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Abstract—Due to the complexity of software systems, bugs are
inevitable. Software debugging is tedious and time consuming.
To help developers perform this crucial task, a number of
spectra-based fault localization techniques have been proposed.
In general, spectra-based fault localization helps developers to
find the location of a bug given its symptoms (e.g., program
failures). A previous study by Parnin and Orso however implies
that several assumptions made by existing work on spectra-based
fault localization do not hold in practice, which hinders the
practical usage of these tools. Moreover, a recent study by Xie
et al. claims that spectra-based fault localization can potentially
“weaken programmers’ abilities in fault detection”.

Unfortunately, these studies are performed either using only
2 bugs from small systems (Parnin and Orso’s study) or syn-
thetic bugs injected into toy programs (Xie et al.’s study), only
involve students, and use dated spectra-based fault localization
tools. Thus, the question whether spectra-based fault localization
techniques can help professionals to improve their debugging
efficiency in a reasonably large project is still insufficiently
answered.

In this paper, we perform a more realistic investigation of
how professionals can use and benefit from spectra-based fault
localization techniques. We perform a user study of spectra-
based fault localization with a total of 16 real bugs from 4
reasonably large open-source projects, with 36 professionals,
amounting to 80 recorded debugging hours. The 36 professionals
are divided into 3 groups, i.e., those that use an accurate fault
localization tool, use a mediocre fault localization tool, and do
not use any fault localization tool. Our study finds that both
the accurate and mediocre spectra-based fault localization tools
can help professionals to save their debugging time, and the
improvements are statistically significant and substantial. We
also discuss implications of our findings to future directions of
spectra-based fault localization.

Index Terms—Automated Debugging, Spectra-Based Fault Lo-
calization, Empirical Study, User Study

I. INTRODUCTION

Due to the complexity of software systems, bugs are in-
evitable. A study by U.S. National Institute of Standards and
Technology estimates that software bugs cause the loss of
59.5 billion dollars annually (0.6% of 2002’s US GDP) [1].
Software debugging is often labor-intensive, tedious and time
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consuming, and responsible for a significant part of the cost
of software maintenance [2]. In general, a typical debugging
process includes three main activities, i.e., fault localization,
fault understanding, and fault removal [3], [4].

To reduce the developers’ workload on debugging, and
save the maintenance cost, a number of techniques have been
proposed. In particular, there have been a number of studies
on the area of automated fault localization, which pinpoint
the bug locations automatically given its symptoms, e.g., [5],
(61, (71, (81, [91, [10], [11], [12], [13], [14], [15], [16], [17].
Most of these fault localization techniques are spectra-based,
i.e., they locate faults by analyzing the dynamic information
collected from program executions, c.f., [5], [6], [7], [8],
[18], [19], [20], [21], [22], [23], [24], [25]. In general, a
spectra-based fault localization tool would output a ranking
list of suspicious faulty locations in the level of statements,
blocks, or methods. However, whether these spectra-based
fault localization techniques can be used in practice has only
been investigated in a limited way.

Parnin and Orso perform an empirical study on the useful-
ness of spectra-based fault localization techniques [3]. They
perform two controlled experiments on two bugs from two
projects (i.e., Tetris and NanoXML), and all of the participants
are divided into two groups, i.e., those who use an automated
fault localization tool and those who use no fault localization
tool. They find that several assumptions made by existing
spectra-based fault localization work do not hold in practice,
which hinders the practical usage of these tools. However,
their study has several limitations: (1) their study is based
on only two bugs from two small-sized projects (these two
projects have 6,811 LOC in total); (2) the fault localization
tool used is old'; (3) all of the participants are students rather
than professionals.

Recently, Xie et al. revisit Parnin and Orso study by
considering 17 debugging tasks to evaluate the effectiveness of
a spectra-based fault localization tool [27]. They find that the
spectra-based fault localization tool can potentially “weaken

"Parnin and Orso’s study uses Tarantula technique [26], which was pub-
lished in 2002. Since 2002, a large number of spectra-based fault localization
techniques have been proposed.



programmers’ abilities in fault detection” due to “interference
between the mechanism of automated fault localization and the
actual assistance needed by programmers in debugging”. Un-
fortunately, their study has several limitations: (1) it is based
on debugging synthetic bugs injected into 7 toy programs of 17
to 500 LOC (debugging programs of such size may not require
fault localization tools); (2) the fault localization technique
used is old’; (3) all of the participants are 3rd year college
students rather than professionals.

In this paper, we perform an empirical study to again
reinvestigate the usefulness of spectra-based fault localization
techniques under a more rigorous setting that addresses many
of the limitations of existing works. We setup a user study
using 16 real bugs taken from 4 open-source projects of
reasonably large sizes, and invite a total of 36 professionals
to validate the usefulness of fault localization techniques.
Similar to past studies by Parnin and Orso [3] and Xie et
al. [27], our study tries to validate or refute a well-known
assumption that drives the line of work on improving spectra-
based fault localization techniques (i.e., this line of work can
help developers when they perform debugging). Supporting
or refuting this assumption may either support or refute the
significance of a sub-field of software engineering — given that
there are literally hundreds of papers on spectra-based fault
localization.

We divide the 36 participants into 3 groups: those that
use an accurate fault localization tool, use a mediocre fault
localization tool, and do not use any fault localization tool.
Different from Parnin and Orso’s and Xie et al.’s study, to
reduce the bias due to the selection of the tool, we do not use
a particular spectra-based fault localization tool (i.e., the result
for different tools may differ and there are literally hundreds
of tools available out there). Rather, we simulate two tools
which observe specific characteristics; we refer to them as
accurate and mediocre fault localization tools. The accurate
fault localization tool randomly returns the faulty statements
in the first five positions of the suspicious ranking list, while
the mediocre tool randomly returns the faulty statements inside
the first ten, but outside the first five positions of the suspicious
ranking list (e.g., in the 8", 9* or 10" position). We
are careful not to disclose the characteristics of the fault
localization tools to our participants. We use an extension of
our ACTIVITYSPACE [29], [30], named ACTIONRECORDER,
to record the activity data when participants perform the
debugging task in our experiment. Notice ACTIONRECORDER
not only records the participant’s actions within the IDE, but
also outside the IDE. In total, we record participants’ activities
over an 80 hour period.

By analyzing the data, we find that on average across
the 16 bugs, with the help of the accurate fault localization
tool, with the help of the mediocre tool, and without using
any fault localization tool, professionals spend an average
of 11, 16, and 26 minutes to find the root cause of a bug

2Xie et al.’s study uses Ochiai technique [28], which was published in 2006.
Since 2006, a large number of spectra-based fault localization techniques have
been proposed.

TABLE I
STATISTICS OF THE PROJECTS USED IN OUR STUDY.

[ Projects [ #LOC [ # Bug |
Commons Math 85,000 6
Commons Lang 22,000 6

JFreeChart 96,000 3
Joda-Time 27,000 1
[ Total [ 257,000 [ 16 ]

and fix it, respectively. Wilcoxon Rank Sum test shows that
the difference between the group with the accurate tool and
without any tool is statistically significant, and the difference
between the group with the mediocre tool and without any tool
is also statistically significant. The Cliff’s deltas are also more
than 0.5, which correspond to large effect size. Our findings
show that spectra-based fault localization tool can be useful
in practice, and an accurate tool can improve the efficiency
of debugging by a statistically significant and substantial
margin. Even a mediocre tool can still help developers to
reduce their debugging effort. We strongly recommend that
researchers focus more on the development of an accurate fault
localization tool that can reliably locate buggy statements in
the top-5 positions.

The paper makes the following contributions:

e A user study on the usefulness of spectra-based fault
localization techniques using a total of 16 real bugs
from 4 open-source reasonably large projects, with 36
professionals, amounting to 80 recorded debugging hours.

o An in-depth analysis of the study results and a discussion
of how these results may impact further research in
spectra-based fault localization techniques and debugging
in general.

Paper organization. The remainder of this paper is organized
as follows. Section II elaborates the user study setup and data
collection. Section III presents our user study results. Sec-
tion IV discusses the implications and the threats to validity.
Section V briefly reviews related work. Section VI draws the
conclusions and mentions future work.

II. USER STUDY SETUP

In this section, we present the details of our user study setup.
We first present the benchmark projects and bugs which would
be used in our study. Next, we describe the protocol to select
the participants. Finally, we present the details of study settings
which includes the fault localization tool, experimental group,
data collection, and procedure.

A. Benchmark Program

We ask the participants to fix a subset of bugs from
Defects4] [31], a large collection of real bugs in Java programs
intended to support research in testing, fault localization and
software quality. In our user study, we use 16 bugs from
Defect4]. Table I presents the project name, LOC, and number
of bugs in our user study. LOC refers to non-comment, non-
blank lines of code and is measured with SLOCCount®. The
16 bugs are selected based on the following criteria:

3http://www.dwheeler.com/sloccount



TABLE II
SHORT DESCRIPTION, ROOT CAUSE, AND WAY TO FIX THE 16 BUGS.

Bug | Short Description

[ Root Cause Way to Fix

Ml HypergeometricDistribution.sample suffers from integer overflow

Integer overflow Modify several lines

M2 | Complex.ZERO.reciprocal() returns NaN but should return INF

Return statement error Modify return statement

the dimension is odd

M3 MultivariateNormalDistribution.density(double[]) returns wrong value when

Loss of precision due to integer | Modify one line

division

lation.

M4 | ListPopulation Iterator allows you to remove chromosomes from the popu-

Array operation error Modify several lines

M5 | Bug in inverseCumulativeProbability() for Normal Distribution

Comparison error Modify comparison statement

M6 | RealMatrixImpl#operate gets result vector dimensions wrong

Array initialization error Modify several lines

L1 StringIndexOutOfBoundsException in CharSequenceTranslator

Parameter error Modify several lines

quotes

L2 OutOfMemory with custom format registry and a pattern containing single

Variable increment error Add several lines

tion

L3 Invalid drop-thru in case statement causes StringIndexOutOfBoundsExcep-

Return statement error Add several lines

L4 Dates.round() behaves incorrectly for minutes and seconds

Brace position error Move the position of brace

long

L5 NumberUltils.createNumber throws NumberFormatException for one digit

Condition statements error Modify several lines

ArrayIndexOutOfBoundsException

L6 Bug in method appendFixedWidthPadRight of class StrBuilder causes an

Parameter error Modify several lines

der.java

1 A null pointer access in this bit of code from AbstractCategoryltemRen-

Condition statements error Modify several lines

12 (updateBounds): Update maxMiddleIndex correctly.

Variable name error Modify several lines

computed incorrectly

I3 The int start and end indexes corresponding to the given timePeriod are

Condition statements error Modify condition judgement s-

tatements

Tl [ Ambiguous date-time when in zone with offset of 00:00 [3424669]

[ Comparison error | Modify comparison statement |

1) The professionals in our user study have busy schedule,
and thus for each participant, we aim to make him/her
complete the whole user study in 3 hours.

2) The bugs should be neither too easy to fix nor too
difficult to fix. If a bug is too easy to fix, then the fault
localization tool would help less since the participants
can simply fix the bug based on their experience. Also,
if a bug is too difficult to fix (e.g., need to add many
lines of code), participants may not be able to fix it in
3 hours.

3) We are able to reproduce the bug on the Windows
OS that we use in the virtual machine provided to the
participants.

In the following paragraphs, we refer to the 6, 6, 3, and
1 bugs in Commons Math, Commons Lang, JFreeChart, and
Joda-Time as M1-M6, L1-L6, J1-J3, and T1. Table II presents
the short description, root cause, and the way to fix these 16
bugs. We notice these 16 bugs cover a range of problems that
developers would meet in their development activities, e.g.,
integer overflow, condition statement error, and variable error.
To fix these bugs, developers may need to modify several lines
(e.g., M1, M3, M4, L5, and L6), add several lines (e.g., L2
and L3), or move the position of brace (i.e., L4). Moreover,
when we ask the participants to fix these bugs, we do not
offer them the short description or any description of these
bugs, rather we provide them a set of failed and successful
test cases — which is the setting considered by spectra-based
fault localization studies (i.e., debugging bugs found during
testing).

B. Farticipant Selection

We select participants in two IT companies in China, named
Insigma Global Service [32], and Hengtian [33]. Insigma

Global Service is an outsourcing company which has more
than 500 employees, and it mainly does outsourcing projects
for Chinese vendors (e.g., Chinese commercial banks, Alibaba,
and Baidu). Hengtian is also an outsourcing company which
has more than 2,000 employees, and it mainly does outsourc-
ing projects for US and European corporations (e.g., State
Street Bank, Cisco, and Reuters). The procedure to select the
participants are as follows:

o Since all of our four projects use Java programming
language, and in the user study, we use Eclipse as the
IDE, the participants should be familiar with Java, and
know how to perform debugging in Eclipse.

o To reduce the bias due to the professional experience of
developers, participants should have similar professional
experience. After checking with the human resource
department, we find that most of the developers in
Hengtian and Insigma Global Service have 3 - 4 years of
professional experience. Thus, we seek participants with
3 - 4 years professional experience.

We find 212 developers which can satisfy the above require-
ments, and we drop emails to these developers to invite them
to join our user study. In total, 36 developers accepted our
invitation. In the following paragraphs, we denote these 36
developers as D1 to D36.

C. Study Settings

1) Spectra-Based Fault Localization Tools: In our study,
instead of using a particular spectra-based fault localization
tool, we simulate two spectra-based fault localization tools that
have specific properties, i.e., an accurate tool and a mediocre
tool. We do this since there are literally hundreds of tools
described in the literature and results for one tool may not
generalize to others. Our two simulated tools capture pertinent



TABLE III

USER STUDY GROUPS.

[ Task ID | Bug ID | With Accurate Tool | With Mediocre Tool | Without Tool |
Task 1 M1, M2, M3, M4 D1, D2, D3 D4, D5, D6 D7, D8, D9
Task 2 M5, M6, L1, L2 D10, D11, D12 D13, D14, D15 D16, D17, D18
Task 3 L3, L4, L5, L6 D19, D20, D21 D22, D23, D24 D25, D26, D27
Task 4 J1,1J2,J3, Tl D28, D29, D30 D31, D32, D33 D34, D35, D36
¥ size ode n}, the mean is {@code n * m / N}. .
pu;lic double getNumericaltean() { 3 % 0
return (double) (getSampleSize() * getNumberOfSuccesses()) / (double) getPopulationSize(); Developer — N
Je
'+ (ainheritooc) v l
JuJUnit | @ Suspicious Statements 2¢=> v=0 . . I
Suspicious Statement File line # Data Collection | OS Windows APIs ‘ | Accessibility APIs
return FastMath.mi fSuccesses(), /src/main/java/org/apache... 321
return (double) (getSampleSize() * getNumberOfSuccesses() / (double) g ionsi; /src/mainfj pache... 268 {}
i + fSuccesses() - gs i i 'src/main/java/org/apache...
if(p<00p>10){ 0 ;sr:;mainzava;or:;aga(ne... ?gj Action List ’t—l‘ ,i‘ ,—ts—‘
if (lower == Integer.MIN_VALUE) { /src/main/java/org/apache... 109

Fig. 1. A screenshot of Eclipse plugin used in our study. The screenshot is
from our data collection tool ACTIONRECORDER.

properties of an accurate and a mediocre fault localization tool.
Many tools can be mapped to one of these two stereotypes, and
future tools can be built to target one of these two stereotypes.

Ul Name return (double) )« / (double)
In the accurate tool, we put the faulty statements randomly Ul Type List ltem
into the first five positions of the suspicious ranking list. And Action Value NA_
. . Parent Ul Name Suspicious Statements
in the mediocre tool, we put the faulty statements randomly parent Ul Type e

into the first ten positions, but outside the first five positions,
of the suspicious ranking list (i.e., 6! to 10" position). Our
previous empirical study of practitioners perception on auto-
mated debugging shows that 73.58% of practitioners consider
that they would consider a fault localization tool as successful
if the faulty elements (e.g., statements) appear in the top 5
suspicious positions [34]. Note that in our previous work, we
do not conduct any user study but only ask a large number of
practitioners to fill in a questionnaire.

For each bug and its corresponding test cases, we get the ex-
ecution traces (i.e., lists of statements executed when running
each of the test cases) by using the debugging functionality of
Eclipse. Then, we randomly rank these statements. Next, for
the accurate tool, we move the faulty statements randomly into
the first five positions. And for the mediocre tool, we move
the faulty statements randomly into the first ten but outside
the first five positions. In our study, all of statements used are
extracted from the execution trace. Also, we consider single
bug setting, i.e., there is only one bug (which can span one
or a few lines of code) being exposed by the test cases in a
buggy version.

To make it easy for the participants to use the accurate
and mediocre fault localization tools, we create an Eclipse
plugin that provides the participants with the list of ranked
statements. Following the study by Parnin and Orso [3], we
keep the plugin’s interface as simple as possible: for each bug,
the plugin provides a list of ranked suspicious statements, and
when participants click on a statement in the list, the plugin
would open the corresponding source code file and navigate
to that line of code. Our plugin only presents the top-10 most
suspicious statements.

Figure 1 presents a screenshot of the Eclipse plugin used
in our study. For each bug, we prepare two configuration

Action Example

Event Type [ mouse cuick

Window Information

Process Name ecljpse.exe

Window Name Java EE - commons-math_2_buggy/-/HypergeometricDistributionTestjava - Eclipse

Focus Ul Information

Fig. 2. Our Data Collection Tool and Example Collected Action

files which correspond to the ranked suspicious statement list
outputted by the accurate and mediocre fault localization tools.
Participants can load the configuration file by clicking the load
file icon. Once the file is loaded, the plugin will display a table
with several rows, and each row shows a suspicious statement,
the corresponding file name, and the line number. As discussed
above, participants will navigate to the corresponding line of
code by clicking the statement, and they can also use the
previous and next button to navigate through the statements.

2) Experimental Groups: We divide the 36 participants into
3 groups, i.e., those using the accurate fault localization tool,
the mediocre fault localization tool, and without a fault lo-
calization tool (i.e., they only use Eclipse’s default debugging
functionality). Also, we divide the 16 bugs into 4 tasks. In
each task, participants are required to fix 4 bugs in one or
two projects. For example, in Task 1, participants are required
to fix bugs M1, M2, M3, and M4 from Commons Math.
Table III presents the user study groups. Notice we do not
tell the participants which fault localization tools they would
use during our whole study.

3) Data Collection: In our study, all developers mainly use
Eclipse to fix bugs, but they are also allowed to use other
software applications, e.g., they could seek for help using
web search if they do not know how to use some specific
APIs. Thus, we record developers’ actions across multiple
software applications. Hence, we extend our previous work
ACTIVITYSPACE [30], [29] to implement a data collection tool
named ACTIONRECORDER to log developers’ interactions, as
shown in Figure 2. To obviate application specific support,
ACTIONRECORDER uses OS’ Window APIs and Accessibility
APIs to record developers’ actions. Accessibility APIs are the



standard interfaces built in modern desktop operating systems
for assistive applications, such as screen readers, to access
the low-level information of a user interface. Existing HCI
studies [29], [30] and our own survey of accessibility support
in commonly used software applications on three popular
desktop operating systems [30], [29] show that a wide range
of applications support or partially support accessibility APIs.

ACTIONRECORDER runs in the background and would not
disturb the normal work process of developers when they
are debugging. In this study, each developer is required to
run ACTIONRECORDER once they begin to do experiment.
ACTIONRECORDER would generate a time-series of action list
during the debugging process. Each action record has a time
stamp down to millisecond precision. ACTIONRECORDER can
record two types of developers’ actions: mouse click action
and keyboard press action. For each type of action, AcC-
TIONRECORDER will record its window information including
process name and window title. For each mouse click action,
ACTIONRECORDER use Accessibility APIs to extract the
following pieces of information from a focused UI component:
Ul Name, UI Type, Ul Value, Parent Ul Name and Parent Ul
Type. From the window information and focused UI compo-
nent information, we can infer what the developer is doing
at that time. For example, the example in Figure 2 represents
that a developer clicks one statement in our Eclipse plugin then
skips to the source file “HypergeometricDistributionTest.java”
directly.

Accessibility APIs provide a generic way to track devel-
opers’ actions in different software applications. However, it
requires application developers to invest additional engineering
effort to properly expose the internal data of the application
when developing the software. As a result, not all applications
expose their internal data to accessibility API, or not all the
information is exposed. Hence, ACTIONRECORDER also uses
OS’ Window APIs to record a screenshot of the application
when a mouse click or keyboard action occurs in the applica-
tion. This screenshot provides a supplementary information
that augments information gathered using the Accessibility
APIs. We could use a series of screenshots to infer developers’
activities. For example, Figure 1 presents an example of a
screenshot taken by our ACTIONRECORDER.

4) Procedure: Since participants are distributed in different
project teams and different locations, and to avoid the need
for participants to configure the experimental environment, we
create 9 virtual machines (denoted as T1 to T9) where we
deploy the 4 projects, install Eclipse and ACTIONRECORDER.
For T1 to T3, we also add the accurate fault localization plugin
to Eclipse; for T4 to T6, we also add the mediocre fault
localization plugin to Eclipse; for T7 to T9, we do not add
any fault localization plugin to Eclipse. The operating systems
for the 9 virtual machines are Windows 7 (64-bit), and each
virtual machine is configured with a 4GB RAM.

For each participant, we assign a virtual machine, and create
a specific login account. Once logged in, the participants can
follow the detailed instructions and start their debugging tasks.
For each bug, we provide the buggy version, the failed test

case reproducing the bug, and all of the successful test cases.
For participants in the group using fault localization tools, we
also provide the suspicious statement lists. Notice that we do
not tell participants whether they use the accurate or mediocre
fault localization tool. We simulate a typical regression test
process (which is the setting considered by spectra-based fault
localization techniques) where developers begin to fix a bug if
they find a test case fails. In such a process, the description of
the bug is not available, and developers can only use the failed
test case to find some hints to fix the bug. For each task, the
debugging time is recommended to be, but is not restricted to
3 hours (i.e., the debugging time for each bug is around 45
minutes).

After the participants complete the tasks, we also ask them
to provide feedback about their experience on the usage of
the fault localization tool. We also manually analyze the data
collected by ACTIONRECORDER, i.e., to identify the time
spent on fixing each bug, and to study how do participants
use fault localization tools. For some participants who cannot
fix the 4 bugs in 3 hours, we also ask them why they cannot
fix these bugs.

D. Evaluation Metrics

In our study, we define two evaluation metrics and use them
to analyze the data we collect from the 36 participants. The
two evaluation metrics are the success rate, and debugging
time.

1) Success Rate: Notice in our study, not all of the par-
ticipants can fix the bugs in a time period of 3 hours, and
we record the number of bugs that participants fail to fix by
manually analyzing the data collected by ACTIONRECORDER.
For each bug, if we find the participant does not locate the
faulty statement(s) correctly, or if the fix is not right, or if
the failed test case cannot be passed after the fixing, we
consider that the fix is failed. For each group GG, we denote
the number of participants in this group as m, the number of
bugs that each participant is required to fix as n, and the total
number of bugs that these m participants fail to fix as f, then
the success rate SuccRate for the group G is computed as:
SuccRate = (1 — m’;n) x 100%.

2) Debugging Time: Debugging time is also used to mea-
sure the usefulness of a fault localization tool. If a developer
can fix a bug in a short time by the assistance of a fault
localization tool, we would consider the tool to be useful.
To do so, for each bug, we record the time elapsed from
the moment in which a participant begins to debug (i.e.,
run the failed test case) to the moment that he/she fixes the
bug successfully (i.e., pass the failed test case, or the faulty
statement(s) is correctly modified). Notice we exclude the
debugging time where the participants failed to fix bugs. For
each group GG, we compute the average debugging time across
all of the successful fixes among all of the participants in G.

III. USER STUDY RESULTS
In this section, we first describe the four research questions
which would be investigated in this paper, and then we present
the answers to these research questions.



A. Research Questions

RQ1: How do participants navigate a list of statements
ranked by suspiciousness when performing debugging
task?

Intuitively, there are two ways to navigate a list of state-
ments ranked by suspiciousness: navigate to the suspicious
faulty statements following the order of the ranking list, or
randomly select a suspicious faulty statement and navigate to
it. Answer to this research question would highlight whether
the ranking list of suspicious statements would help developers
perform debugging task, considering that all of the spectra-
based fault localization tools would output a ranking list of
suspicious statements per debugging session and assume that
developers would investigate the suspicious statements one
by one following the list. To answer this research question,
we manually check all of the debugging data for the 24
participants in the groups using accurate and mediocre fault
localization tools.

RQ2: Do participants who debug with the assistance of an
accurate fault localization tool locate and fix bugs with a
higher success rate and in a shorter amount of time than
those without any fault localization tool?

Parnin and Orso find that there is no strong evidence to
support that developers who debug with the assistance of a
fault localization tool can locate and fix bugs faster than those
who debug without any fault localization tool. Xie et al. even
claim that spectra-based fault localization can “slightly weaken
programmers abilities in fault detection”. In this research
question, we revisit their findings by analyzing the impact of
an accurate fault localization tool on a more rigorous setting
(by using a generic rather than a dated fault localization
tool, by investigating many real bugs, by investigating large
software systems, by engaging professional developers instead
of students, etc.). The answer of this research question would
shed light on the usefulness of (or lack of) spectra-based
fault localization techniques, given the ultimate objective of
researches on spectra-based fault localization is to propose
an accurate fault localization tool. To answer this research
question, we compare the success rate and debugging time
of participants between the groups using the accurate fault
localization tool and those not using any fault localization tool.

RQ3: Do participants who debug with the assistance of a
mediocre fault localization tool locate and fix bugs with a
higher success rate and in a shorter amount of time than
those without any fault localization tool?

In this research question, we investigate whether a fault
localization tool which is mediocre in performance can still
be useful for practitioners. Similar to RQ2, to answer this
research question, we compare the success rate and debugging
time for participants between the groups using the mediocre
fault localization tool and those without any fault localization
tool.

RQ4: Do participants who debug with the assistance of
an accurate fault localization tool locate and fix bugs

faster and in a shorter amount of time than those using a
mediocre fault localization tool?

Similar to RQ2 and RQ3, in this research question, we
would like to investigate the difference of participants’ de-
bugging effectiveness and efficiency when using accurate and
mediocre fault localization tools. The answer to this research
question would shed light whether the quest to improve
accuracy of fault localization tools is likely to pay off or
not. To answer this research question, we compare the success
rate and debugging time for participants between the groups
using the accurate fault localization tool and those using the
mediocre fault localization tool.

B. RQI: Participants’ Navigation Behavior

We observe that 23 out of the 24 participants use the fault
localization tool as follows:

1) Open the plugin, click the first several suspicious state-
ments in the plugin, and navigate to the corresponding
lines of code. Then, for these statements, the participants
set breakpoints on them.

2) Open the failed test case, and use the debug mode to
run it. Then, the program would stop on each of the
statements with breakpoints. For each statement with a
breakpoint, the participants would check the values of
various variables, and whether there are exceptions in
the program.

3) If the participants can find the root cause(s) of the
failure, they would modify the corresponding faulty
statement(s). Else, they would check the plugin again,
select the next several suspicious statements or randomly
select several suspicious statements, and debug the code
again.

4) If still they cannot find the faulty statements, they would
not trust the tool, and only use the debug mode to run
the failed test case to check the execution trace.

Notice only one participant randomly selects the suspicious
statements outputted by our Eclipse plugin, and sets break
points on these suspicious statements. Parnin and Orso find
that developers do not visit each suspicious statement in a
linear fashion [3]. However, from our collected data, we find
that most developers would visit the first several statements
outputted by the fault localization tool in sequence.

Figure 3 presents the number of participants who would
visit top-k statements in sequence (k = 1,2, - -,10). We
notice when k is smaller than 5, the number of participants
who visit the top-k statements in sequence are much larger
than the number of participants when k is larger than 5. For
example, 20 out of the 24 (i.e., 83.3%) participants visit the
top-5 suspicious statements in sequence, while only 3 (i.e.,
12.5%) participants visit the top-8 suspicious statements in
sequence. Moreover, there are a large decrease of the number
of participants when & changes from 5 to 6, i.e., 18 out of the
24 (i.e., 75%) participants visit the top-5 suspicious statements
in sequence, while only 8 (i.e., 33.3%) participants visit the
top-6 suspicious statements in sequence. Notice this finding
also justifies our design decision to construct the accurate fault
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Fig. 3. Number of participants who would visit top-k statements in sequence
(k=1,2,---,10). TABLE IV
SUCCESS RATE FOR THE GROUPS WITH ACCURATE FAULT LOCALIZATION
TOOL AND WITHOUT ANY TOOL (I.E., ONLY USE ECLIPSE).
[ Group | With Accurate Tool | With No Tool |

[ Success Rate | 98% [ 77% |

localization tool by putting the faulty statements into the first
five positions of the suspicious ranking list. Moreover, our
finding also complements our previous survey results where
we find that 73.58% of the 386 practitioners whom we survey
consider that they would consider a fault localization tool as
successful if the faulty elements (e.g., statements) appear in the
top 5 positions [34]. It is also interesting to note that although
for our mediocre tool, the faulty statements always appear
in the 6! to 10" positions, the participants still check from
the top several positions, i.e., there is no obvious learning
effect. This is maybe due to the fact that each participant
is only required to fix four bugs. Some comments related to
participants’ navigation behavior are listed as follows:

1= “I only trust the top-5 statements outputted by the fault
localization tool. If I cannot find the faculty statements
in the top-5 statements, I would feel less confident on the
tool, and thus I would randomly visit some statements.”
“My navigation behavior is semi-random, i.e., I will
check the first several statements (e.g., first 3 to 4) one by
one. And if none of them are faulty, I will randomly select
statements from the remaining suspicious statements.”

“It is impossible for me to inspect all the suspicious s-
tatements, and I would only inspect the top 5 statements.”

=

Developers would inspect the first several statements out-
putted by a fault localization tool in sequence. And they
would randomly inspect the remaining statements. Our
study find that 75% of the participants visit the top-5 suspi-
cious statements in sequence, and this percentage reduces
to 33% for top-6.

C. RQ2: Accurate Tool vs. No Tool (Only Eclipse)

Table IV presents the success rate for the groups with
accurate fault localization tool and without any tool. Since
there are 12 in each group, and each participant is required to
complete 4 bugs. Thus, a total of 48 bugs need to be fixed by
participants in each group. Among the 48 bugs, only 1 failed
to be fixed by a participant in the group using the accurate
fault localization tool; this translates to a success rate of 98%.

60
I

Time Spend on Debugging (minutes)

With Accurate Tool Without Any Tool

Fig. 4. Time spent on debugging for the participants in the group using the
accurate fault localization tool compared with that of the group that does not
use any fault localization tool.

On the other hand, 11 bugs failed to be fixed by participants
in the group that does not use any tool, which corresponds to
a success rate of 77%. Thus, participants using the accurate
fault localization tool achieves a much higher success rate than
those who uses no fault localization tool.

Figure 4 presents the time spent on debugging for partic-
ipants in the group who uses the accurate fault localization
tool compared with that of the group who does not use any
tool. We ignore the debugging time spent if a participant
does not successfully fix the bug. The average time spent on
debugging for the participants in the groups using the accurate
fault localization tool and no fault localization tool are 11.38
and 26.45 minutes, respectively. We notice that participants
who use the accurate fault localization tool are 2 times faster
than those who do not use any fault localization tool. To
measure whether the improvement is significant, we apply the
Wilcoxon Rank Sum test [35], and the p-value is 1.306e~10,
which indicates that the improvement is statistically significant
at the confidence level of 99%. Moreover, we also use Cliff’s
delta [36]*, which is a non-parametric effect size measure that
quantifies the amount of difference between the two groups.
The Cliff’s delta is 0.8012, which corresponds to a large effect
size.

We also manually check the collected data to understand
why participants using the accurate fault localization tool
could debug better. For example, bug M3 is about “Multivari-
ateNormalDistribution.density(double[]) returns wrong value
when the dimension is odd & Loss of precision due to integer
division”, and to fix the bug, participants only need to modify
one line of code, i.e., change “dim / 2 ” to “0.5*dim”.
However, in our study all of the three participants who debug
without any fault localization tool cannot fix it, but all of the
three participants using the accurate fault localization tool fix
it fast, i.e., the fixing time are 7.74, 16.23, and 6.99 minutes,
respectively. D8 stated: “From the failed test case, I think the
bug maybe due to the loss of precision of some operations.
However, since the whole project is related to math, and there
are too many mathematical operations in the execution trace
of the failed test case, I cannot identify which one is faulty.”

4CIiff defines a delta of less than 0.147, between 0.147 to 0.33, between
0.33 and 0.474, and above 0.474 as negligible, small, medium, and large effect
size respectively



TABLE V
SUCCESS RATE FOR THE GROUPS WITH ACCURATE FAULT LOCALIZATION
TOOL AND WITH NO FAULT LOCALIZATION TOOL.
[ Group | With Mediocre Tool [ With No Tool |

94% [ 7% ]

[ Success Rate |
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Fig. 5. Time spent on debugging for the participants in the group using the
mediocre fault localization tool compared with that of the group that does not
use any fault localization tool.

Different from D8, D1, D2, and D3 all think that the bug is
not difficult to fix,as D2 stated: “The faulty statement is in the
second position of the suspicious ranking list. When I set break
point on this statement, and in the debug mode, I suddenly
find that the result of “Dim/2” is an integer but it should be
a double value. Thus, I change it as “Dim*0.5”, and I find
that the bug is fixed.”

Parnin and Orso argue that since a spectra-based fault
localization tool cannot provide perfect bug understanding,
it would have limited usage in practice. From our study, we
also find that accurate fault localization tool cannot provide
perfect bug understanding, however it provides valuable hints
for bug fixing (i.e., starting points to start debugging). From
our collected data and the feedback from participants, we find
nearly all of the participants guess the faulty statements during
the bug fixing process, i.e., they first assume some statements
are faulty, and they use the execution trace to verify the
assumption. The accurate fault localization tool helps to guide
participants in traversing the “guessing space” more effectively
and efficiently by providing a list of high quality suspicious
statements, which helps them to save time in the process
of proposing debugging hypotheses and trying out incorrect
hypotheses. D11 stated: “After reading the failed test case,
and inspecting the execution trace, I have some guesses on the
faulty statements. The fault localization tool will strengthen ny
confidence on some of my guesses, and thus I can fix the bug
easily.”

Participants using the accurate fault localization tool are
two times faster than those without any fault localization
tool, and the improvement is statistically significant and
substantial.

D. RQ3: Mediocre Tool vs. With No Tool .
Table V and Figure 5 present the success rate and time

spent on debugging for participants in the groups with accurate
fault localization tool and without any fault localization tool,
respectively. Among the 48 bugs, 3 bugs failed to be fixed by

participants in the group with mediocre fault localization tool,
which translates to a success rate of 94%. Thus, participants
using the mediocre fault localization tool achieves a much
higher success rate than those without any fault localization
tool. Moreover, the average time spent on debugging for
participants in the groups with the mediocre fault localization
tool and without any tool are 16.35 and 26.45 minutes,
respectively. Wilcoxon Rank Sum test shows the p-value is
1.024e~°, which indicates that the improvement of participants
using mediocre fault localization tool over those without any
tool is statistically significant at the confidence level of 99%.
And the Cliff’s delta is 0.5456, which corresponds to a large
effect size.

To investigate the usefulness of the mediocre fault local-
ization tool, we also collect feedback from the participants.
We find that 9 out of the 12 participants consider that the
mediocre fault localization tool can help to improve debugging
efficiency, while 3 out of the 12 participants hold opposite
views. We list the comments which support or refute the
usefulness of mediocre fault localization tool as follows:

I's I did not join the development of the project before.
When I was asked to fix the bugs, I even don’t know where
to begin. But with the fault localization tool, I can at least
inspect some statements, and after some inspections, I
gradually understand what the program is. Although the
faulty statements don’t have high rankings, I can still get
the hints from the tool.”

“I have my own suspicious statements after several tries
on the failed test case, and then I would compare my
list with the list outputted by the fault localization tool. |
will choose the intersection of these two lists, and inspect
these statements first. For me, the ranks of statements
are not important even though I found most of the faulty
statements are at the bottom of the list. ”

“I inspect the first several statements carefully, but none
of them are buggy. It really annoys me so that I don’t use
the tool anymore, and simply inspect every statement in
the execution trace.”

“The ranks of the faulty statements do matters. 1 would
not trust the tool if the faulty statements are not listed in
the first several positions.”

K2

From the above comments, we notice that many participants
consider the mediocre fault localization tool useful since it
could help (1) newcomers to debug the program, and (2)
strengthen the participants confidence on faulty statements.
However, participants who consider the mediocre fault local-
ization as useless mainly complain that the faulty statements
should appear in the first several positions of the outputted
list.

Participants using the mediocre fault localization tool spend
less time on debugging than those who use no fault localiza-
tion tool, and the improvement is statistically significant and
substantial. However, different participants hold different
views on the usefulness of the mediocre fault localization
tool with the majority viewing it as useful.
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Fig. 6. Time spent on debugging for the participants in the group using the

accurate fault localization tool compared with that of the group that uses the
mediocre fault localization tool.

E. RQ4: Accurate Tool vs. Mediocre Tool

Figure 6 presents the time spent on debugging for the
participants in the group using the accurate fault localization
tool compared with that of participants in the group using
the mediocre fault localization tool. Notice that the success
rates for participants in these two groups are 98% and 94%
respectively (see Tables IV and V), and the average time spent
on debugging for the participants in these two groups are
11.38 and 16.35 minutes, respectively. Wilcoxon rank sum test
shows the the p-value is 0.0015, which indicates that the im-
provement of participants using the accurate fault localization
tool over those using the mediocre fault localization tool is
statistically significant at the confidence level of 99%. And
the Cliff’s delta is 0.3589, which corresponds to a medium
effect size.

Notice our finding is different from Parnin and Orso [3]’s.
Using an extended experiment with 10 students, Parnin and Or-
so find that changes in the rank have no significant effect on the
debugging performance. From our study, we find that the ranks
of the faulty statements do impact debugging performance, and
participants spend less time on debugging if the faulty state-
ments appear in the top-5 positions of the ranking list (i.e., the
output of the accurate fault localization tool). The difference
is likely to be attributed due to differences of the settings.
Parnin and Orso modify the rank of the two faulty statements
from 83 to 16, and from 7 to 35. Modifying ranks of faulty
statements from from very bad (83) to bad (16) is likely not to
impair debugging efficiency since developers are likely not to
trust the fault localization tool output anymore in both cases.
Parnin and Orso observe that there is an increase in debugging
time when they increase the rank of faulty statement from 7
to 35 but do not observe statistical significance. It is hard
to obtain statistical significance by comparing 5 data points
corresponding to participants that use a fault localization tool
against 5 other data points corresponding to participants that
do not use one. In this study, we investigate more bugs
and thus can form a statistically significant conclusion. Our
findings augment Parnin and Orso’s findings by highlighting
that improving ranks of faulty statements from fair to good
matters.

Participants using the accurate fault localization tool spend
less time on debugging than those using the mediocre
fault localization tool, and the improvement is statistically
significant and substantial.

IV. DISCUSSION
A. Implications

Fault Localization Can Positively Impact Debugging Success
and Efficiency

Different from prior studies by Parnin and Orso and Xie et
al., our study highlights that fault localization can positively
impact debugging success and efficiency by a statistically
significant and substantial amount. Our user study is per-
formed under a more rigorous setting engaging professional
developers, using many real bugs from many reasonably large
real systems. Our study thus highlights the importance of
continuing the effort of building accurate fault localization
techniques, since these can positively impact developers. Fault
localization can help in situations where it matters most (i.e.,
for debugging reasonably large systems, and for professional
developers who can deal with the imperfections of fault
localization tools).

Ranking Accuracy Matters

From our study, we notice that an accurate fault localization
tool does help developers to improve their debugging effec-
tiveness (i.e., higher success rate) and efficiency (i.e., shorter
debugging time). Moreover, participants using an accurate
fault localization tool spend less time on debugging than those
using a mediocre fault localization tool. The accurate fault
localization tool ranks faulty statements randomly in the top
five positions of the ranking list, while the mediocre one ranks
faulty statements randomly in the sixth to the tenth positions.
Thus, we believe that the ranking of faulty statements does
affect the extent fault localization tools improve practitioners’
debugging performance. Researchers should then continue to
innovate and design more accurate fault localization tools
where the faulty statements can always appear in the top
positions of the ranking list. Our finding highlights a new
angle than the finding of Parnin and Orso which states that
“changes in rank have no significant effect”. We have shown
that for specific changes in rank, a significant and substantial
effect can be observed.

Debugging Hints

Our findings highlight that although a fault localization
output does not provide perfect bug understanding, it provides
debugging hints that developers can “intersect” with their
beliefs and hypotheses, or use to guide them in the creation of
debugging hypotheses. We have shown that for the accurate
and mediocre fault localization tools, the debugging hints are
valuable and can improve developers’ debugging effectiveness
and efficiency.

It is interesting to note that in our study, participants spend
more time to fix bugs that involve code additions than those
that involve code modifications. Currently, most of the spectra-
based fault localization tools only output a list of suspicious



statements. We hypothesize that this list may not be sufficient
to help developers in fixing bugs that require the insertion of
additional code. It will be interesting to support developers
further. For example, a tool that can recommend additional
code to insert based on historical bug fixing examples may
help developers in the debugging and bug fixing process.

Moreover, some participants also mention that they would
benefit more from a fault localization tool if the tool can tell
them whether the bug is easy or difficult to fix. As D28 stated:
“If I can know the bug is difficult to fix in advance, 1 would
spend more time on the debugging to ensure I don’t miss
something. Sometimes I may fix a difficult bug in a simple
way, which may introduce more bugs.” To implement such a
functionality, it would be interesting to leverage historical bug
fixes to build a statistical model that can estimate the level of
difficulty in fixing a bug by leveraging machine learning and
a good set of features extracted from either code, test cases,
or failures.

B. Threats to Validity

Internal Validity: 1Tt is possible that there are errors in the
computation of debugging time. To reduce this threat, the first
two authors work together to analyze the data we collected
from participants. And after we compute the debugging time,
we also ask the participants to help us validate the time. For the
bugs that participants do not fix, we also ask them to confirm.
Another threat to internal validity relates to the expertise of
participants. To reduce this threat, we carefully select partic-
ipants which have similar number of years of professional
experience, i.e., all of them have been professional software
engineers for 3 to 4 years. Moreover, the selection of spectra-
based fault localization tools may also be a threat to internal
validity. We use two simulated tools which capture pertinent
properties of an accurate and a mediocre fault localization tool.
Our goal is not to investigate the utility of a single spectra-
based fault localization tool but rather the line of work on
spectra-based fault localization. Many tools can be mapped to
one of these two stereotypes (at least for some bugs for which
they perform very well or reasonably well, c.f., [20]), and
future tools can be built to target one of these two stereotypes.

External Validity: To improve the generalizability of our
findings, we invite 36 professionals from two IT companies in
China to join our study. Our findings may not generalize to all
professional developers. Moreover, we consider 16 real bugs
from 4 reasonably large open-source projects which contain
a total of 257 KLOC; still, our results may nor generalize
to other projects and bugs. Nevertheless, to the best of our
knowledge, this is the largest study on fault localization in-
volving professionals and many real bugs from large projects.
In the future, we plan to reduce this threat further by inviting
more professionals from more companies, and by investigating
more bugs from more projects. Our empirical study simulates
reliable fault localization tools that perform very well or
fairly all the time. We have not investigated the effect of
fault localization tools whose effectiveness fluctuate a lot over
time. Such a study would require a much larger empirical

study involving many more bugs and developers, which we
leave as future work. Furthermore, some existing studies have
developed solutions to improve the reliability of existing tools
by increasing their success rate, e.g., [37], [38].

V. RELATED WORK

To our best knowledge, the most related work to our paper
are the empirical studies performed by Parnin and Orso [3]
and Xie et al. [27]. We have described them in Section I.

Aside from the two mentioned above, there are several
other empirical studies on automated debugging techniques.
Yoo et al. find that there can be no optimal fault localisation
formula for spectrum based fault localisation [39]. Ruthruff et
al. investigate the effectiveness of a fault localization technique
applied on spreadsheets [40]. Their study is based on several
bugs on two spreadsheets to investigate which fault local-
ization techniques perform best. Jones and Harrold perform
an empirical study to compare Tarantula with four other
fault localization techniques on programs from Siemens test
suite [5]. Steimann et al. propose a number of threats such as
heterogeneity of probands, faulty versions and fault injection,
that researchers need to consider when designing experiments
to evaluate spectra-based fault localization techniques [41].
Kochhar et al. investigate several potential biases that may
impact the evaluation of existing information retrieval (IR)
based bug localization techniques which take as input a textual
bug report and outputs source code files that are relevant to
it [42]. Wang et al. investigate the usability of an information
retrieval (IR) based bug localization technique by means of a
user study [4]. Our work is related to but different from the
above mentioned studies. We investigate an important research
question on whether spectra-based fault localization techniques
can be useful in practice.

VI. CONCLUSION AND FUTURE WORK

In this paper, we revisit the usefulness of spectra-based fault

localization techniques. We invite 36 professionals to debug 16
bugs from 4 reasonably large open-source projects containing
a total of 257 KLOC. We divide the 36 participants into 3
groups, i.e., groups using an accurate fault localization tool,
using a mediocre fault localization tool, and using no fault
localization tool. We find that both the accurate and mediocre
spectra-based fault localization tools can help professionals
to save their debugging time, and the improvements are
statistically significant and substantial. In the future, we plan to
invite more developers from more companies to join our study
to evaluate the usefulness of spectra-based fault localization
tools. We also plan to develop a better fault localization tool
where faulty program elements always appear in the top-5
positions.
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