _args and _name).

(2) The return types of functions (represented by Node 4, 5 and 6) can be represented by Node 7,
i.e., having a common prototype and a fixed set of properties. Hence Diagnose creates Call
edges from Node 4, 5, 6 to Node 7, respectively.

4.3 Graph Refinement

The major purpose of refinement is to make the test input values of the Call edges reflect the
practical usage. Diagnose uses the following refinement methods.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

ISSTA103:14 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

{

this: '__node__ [1]. object.apply(

__node__ [1]. calledges [0].

this , __node__ [1]. calledges

[0]. arguments)',

arguments: [

'{ match: function () { return

[{}, {}, {}] } }',

'{ isDefault: {} }'

]

}

(a) Refine Input 1

{

arguments: [

'"fakestring"',

'{ isDefault: {} }'

]

}

(b) Refined Input 2 (this is the same as Input 1)

Fig. 6. Refined Input Data for command

Refine the input values on Call edges. If the type of an argument (or this) might be created by
calling another function in the dynamic object relation graph or a native constructor, i.e., the return
type of the function is a subtype of the inferred. This can avoid direct use of internal properties and
identify native types (insights 2 and 3).
We say that the type 𝑡 a subtype of 𝑡 ′ (written 𝑡 <: 𝑡 ′) if PropertySet(𝑡 ′) ⊆ PropertySet(𝑡) and

for each 𝑝 ∈ PropertySet(𝑡 ′), 𝑡[𝑝] <: 𝑡 ′[𝑝]. This ensures that 𝑡 is compatible with 𝑡 ′. For example,
as shown in Figure 4, the first input argument is an object having a function property namedmatch,
which returns an array. Note that JavaScript native strings have a match method (inherited from
String.prototype), which returns an array (with undetermined length) or null. Hence, the type of
String.prototype.match9 is a subtype of the inferred since the latter returns an array with three
elements, while the former returns an arbitrary array or null. And further, the native String type is
a subtype of the type of the inferred argument.

Example 5. Continuing Example 3, the object referenced by this for the function represented by Node
4 in Figure 5 (i.e., the method command shown in Figure 3) should have properties createCommand
and _registerCommand, which are both functions. However, the return objects of Command(...)
share a common prototype object, which owns the function properties named createCommand
and _registerCommand, respectively. Hence, this object can be replaced with the objects created
by Command(...), if command can successfully run after the input object for this is replaced. A
possible set of refined input values on the Call edge is shown in Figure 6a, where the code for this
field is to retrieve the object created by the function represented by Node 2 with the input values
on its first Call edge10.
Additionally, the first argument of command is an object with the function property named

match. The function returns an array. The strings in JavaScript also have a function property
named match (inherited from String.prototype), which returns an arbitrary array or null. Hence,
the argument can be replaced by a random string, as shown in Figure 6b.

Prune the graph. Diagnose employs a simple process to remove the following edges and nodes
since they possibly represents the objects and properties for internal use:
(1) If a HasProp edge points to a Type node, the edge should be removed.
(2) If an Object node has no outer edges, the node should be removed.

9https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match
10Here the identifier __node__ is a special token to access the nodes in the dynamic object relation graph.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:15

(3) If a node in the dynamic object relation graph is not connected to any other node, i.e., a
detached node, it should be removed.

For example, in Figure 5, the properties _args and _name of Node 7 should be removed. They are
probably only for internal usage, hence should not be considered as the type-related information of
the library.

Supplement edges and nodes based on example client code. We adopt the example code of
earlier versions of a JavaScript library to refine the dynamic object relation graph. By running the
example code with the loaded library wrapped, Diagnose can record the input and return values
of function objects. If new objects are discovered in the heap snapshot or new types are produced,
Diagnose will correspondingly create new nodes and add them to the work list for subsequent
analysis.

Example 6. The example code can access the methods in commander as follows:

1 const { Command } = require('commander ');

2 const program = new Command ();

3 program

4 .command('build')

5 .description('build web site for deployment ')

6 .action (() => {

7 console.log('build');

8 });

Since Diagnose has built a dynamic object relation graph for commander, when executing the
code above, it can force the return object of require('commander') to be the Start node of the
dynamic object relation graph (shown in Figure 5). Then Command will refer to the wrapped
Node 2 in Figure 5. when new Command() is executed, there is no extra argument supplied, and
Diagnose will record it to create a new Call edge. In Line 4, the command property refers to the
wrapped command method, which can record the input values when calling this method (here the
input value is a single string 'build'). Hence, Diagnose can create another Call edges with the
input value 'build', which has different arguments compared to those in Figure 4 and 6. Similarly,
Diagnose can process the method description and action (in Line 5 and 6, respectively).

4.4 Breaking Change Detection by Graph Reconstruction

Diagnose generates a full object relation graph for the older revision of a library. Diagnose will
try to check whether the dynamic object relation graph can be rebuilt on the newer version of the
library. The process is similar to graph construction explained in Section 4.2, however, Diagnose
only explores the objects and creates Type nodes follow the edges in the original object relation
graph. We use the dynamic object relation graph in Figure 5 as an example (Node 𝑖′ means the node
in the reconstructed dynamic object relation graph corresponding to Node 𝑖 in the original graph):

(1) Diagnose first loads the new version of the library commander and creates a Start node
(Node 1′) for it, corresponding to Node 1 in Figure 5.

(2) Since there are two OwnProp edges starting from Node 1, named program and Command
respectively, Diagnose then checks the existence of the two properties on the Start node. If
not, there should be a breaking change. Otherwise, Diagnose creates two OwnProp edges
starting from the Start node (i.e., Node 1′) and an Object node (i.e., Node 2′).

(3) Node 2 has an own property prototype, referring to Node 3 in Figure 5. Then Diagnose
checks whether the object represented by Node 2′ has an own property named prototype. If

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

ISSTA103:16 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

Table 2. Overall Effectiveness Comparison between Different Approaches

Approach Detected Missed False Positive

Dont-break 9 167 1
NoRegrets+ 19 157 42
Tsinfer-node 14 162 46
Diagnose 106 70 9

not, there should be a breaking change. Otherwise, Diagnose creates Node 3′, as well as an
OwnProp edge from Node 2′ to 3′.

(4) The prototype of the object represented by Node 1 is the object represented by Node 3, hence
Diagnose checks whether the prototype of the object represented by Node 1′ is actually
the object represented by Node 3′. If not, there should be a breaking change. Otherwise,
Diagnose creates an OwnProp edge named [[Prototype]] from Node 1′ to 3′.

(5) Similarly, Diagnose checks Node 4, 5, 6 and EventEmitter.prototype.
(6) In Figure 5, there is a Call edge from Node 2 to 7. Diagnose hence calls the function object

represented by Node 2′ with the input value sets on the Call edge and checks whether the
return value conforms to the type represented by Node 7. Since the properties _args and
_name are removed in the refinement process, Diagnose only checks [[Prototype]], i.e.,
whether the prototype of the return value is the object represented by Node 3′. If any errors
are thrown in the process or the type check fails, there should be a breaking change.

(7) Similarly, Diagnose checks the Call edges from Node 4, 5, 6 to Node 7.

4.5 Evaluation

In this section, we present the experimental results to show the effectiveness and efficiency of our
proposed approach. We focus on three research questions:
RQ1: How many breaking changes can Diagnose detect in popular JavaScript libraries?
RQ2: Can Diagnose produce fewer false positives?
RQ3: How efficient is Diagnose and whether it is suitable for practical use?
During evaluation, the benchmark libraries include the same set of JavaScript libraries used in

Section 3 that can be packaged into CommonJS modules. Other experiment settings are similar to
those used in Section 3.1. Due to space limitation, we only present the overall performance statistics
of Diagnose and other approaches in Table 2 and put our selected libraries and the experimental
results in our replication package [23].

RQ1: The number of detected breaking changes. Diagnose can detect 106 breaking changes
(60.2%). Notably, for larger libraries (typically containing plenty of JavaScript source code files and
having many version releases), such as joi and mongoose, Diagnose can detect and much more
breaking changes. This mainly benefits from the exploration of callable objects and execution
paths in the JavaScript library (as is discussed in Section 3, other approaches does not explore APIs
in generating API models). Furthermore, since Diangose can construct more possible inputs for
exposed APIs, it can detect more breaking changes.
The following example illustrates how Diagnose can detect more breaking changes compared

to NoRegrets+.

Example 7. In immutable 4.0.0, the behavior of the function isImmutable is changed: it returns
true for all immutable collections, even within withMutation calls11 (in withMutation calls, the

11https://github.com/immutable-js/immutable-js/pull/1374

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://github.com/immutable-js/immutable-js/pull/1374

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:17

collections will be temporarily transformed to be mutable by calling asMutable). For example,
the function call isImmutable(Map().asMutable()) will return true in version 4.0.0. In the code
change of version 4.0.0, the function isImmutable no longer accesses the property __ownerID of
the argument. It can indicate that there might be a breaking change. However, NoRegrets+ only
regards additional property read operation as a breaking change. Hence, NoRegrets+ does not
report the breaking change.

By contrast, Diagnose does not detect the breaking change from the aspect of property access,
since the changes of internal property access do not definitely means a breaking change (especially
in refactoring, the internal properties can change a lot). It first analyzes the input type of the
function isImmutable via forced execution: the input argument might have some internal properties,
e.g., @@__IMMUTABLE_ITERABLE__@@, __ownerID, etc., and construct the possible input
arguments. Also, the return values of Map.prototype.asMutable contain such properties, hence in
the process of graph refinement, Diagnose can replace the arguments with the objects created via
Map().asMutable(). After the dynamic object relation graph is constructed, Diagnose can try to
construct the graph in the newer version of immutable and call the function isImmutable with the
arguments created viaMap().asMutable(), then the function call returns true rather than false in
the previous version, thereby the breaking change is detected.

RQ2: The number of false positives. Diagnose only reports 9 false positives while NoRegrets+
and Tsinfer-node reports 42 and 46 respectively. One reason is that Diagnose does not regard
changes in internal properties as breaking changes: in some major version updates such asmongoose

5.0.0 to 6.0.0, the internal structure of some types may be largely refactored, Diagnose can ignore
them by pruning the dynamic object relation graph, described in Section 4.3. The following example
can illustrate how Diagnose avoids such false positives.

Example 8. This example is provided by Møller et al. [29]. In the library joi, the uri method of the
return type of joi.string() can be used as follows:
1 var joi = require('joi');

2 var v = joi.string ().uri({ scheme: 'http'});

3 var result = v.validate('http :// example.com');

4 // result.error is currently null

If no error occurs in the execution of v.validate(...), the property error of result is null. In version
13.5.0, a new option named allowQuerySquareBrackets is introduced. Hence the method uri will
read the property. However, for simple URIs, the result will not change. Moreover, the option
defaults to false and the method preserves the old behavior when the option is not set or is false.
Although it is only a benign change, not breaking change, NoRegrets+ still reports it since in
the execution of uri, the new option allowQuerySquareBrackets is read. As for Diagnose, it will
only report a breaking change if the type related information of return objects is changed (e.g., the
property error is no longer null). However, in this example, the return type of the v.validate(...) call
has no change after the version update, hence Diagnose avoids such a false positive.

RQ3: Efficiency of Diagnose. In our evaluation, we consider two measures, i.e., the mean time of
constructing the dynamic object relation graph and the mean time of reconstructing the dynamic
object relation graph for an updated version. We implement Diagnose in pure JavaScript and
evaluate Diagnose on a cloud computer with 2-core CPU and 8 GB memory. Overall, the mean
time for constructing an dynamic object relation graph for a specific version of the libraries is 1.4
minutes. For very small libraries like camelcase, has-flag (with only a single JavaScript source code
file), Diagnose can construct the dynamic object relation graph within 15 seconds. Even for the
largest library mongoose, Diagnose can finish the construction process within 8 minutes and the

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

ISSTA103:18 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

reconstruction process for the subsequent versions within 3 minutes (with max iteration of 100
and max generated test input of 100). Hence, Diagnose is suitable in practical use.

5 Discussion

5.1 Comparison with NoRegrets+

Diagnose and NoRegrets+ both generate models for a Node.js library and employ model-based
testing for the updated libraries. However, they differ in the following aspects.
Most importantly, NoRegrets+ only supports basic built-in types, including number, string,

object, function, and other types in the JavaScript standard library (e.g., date, Map, EventEmitter).
For object type, NoRegrets+ only supports the properties that are accessed in the client code. By
contrast, Diagnose support not only the built-in types, but also the types in the JavaScript libraries
by relating the return types and input types in JavaScript libraries, e.g., inferring that the returned
type of a function can be used as the input as another function, and refine the input values on the
Call edges.
Secondly, the model generated by NoRegrets+ is subject to a test suite, i.e., can only be used

with the help of the test suite. That is not satisfactory when it is not easy to find test cases for a
JavaScript library. By contrast, Diagnose can automatically infer types of exported functions in
JavaScript libraries via forced execution-based type analysis (detailed in Section 4.1), and generate
concrete and runnable test cases for the exported functions.

Last, NoRegrets+ considers multiple calls of an exported function in client code. Typically, when
a function named 𝑓 is called twice in client code, possibly with different types of input and returned
values, they are both recorded. However, Diagnose achieves this in a different way. Diagnose can
explore the possible types of this, input and return values via forced execution-based type analysis
and then generate input value sets that can make the functions successfully run (detailed in Section
4.1). Hence, it is not necessary for Diagnose to analyze client code with multiple API calls of a
function.

5.2 Limitation of Diagnose

While Diagnose can detect more breaking changes compared to prior tools, it cannot handle those
breaking changes only related to program behavior. For example, in mongoose 6.0.0, the developers
made the method Document.prototype.$set set keys in the order they were defined in the schema,
not in the user-specified object12. As a result, the returned objects are not ordered as expected.
However, Diagnose only consider type changes as breaking changes.
Nevertheless, in practice, determining whether a behavior change is breaking is often difficult,

even for developers of JavaScript libraries. For different downstream users, the impacts of a behavior
change may vary largely, and some code changes are identified as breaking changes by the upstream
developers, but impact little on downstream (e.g., the example above). Hence, ignoring these changes
is reasonable, and is possible to avoid many false positives.

6 Threats to Validity

External Threats. In our study, we just evaluate existing tools and our approach on 40 well-known
libraries selected from the most popular JavaScript libraries in the NPM registry. The results might
not fully reflect the breaking changes in the libraries that are rarely used. However, the breaking
changes in popular libraries are much more critical, and unpopular libraries often do not have
many client test cases to uncover the code changes in version updates. Therefore, we believe that
considering breaking changes in the libraries with the most dependent projects is reasonable.
12https://github.com/automattic/mongoose/issues/4665

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://github.com/automattic/mongoose/issues/4665

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:19

Internal Threats. In the evaluation process of existing tools and analyze breaking changes that
are documented by developers, we might incorrectly understand the developers’ intention (e.g.,
considering a normal bug fix as a breaking change) and wrongly identify the actual reasons why
these tools cannot detect some breaking changes or produce false positive. To mitigate this, we
carefully check the running results and try our best to understand how the tools produce such
results.
Construct Threats. The construct threats mainly relate to the quality of our benchmarks, since
determining breaking changes is really quite challenging. Møller et al. [29] pointed out that API
specification should be constructed as a requirement of semantic versioning. However, it is often not
practical. Typically, the correct API usage might not be present in the API documentation. Hence if
the client code incorrectly utilizes the API and finds the behavior changes after library updates,
we cannot definitely say that there is a breaking change. For example, after a library update, one
API’s return objects do not have a property (which is for internal use only). Besides, developers
might overestimate the effects of code changes, e.g., identifying a subtle change as a breaking
change, or overlook some breaking changes that will actually break the client code. However, our
selected libraries are the most popular ones from the NPM registry, hence they are more likely to
be well-maintained, and the breaking changes are correctly documented, and developers are less
probable to overestimate the impacts of breaking changes.

7 Related Work

Program Analysis for JavaScript. Program analysis can be utilized to determine a lot of syntactic
and runtime behavior for JavaScript programs, and can be further used to detect potential bugs and
breaking API changes. Some works proposed static analysis approaches from many aspects. For
example, Madsen et al. [26] built event-based call graphs to detect event-related bugs by enhancing
the static analysis framework JASI [19] and TAJS [17]. Other works [17, 37, 44] studied static
analysis for JavaScript in the HTML DOM environment. Furthermore, in addressing the limitations
of static analysis approaches for JavaScript, Chakraborty et al. presented a technique to supplement
missing edges in the JavaScript call graph [4] and highlighted that dynamic property access is a
primary factor contributing to low recall in previous static analysis frameworks, mainly missing
some function calls. Besides, some open-source tools like ESLint [13] and JSHint [18] support rule-
based static analysis for JavaScript projects. They can be used to improve code quality, e.g., making
code follow JavaScript programming idioms. While static analysis techniques are effective in many
scenarios, they still suffer from some problems, typically the limitation in the approximation of the
runtime behavior. Hence, dynamic analysis can be the tendency of JavaScript program analysis. For
example, Pradel et al. proposed TypeDevil [39] that builds runtime type relation graphs to detect
type inconsistency in JavaScript programs, Gong et al. proposed JITProf [15] to analyze runtime
performance problems.

Breaking Change Analysis in JavaScript. To the best of our knowledge, there are only few works
aimed at breaking change analysis in JavaScript. There is an empirical study [22] that investigated
the breaking changes from the developers’ aspects, i.e., when, how, and why developers perform a
breaking change. Specifically, they investigated the source code-level features of JavaScript breaking
changes (including syntactic breaking changes and behavioral breaking changes). However, the
scenario in our paper is different. We focus on client users’ aspects. Our investigation is based
on the version level: when client users (a.k.a., downstream developers) have an older version of a
library, now they need to update to a newer version. We do not focus on how developers change
the source code. Additionally, the libraries that they used are collected from the Libraries.io dataset
[20], which was released in 2020, and many of them are not popular nowadays. TAPIR [28] is a

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

ISSTA103:20 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

semi-automatic tool for detecting the client code that is affected by breaking changes. By contrast,
our approach Diagnose is aimed at detecting breaking changes. Nevertheless, in the future, it is
possible to extend Diagnose to generate such statements of the formal language to describe the
detected breaking changes.

Breaking Change Detection and Analysis for Other Languages. Several studies focus on
detecting and analyzing breaking changes for other programming languages, especially Java and
Python, and their techniques might be learned to boost breaking change detection for JavaScript.
Regarding syntactic breaking changes, APIDiff proposed by Brito et al. [3] can detect syntax-related
breaking changes in Maven projects, such as method removal and visibility loss by reusing the
refactoring detection tool RefDiff [43]. Some open-source tools can also check Java syntactic
breaking changes, such as Clirr [5] and RevAPI [41]. For Python language, Du et al. [12] proposed
AexPy that can detect similar types of breaking changes like module removal and addition of
required parameters, which extends the existing tool PyCompat [47] and Pidiff [38]. As for non-
syntactic breaking changes, Zhang et al. proposed Sembid [46] to detect behavioral breaking
changes by measuring the semantic difference of call graphs between old and new programs.
However, Sembid cannot detect subtle breaking changes and may report large refactorings as
breaking changes.

8 Conclusion and Future Work

In this work, to illustratively understand the effectiveness of current approaches for JavaScript
breaking change detection, we preliminary evaluate the approaches on 40 popular JavaScript
libraries sampled from the NPM registry. We find that the existing approaches miss a lot of breaking
change and might report false positives, and discuss the reasons. We further provide insights for
further improvements, and based on them, we propose a new approach named Diagnose that
constructs dynamic object relation graphs for JavaScript libraries with forced execution-based type
analysis. Diagnose then checks whether the graphs can be reconstructed in the updated versions of
the libraries. Compared to existing tools, Diagnose can detect significantly more breaking changes
and produce much fewer false alarms. In the future, we plan to extend Diagnose to support more
JavaScript features and apply it to more JavaScript-related tasks, such as vulnerability detection.

Data Availability

We provide the replication package and supplementary material [23].

Acknowledgments

We sincerely thank the anonymous reviewers for their comments and insightful feedback. This
research (project) is supported by the National Science Foundation of China (No.62372398 and
No.72342025), the Zhejiang Pioneer (Jianbing) Project (2025C01198(SD2)), and funded by ZJU-China
Unicom Digital Security Joint Laboratory. The research (project) is also supported by the National
Research Foundation, Singapore, under its Investigatorship Grant (NRF-NRFI08-2022-0002). Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research Foundation, Singapore.

References

[1] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016. How to break an API: cost negotiation
and community values in three software ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering. 109–120.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

More Effective JavaScript Breaking Change Detection via Dynamic Object Relation Graph ISSTA103:21

[2] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When and how to make breaking
changes: Policies and practices in 18 open source software ecosystems. ACM Transactions on Software Engineering and

Methodology (TOSEM) 30, 4 (2021), 1–56.
[3] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff: Detecting API breaking changes. In

2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 507–511.
[4] Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. 2022. Automatic root cause

quantification for missing edges in javascript call graphs. In 36th European Conference on Object-Oriented Programming

(ECOOP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
[5] Clirr. 2024. Clirr. https://clirr.sourceforge.net.
[6] Fernando Cristiani and Peter Thiemann. 2021. Generation of typescript declaration files from javascript code. In

Proceedings of the 18th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes.
97–112.

[7] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis in software engineering. In 2011

international symposium on empirical software engineering and measurement. IEEE, 275–284.
[8] Alexandre Decan and Tom Mens. 2019. What do package dependencies tell us about semantic versioning? IEEE

Transactions on Software Engineering 47, 6 (2019), 1226–1240.
[9] DefinitelyTyped. 2025. DefinitelyTyped. https://github.com/definitelytyped/definitelytyped.
[10] Dont-break. 2024. Dont-break. https://github.com/bahmutov/dont-break.
[11] Dts-gen. 2025. Dts-gen. https://www.npmjs.com/package/dts-gen.
[12] Xingliang Du and Jun Ma. 2022. AexPy: Detecting API Breaking Changes in Python Packages. In 2022 IEEE 33rd

International Symposium on Software Reliability Engineering (ISSRE). IEEE, 470–481.
[13] ESLint. 2025. ESLint. https://eslint.org.
[14] Asger Feldthaus and Anders Møller. 2014. Checking correctness of TypeScript interfaces for JavaScript libraries. In

Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications.
1–16.

[15] Liang Gong, Michael Pradel, and Koushik Sen. 2015. Jitprof: Pinpointing jit-unfriendly javascript code. In Proceedings

of the 2015 10th joint meeting on foundations of software engineering. 357–368.
[16] Xunchao Hu, Yao Cheng, Yue Duan, Andrew Henderson, and Heng Yin. 2018. Jsforce: A forced execution engine

for malicious javascript detection. In Security and Privacy in Communication Networks: 13th International Conference,

SecureComm 2017, Niagara Falls, ON, Canada, October 22–25, 2017, Proceedings 13. Springer, 704–720.
[17] Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the HTML DOM and browser API in static

analysis of JavaScript web applications. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering. 59–69.
[18] JSHint. 2024. JSHint. https://jshint.com.
[19] Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin Gibbons, John Sarracino, Ben Wiedermann,

and Ben Hardekopf. 2014. JSAI: A static analysis platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT

international symposium on Foundations of Software Engineering. 121–132.
[20] Jeremy Katz. 2020. Libraries.io Open Source Repository and Dependency Metadata. https://doi.org/10.5281/zenodo.

3626071
[21] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu. 2017.

J-force: Forced execution on javascript. In Proceedings of the 26th international conference on World Wide Web. 897–906.
[22] Dezhen Kong, Jiakun Liu, Lingfeng Bao, and David Lo. 2024. Towards Better Comprehension of Breaking Changes in

the NPM Ecosystem. ACM Transactions on Software Engineering and Methodology (2024).
[23] Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao. 2025. Diagnose Replication Package. https://github.

com/cstimkong/diagnose.
[24] Erik Krogh Kristensen and Anders Møller. 2017. Inference and evolution of typescript declaration files. In Fundamental

Approaches to Software Engineering: 20th International Conference, FASE 2017, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings 20. Springer,
99–115.

[25] Mathias Rud Laursen, Wenyuan Xu, and Anders Møller. 2024. Reducing static analysis unsoundness with approximate
interpretation. Proceedings of the ACM on Programming Languages 8, PLDI (2024), 1165–1188.

[26] Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static analysis of event-driven Node. js JavaScript applications.
ACM SIGPLAN Notices 50, 10 (2015), 505–519.

[27] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type regression testing to detect breaking changes
in Node. js libraries. In 32nd european conference on object-oriented programming (ECOOP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://clirr.sourceforge.net
https://github.com/definitelytyped/definitelytyped
https://github.com/bahmutov/dont-break
https://www.npmjs.com/package/dts-gen
https://eslint.org
https://jshint.com
https://doi.org/10.5281/zenodo.3626071
https://doi.org/10.5281/zenodo.3626071
https://github.com/cstimkong/diagnose
https://github.com/cstimkong/diagnose

ISSTA103:22 Dezhen Kong, Jiakun Liu, Chao Ni, David Lo, and Lingfeng Bao

[28] Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. 2020. Detecting locations in JavaScript programs
affected by breaking library changes. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–25.

[29] Anders Møller and Martin Toldam Torp. 2019. Model-based testing of breaking changes in Node. js libraries. In
Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the

foundations of software engineering. 409–419.
[30] Mozilla. 2025. JavaScript Instanceof Operator. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Operators/instanceof.
[31] Mozilla. 2025. JavaScript Symbol. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/

Symbol.
[32] Mozilla. 2025. JavaScript Symbol.iterator. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Symbol/iterator.
[33] Mozilla. 2025. JavaScript Symbol.toPrimitive. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/Symbol/toPrimitive.
[34] Mozilla. 2025. JavaScript Symbol.toStringTag. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/Symbol/toStringTag.
[35] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. 2021. Modular call graph construction for security

scanning of Node. js applications. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing

and Analysis. 29–41.
[36] NodeJS. 2025. Node.js Event. https://nodejs.org/api/events.html.
[37] Changhee Park, Sooncheol Won, Joonho Jin, and Sukyoung Ryu. 2015. Static Analysis of JavaScript Web Applications

in the Wild via Practical DOM Modeling (T). In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE). 552–562. https://doi.org/10.1109/ASE.2015.27
[38] Pidiff. 2024. Pidiff. https://github.com/rohanpm/pidiff.
[39] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic type inconsistency analysis for JavaScript.

In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 314–324.
[40] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2017. Semantic versioning and impact of breaking changes in

the Maven repository. Journal of Systems and Software 129 (2017), 140–158.
[41] RevAPI. 2024. RevAPI. https://revapi.org.
[42] SemVer. 2025. Semantic Versioning. http://semver.org.
[43] Danilo Silva and Marco Tulio Valente. 2017. RefDiff: Detecting refactorings in version histories. In 2017 IEEE/ACM

14th International Conference on Mining Software Repositories (MSR). IEEE, 269–279.
[44] Chungha Sung, Markus Kusano, Nishant Sinha, and Chao Wang. 2016. Static DOM event dependency analysis for

testing web applications. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. 447–459.
[45] Daniel Venturini, Filipe Roseiro Cogo, Ivanilton Polato, Marco A Gerosa, and Igor Scaliante Wiese. 2023. I depended

on you and you broke me: An empirical study of manifesting breaking changes in client packages. ACM Transactions

on Software Engineering and Methodology 32, 4 (2023), 1–26.
[46] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and Yang Liu. 2022. Has my release

disobeyed semantic versioning? Static detection based on semantic differencing. In Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering. 1–12.
[47] Zhaoxu Zhang, Hengcheng Zhu, Ming Wen, Yida Tao, Yepang Liu, and Yingfei Xiong. 2020. How do python framework

apis evolve? an exploratory study. In 2020 ieee 27th international conference on software analysis, evolution and

reengineering (saner). IEEE, 81–92.

Received 2024-10-31; accepted 2025-03-31; revised 2024-10-31; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA103. Publication date: July 2025.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/iterator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/iterator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/toPrimitive
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/toPrimitive
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/toStringTag
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/toStringTag
https://nodejs.org/api/events.html
https://doi.org/10.1109/ASE.2015.27
https://github.com/rohanpm/pidiff
https://revapi.org
http://semver.org

	Abstract
	1 Introduction
	2 Background
	2.1 Breaking Changes in JavaScript
	2.2 Existing Approaches for Breaking Change Detection

	3 Preliminary Study
	3.1 Experimental Settings
	3.2 Result and Discussion

	4 Our Approach: Diagnose
	4.1 Forced Execution-based Enhanced Type Analysis
	4.2 Constructing Dynamic Object Relation Graph
	4.3 Graph Refinement
	4.4 Breaking Change Detection by Graph Reconstruction
	4.5 Evaluation

	5 Discussion
	5.1 Comparison with NoRegrets+
	5.2 Limitation of Diagnose

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

