
The Future Can’t Help Fix The Past:
Assessing Program Repair In The Wild

Vinay Kabadi1, Dezhen Kong2, Siyu Xie3, Lingfeng Bao2*,

Gede Artha Azriadi Prana4, Tien-Duy B. Le4, Xuan-Bach D. Le1, David Lo4

1School of Computing and Information Systems, The University of Melbourne, Australia
2School of Computer and Computing Science, Zhejiang University, China

3College of Computer Science and Technology, Zhejiang University, China
4School of Information Systems, Singapore Management University, Singapore

vkabadi@student.unimelb.edu.au, timkong@zju.edu.cn, 3140102422@zju.edu.cn, lingfengbao@zju.edu.cn,

arthaprana.2016@phdis.smu.edu.sg, btdle.2012@phdis.smu.edu.sg, bach.le@unimelb.edu.au, davidlo@smu.edu.sg

Abstract—Automated program repair (APR) has been gaining
ground with substantial effort devoted to the area, opening up
many challenges and opportunities. One such challenge is that
the state-of-the-art repair techniques often resort to incomplete
specifications, e.g., test cases that witness buggy behavior, to
generate repairs. In practice, bug-exposing test cases are often
available when: (1) developers, at the same time of (or after)
submitting bug fixes, create the tests to assure the correctness
of the fixes, or (2) regression errors occur. The former case –
a scenario commonly used for creating popular bug datasets –
however, may not be suitable to assess how APR performs in
the wild. Since developers already know where and how to fix
the bugs, tests created in this case may encapsulate knowledge
gained only after bugs are fixed. Thus, more effort is needed to
create datasets for more realistically evaluating APR.

We address this challenge by creating a dataset focusing
on bugs identified via continuous integration (CI) failures – a
special case of regression errors – wherein bugs happen when
the program after being changed is re-executed on the existing
test suite. We argue that CI failures, wherein bug-exposing
tests are created before bug fixes and thus assume no prior
knowledge of developers on the bugs to be involved, are more
realistic for evaluating APR. Toward this end, we curated 102
CI failures from 40 popular real-world software on GitHub.
We demonstrate various features and the usefulness of the
dataset via an evaluation of five well-known APR techniques,
namely GenProg, Kali, Cardumen, RsRepair and Arja. We
subsequently discuss several findings and implications for future
APR studies. Overall, experiment results show that our dataset is
complementary to existing datasets such as Defect4J in realistic
evaluations of APR.

1 Index Terms—Program Repair, Benchmark

I. INTRODUCTION

Bug fixing is notoriously difficult and costly in terms of

time and effort spent by developers [6], [55]. This is largely

due to the fact that this process still rests entirely on human to

manually repair bugs in practice. Thus, automated program re-

pair (APR) techniques that can help efficiently and effectively

automate bug fixing would be of tremendous value. The once

futuristic idea of APR has been brought closer to reality by

substantial recent research effort devoted to the area [7], [16],

1* Corresponding authors

[19], [21], [22], [28], [34], [36], [40], [41], [62], [63]. Two

main families of APR include heuristics- vs semantics-based

approaches, each of which generates and traverses the search

space for repairs in a different way.

Recent pragmatic advancements in APR have opened up

many challenges and opportunities. One such challenge is

that most state-of-the-art APR approaches hinge on the use of

incomplete specifications, e.g., test cases with at least one of

which is failing and thus exposing buggy behavior, to generate

repairs [16], [18], [26], [28], [34], [40], [41], [62]. Generally,

APR techniques first dynamically analyse the program under

repair using tests to localize potentially buggy elements. They

then generate and traverse a huge search space for repairs,

partially inferred through the performed dynamic analysis. The

effectiveness of APR thus largely depends on the information

obtained from the dynamic analysis, which in turn relies on the

existence and various properties of fault-revealing test cases.

In practice, fault-revealing test cases are often obtained

when: (1) developers, at the same time of (or after) submitting

bug fixes, produce the tests for assuring the correctness of the

fixes, or (2) regression errors occur via continuous integration

(CI) testing, wherein existing tests, that previously pass, now

fail. We refer the test cases obtained from the former as future
test cases and from the latter as existing test cases. Existing

datasets commonly used for validating APR techniques such as

Defects4J [14], Bugs.jar [51], and Bears [37], are integrated

with future test cases. We argue that using future test cases

may not be able to accurately estimate how well APR would

work in practice. That is, since developers already perceived

where and how the bugs can be fixed, tests created in this case

may be too specific to the bugs and unduly provide implicit

help to enhance APR. Such help is unavailable in practice

when APR needs to fix bugs before developers fix them and

create suitable test cases to ensure the absence of the bugs.

The latter case (regression bugs) on the other hand, assumes

no prior knowledge of developers on the bugs since fault-

revealing tests are created before the bugs are fixed, and thus

is better able to estimate how APR would perform in practice.

Despite their differences, curating datasets in either case is a

50

2023 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSME58846.2023.00017

TABLE I
FUTURE TEST CASES IN EXISTING BENCHMARK DATASETS

Benchmark Total Bugs Bugs with future test cases

Defects4J 395 381
Bugs.jar 1130 1064

Bears 251 232

non-trivial task, which could easily take up months or even

years of strenuous engineering effort [14], [29], [57].

A recent study [31] as shown in Table I demonstrates that

more than 92% of the bugs in popular data sets used to evaluate

APR are integrated with future test cases, i.e., bug-witnessing

test cases that are created after the bug is reported. Hence,

APR evaluations on these data sets may not fully reflect how

APR works in the wild. APR assessment should explicitly

differentiate experiments that are valid in-the-lab from those

that would approximate in-the-wild performance. Liu et al.

[31] shows that 381 out of 395 Defects4J bugs are patched

and validated with future test cases. When such test cases

are dropped from the test suites, various APR tools could

only fix fewer than 6 bugs with correct patches. Hence, we

have built a dataset that confirms the bias shown to exist in

existing datasets. Our dataset is complementary to existing

datasets in that it does not involve future test cases for fixed

bugs – wherein no prior knowledge on how the bug is fixed

is involved in constructing fault-revealing tests. This helps to

clearly judge which techniques are effective for what classes

of bugs.

Recently, Bugswarm [56] has been proposed to provide a

dataset of bugs in the wild that do not involve future test cases.

It is a continuously growing set of failing and passing versions

of real-world, open-source systems, in Java and Python [56].

Although, it has a large set of bugs, only a part of them can

be used for APR purposes. The dataset contains bugs such as

code bugs, error in tests cases, build issues, etc. but current

APR techniques mainly target behavioral bugs that present

in the program source code. A study by Durieux and Abreu

shows limitations in the benchmark, e.g., only 50 Java bugs

and 62 python bugs out of 3091 bugs are suitable to evaluate

automatic fault localization or program repair techniques [11].

We argue that evaluating APR on less realistic benchmarks

or smaller dataset will not only result in less reliable outcomes,

but also can risk setting back the advancement of the whole

field. To address this challenge, we propose to create a new

dataset specifically designed for evaluating APR on larger

dataset of Java regression bugs. In particular, our dataset

includes 102 java regression bugs from 40 popular real-

world large software written in Java programming language

on GitHub. Our dataset has 29 projects in common with

Bugswarm but all the bugs are different. The dataset has only

regression bugs, featuring no future test cases hence contains

no prior knowledge on the bugs. It includes various bugs from

a wide range of systems, which are well-categorized into six

defect categories. We focus on Java since there is an increasing

number of APR tools proposed recently that target Java [19],

[26], [39], [61]–[63].

TABLE II
DATASET COMPARISON BETWEEN DEFECTS4J AND OUR DATASET

Defects4J - 356 Bugs Our dataset - 102 bugs
Bugs% Lines Modified

62 0 - 5
33 6 - 20
5 20 - 50
0 50+

Bugs% Lines Modified
91 0 - 5
9 6 - 20
5 20 - 50
2 50+

We demonstrate the features and usefulness of our dataset

via a comparative study with the Defects4J benchmark 2,

which has been extensively referred in the space of APR. We

find that Defects4J is a suitable basis for our study for two rea-

sons. First, Defects4J contains real bugs from large real-world

Java programs, and has recently become a popular benchmark

for APR evaluations [24], [61]–[63]. Second, we want to

investigate the differences between a dataset possessing the

envisioned features (i.e., our dataset) versus another that does

not possess the features (e.g., Defects4J), and their possible

impacts on the effectiveness of APR techniques. Toward that

end, we seek to answer the following research questions:

RQ1 How different are failure-exposing test cases in our
dataset than those included in Defects4J? To answer

this research question, we compare some statistics that

characterize failure-exposing test cases in our dataset and

Defects4J, and highlight noticeable differences.

RQ2 Are there differences in automated program repair ef-
fectiveness evaluated using our dataset as compared to
Defects4J? To answer this research question, we run

APR solutions on all bugs in our dataset and compare

their effectiveness with the ones that are reported in the

literature.

In RQ1, we compute a number of statistics to assess

characteristics of failure-exposing test cases in our dataset

and Defects4J [14]. Our dataset has more than six times more

failure-exposing test cases than those of Defects4J, and failure-

exposing test cases in our dataset are more than three times
less localizable, i.e., less chance to localize the root causes

of bugs, and close to 70% less similar, e.g., less chance to

provide fixing ingredients, to bug fix patches than those of

Defects4J. Table II shows the statistics on the number of lines

of code changes of bug fixes in Defects4J and our dataset.

From Table II, we can see that the majority of bug fixes in

both our dataset and Defects4J have fewer than five lines of

code changes.

For RQ2, we run GenProg, Kali, Cardumen implemented

in Astor [39], Arja [65] and RsRepair [48] on our dataset. We

choose these tools because the same tools were also applied on

Defects4J in a recent prior study [8], [38], [65] and we wish

to compare the performance of APR tools against our dataset.

We did not use semantics-based APR tools in our study such as

SemFix [42], DirectFix [40], Angelix [41], and S3 [26]. These

tools use symbolic analysis which often requires manually

writing models for system calls whose source codes are not

available. We tried to configure ACS [62] on our dataset, but

2https://github.com/rjust/defects4j/releases/tag/v1.0.0

51

failed to successfully do so because ACS hard-coded their

configurations for only Defects4J.
The results of RQ2 suggest that correct patch generation

rate on our benchmark is eight times lower as compared to

results reported in [8], [38].This low result is despite the fact

that our dataset has fewer lines of code modified per bug

compared to the Defects4J as shown in Table II. The mean

of Defects4J and our dataset are 6.43 and 5.05 lines modified

per bug respectively.
In summary, the contributions of this work are as follow:

1) We provide a dataset of 102 real CI failures from 40

large real-world Java programs. Our dataset displays

several features that are specifically suitable for more

realistic APR evaluation. We save the community months

of engineering efforts by making our dataset publicly

available via GitHub.3

2) We demonstrate various features and the usefulness of our

proposed dataset by means of an evaluation of five well-

known repair techniques namely GenProg, Kali, Cardu-

men, Arja and RsRepair. Experiment results suggest that

there is a lot of room for improvement for future APR

techniques. Our dataset is one of the first steps to open

up such opportunities.

The remaining of the paper is organized as follow. Section II

presents background on program repair and examples that

motivate the construction of our dataset. Section III explains

the methodology to construct our dataset, followed by Sec-

tion IV that describes several statistics of the constructed

dataset. Section V presents evaluation results for our research

questions, followed by discussions in Section VI. Section VII

presents related work. Section VIII concludes the paper.

II. BACKGROUND

In this section, we explain some popular APR techniques

and empirical studies. We then briefly describe motivating

examples for our newly proposed dataset.

A. Automated Program Repair
a) Program repair.: Repair techniques can generally be

divided into two families: search-based vs semantics-based,

classified by the ways they generate and traverse the search

space for repairs. Search-based approaches generate a large

number of repair candidates and employ search or other heuris-

tics to identify correct repairs among them. Semantics-based

approaches extract semantics constraints from test suites, and

synthesize repairs that satisfy the extracted constraints. Gen-

Prog [28] is an early search-based APR tool that uses genetic

programming to search for a repair that causes a program

to pass all provided tests cases among a possibly huge pool

of repair candidates. GenProg targets generic bugs by using

general mutation operators to generate repair candidates such

as statement deletion, replacement, and append. In a similar

vein, Kali [50] attempts to generate test-suite-adequate repair4

3https://github.com/CI-Bugs/Repo1
4A test-suite-adequate repair is a bug fix that makes all test cases pass.

Such repairs are not guaranteed to be correct though as a test suite often does
not cover all possible scenarios.

by only deleting statements. It has been shown that Kali,

despite being simple, generates as many correct patches as

prior repair systems such as GenProg [50]. Recently, Arja [65]

a new GP based repair approach for automated repair of Java

programs presents a novel lower-granularity patch representa-

tion that properly decouples the search subspaces of likely-

buggy locations, operation types and potential fix ingredients,

enabling GP to explore the search space more effectively.

RsRepair [48], can automatically generate patches for faulty

programs by using purely random search algorithm and also

comes with an adapted test case prioritization technique to

speed up the patch validation process.

b) Studies in APR: Qi et al. [50] manually analyze

the correctness of bug fixes generated by GenProg and its

variants using ManyBugs benchmark [29]. They manually

write additional test cases to augment existing test suites, and

show that the majority of generated patches is incorrect since

the patches do not pass the additional test cases. A later study

by Smith et al. [52] refer this problem as overfitting, and

confirm that many of patches generated by search-based repair

techniques such as GenProg and the likes actually pass all tests

used for repair but do not generalize to other independent test

suites. In a similar vein, Le et al. [25] show that semantics-

based repair techniques are also no exception to the overfitting

issue. Particularly, they show that a large fraction (up to 90%)

of patches generated by semantics-based APR are overfitting

by using the IntroClass [29] and Codeflaws [53] datasets,

each of which contains small programs and independent test

suites for automatic patch correctness assessment. Martinez et

al. [38] empirically study several APR techniques (including

their own technique namely Nopol [63]) in both semantics-

and search-based families on Defects4J dataset [14]. The cor-

rectness of machine-generated patches were manually assessed

by the authors of the paper. Yi et al. [64] study several APR

techniques on introductory programming assignments. These

studies, despite being conducted rigorously, used datasets that

either do not contain bugs from real-world large programs

(e.g., IntroClass and Codeflaws), or fully satisfy the desirable

features that we discussed in Section 1 (e.g., Defects4J and

ManyBugs).

B. Motivating Examples

To motivate our proposed dataset, we start by showing an

example of a fault-revealing (i.e., failing) test case created

at the same time as or after a bug is fixed (i.e., future test
case). We then compare it with another fault-revealing test

case created before a bug is even identified (i.e., existing test
case). We highlight some noteworthy differences of the two

cases.

Future test case – A bug fix in Apache Commons Math5 and

its fault-revealing test case, which are included as part of the

Defects4J dataset, are shown in Figures 1 and 2, respectively.

The bug fix and its failing test are submitted at the same time
by developers. We can note that the failing test is very specific

5http://commons.apache.org/proper/commons-math/

52

to the buggy method, that is the linearCombination
method in class MathArrays – see line 4 in Figure 2,

and line 2 in Figure 1. Aside this method, the failing test

includes invocation to no other methods in Apache Commons

Math. Additionally, the fault-revealing test shares noticeable

commonalities with the fix (i.e., “a[0] * b[0]”).

1 // In class MathArrays

2 public static double linearCombination(double[] a, double[]

b) throws ... {

3 ...

4 + if (len == 1) {

5 + // Revert to scalar multiplication

6 + return a[0] * b[0];

7 + }

8 ...

9 }

Fig. 1. A bug fix created by developers for bug MATH-1005 in Apache
Commons Math, which corresponds to Math3 in Defects4J dataset. The failing
test that exposes this bug is depicted in Figure 2.

1 public void testArray() {

2 final double [] a = { 1.23456789 } ;

3 final double [] b = { 98765432.1 } ;

4 Assert.assertEquals(a[0] * b[0], MathArrays.

linearCombination(a, b), 0d) ;

5 }

Fig. 2. A failing test of bug Math3 in Defects4J dataset

Existing Test case – We now show an example of a bug

fix for a continuous integration (CI) failure appearing for

HikariCP6 and its fault-revealing test case, which are included

in our dataset. The bug fix and its failing test case are

shown in Figures 3 and 4, respectively. We can note that

the test case does not directly invoke the buggy method

(i.e., closeOpenStatements) but is invoked by a sub

procedure internally. The test case invokes many other non-

buggy methods in HikariCP. Additionally, the fix and the fault-

revealing test case do not share any noticable commonalities.

1 // In class ConnectionProxy

2 private final boolean closeOpenStatements() {

3 final int size = openStatements.size();

4 - if (size <= 0) {

5 + if (size > 0) {

6 boolean success = true;

7 for (int i = 0; i < size; i++) {

8 ...

9 }

Fig. 3. A bug fix for a HikariCP’s bug identified via a continuous integration
failure.

From the above two examples, we can notice how the future
test cases can impact the patches regenerated by APR. In

practice, if APR is ever used to repair bugs, the existing

fault-revealing test case must exist. The future test cases

would typically be unavailable since APR has to fix the bugs

6HikariCP (https://github.com/brettwooldridge/HikariCP/) is a popular
high-performance JDBC connection pool. Its GitHub repository received more
than 6,000 stars and has been forked close to 1,000 times.

1 public void testAutoStatementClose() throws SQLException {

2 Connection connection = ds.getConnection();

3 Assert.assertNotNull(connection);

4 Statement statement1 = connection.createStatement();

5 Assert.assertNotNull(statement1);

6 Statement statement2 = connection.createStatement();

7 Assert.assertNotNull(statement2);

8 connection.close();

9 Assert.assertTrue(statement1.isClosed());

10 Assert.assertTrue(statement2.isClosed());

11 }

Fig. 4. A failing test for the HikariCP bug whose fix is shown in Figure 3

before developers fix them and create such tests to confirm

the absence of the bugs. Thus, evaluating APR on datasets

containing fault-revealing tests whose construction involve

future test case of bug fixes may not fully reflect how APR

would perform in reality.

Since most datasets available for APR evaluation today

include fault-revealing tests that belong to the future, there

is a need for a new dataset. In this work, we create a dataset

corresponding to bug fixes of CI failures. Fault-revealing tests

in CI failures are created before bug fixes are submitted, and

thus, assume no future test cases – developers do not know in

advance how and where to fix the bugs at the time test cases

are written; indeed, the bugs and even the buggy code may

not have existed at the time the test cases are written.

III. BENCHMARK CONSTRUCTION METHODOLOGY

In this section, we review the criteria for constructing our

defect benchmark. Then, we describe the steps to create the

benchmark by following the criteria. Figure 5 depicts an

overview of the process we follow to construct our benchmark.

A. Benchmark Criteria

Our constructed benchmark needs to possess the following

desired criteria:

1) Regression Bugs from CI – wherein no prior knowledge on

bug fixes is involved in constructing fault-revealing tests.

2) Diversity – wherein bugs are from a diverse set of real-

world large software systems and well-categorized into

various categories.

To satisfy future test cases criterion, we focus on continu-

ous integration (CI) failures, in which fault-revealing tests

are created before bug fixes are constructed by developers.

For diversity, we iterate through over thousands of publicly

available projects on GitHub – a popular code hosting service.

To collect real bugs from CI failures, we focus on GitHub

projects that use CI – a widely-used automated build and

testing methodology in modern software development. The

property of CI that enables us to collect bugs is its constant

monitoring and testing of code changes. Particularly, every

time a code change is submitted to the version control system

of a CI-employed project, the new code version of the project

is automatically built and tested against the existing test suite

by CI. A failed build containing failing tests indicates bugs.

53

GitHub Projects

commits

Travis CI
Failed

Successful

build
Human Patch
Identification

build

build

Patches

build

build
Failed with tests

Defect
Reproduction

Patch
Verification

Final Defect
Benchmark

check out code

trigger builds

Fig. 5. The process of benchmark construction.

Note that each build produced by CI usually contains the

following information: the source code snapshot used (e.g., a

reference to a Git commit), the result of the build (e.g., success

or fail), and the build log trace. This information allows us to

identify project’s versions wherein bugs via CI failures occur.

B. Phase 1: Project Selection

We focus on GitHub projects that employ Travis CI [2]

given its popularity among several CI services available. Travis

CI is a state-of-the-art CI service which is well integrated into

the GitHub infrastructure. It also provides APIs to obtain CI

build information. Obtaining build information from various

Travis CI projects by reproducing builds, however, is a time-

consuming process. Fortunately, this build information is made

available via TravisTorrent [5], which allows us to access a

database of hundreds of thousands of analyzed Travis CI builds

in the matter of seconds. The projects in TravisTorrent are

non-forked, sufficiently popular (> 10 watchers on GitHub)

and have a history of Travis CI use (> 50 builds) [5]. We

use the TravisTorrent database snapshot of 2017/02/08, which

contains 2,022 projects.

We follow these steps to select projects:

1) We retain projects that use Java as the main programming

language. We obtain 316 Java projects from TravisTorrent.

2) Using the number of commits that a project has as a proxy

for measuring its activity, we filter projects whose number

of commits is fewer than 1,000. After this step, there are

177 projects left.

3) We remove projects that cannot be easily configured among

the remaining projects. First, we only retain projects that

use Maven – an automated build tool that can help easily

build and test projects. For example, we can use the

command mvn install to build the project and the

command mvn test to run the tests of the project.

Second, we remove projects related to mobile or distributed

platforms, since they may require various additional re-

sources for building and running tests. For example, An-

droid projects require emulators, which rely on different

Android SDK frameworks. Finally, we get 91 projects.

Figure 6 presents the number of builds in the 91 projects.

The mean and standard deviation of builds of these projects

are 2,791 and 3,067, respectively.

0 5000 10000 15000
The number of builds

Fig. 6. Project builds.

TABLE III
PROJECTS HAVING MOST PATCHES AT THE END OF PHASE 2.

Project
Failed
builds

Builds with
test failures

PR builds with
test failures

#Patches

apache/pdfbox 2,018 876 5 96
biojava/biojava 405 397 160 23
brettwooldridge/HikariCP 338 233 76 20
nutzam/nutz 552 316 27 17
rackerlabs/blueflood 558 294 205 12
structr/structr 843 406 4 12
datacleaner/ 627 418 132 10
geoserver/geoserver 5,499 1,456 652 9

C. Phase 2: Defect and Patch Selection

In this step, we collect bug fixes along with their associated

buggy and correct versions from the 91 projects obtained in the

previous step. To do this, we iterate through the development

history of the projects, and collect failed builds which are

triggered by test failures to identify buggy versions and failing

test cases. We then search for successful builds that fix those

failures to identify corresponding correct versions of the buggy

ones. By this way, we can obtain ground-truth patches – the

changes made in correct versions as compared to buggy ones,

and fault revealing test cases. We further illustrate the details of

our defect and patch selection process step-by-step as follow.

First, we identify failed builds by first collecting details of

metadata on each build using APIs provided by Travis CI.

We then analyze the build logs to identify the builds with test

case failures. We are not interested on failed builds caused

by compilation errors, configuration errors, etc as our focus is

only on the bugs from source code only. To find builds with

test case failures, we use a regular expression to check whether

a build log contains keywords such as “failed tests” or “tests

in error”, since we observe that the logs of failed builds often

contain exception stack traces, which include these specific

keywords.

Second, for each failed build with test failures as identified

above, we search for the associated successful build, which

contains the commit change that fixes the failure. There are

two different kinds of commits that can trigger a build for

GitHub projects using CI, i.e., commits pushed by the projects’

members and commits in pull requests proposed by external

developers of the projects. For failed builds triggered by

pushed commits, we find the next successful build triggered

by pushed commits with the same developer in build history.

It is more likely that the next commit fixes the latest fault

of a developer because CI can give timely feedback to let

developers know whether their commit changes break the

system or not.

For failed builds triggered by commits in pull requests, we

find the next successful build with the same pull request ID.

54

Notice that sometimes we cannot find the next successful build

since the pull request is not merged into master branch.

By comparing the two commits in the failed build and

successful build using GitHub API, we can obtain changes

representing a bug fix (i.e., a patch). However, GitHub might

return no patch if the changed files are totally different. One

could proceed to find another successful build submitted at a

later time to obtain a patch, but the further away a successful

build is from the failed build, the more likely the changes

will be noisy. We thus ignore the failed build in this case and

proceed to the next failed build. There are 9,404 patches found

at the end of this step.

Finally, we further filter the collected patches since not all

patches satisfy our criteria mentioned in Section III-B. Since

we only focus on Java and most APR tools cannot fix bugs

in code written in multiple languages at the same time, we

remove patches that include changes to non-Java source code

files, e.g., some changes are made on configuration files in text

or XML format. Finally, we remove the patches that contain

changes on test cases, because we want to focus on bugs on

source code rather than test code. At the end of this step, we

get 399 patches from 67 projects.

Table III presents the projects with the most patches at the

end of this phase. For each project, we also show the number

of failed builds, builds with test failures, and PR builds with

test failures in this table. PR builds with test failures is a subset

of builds with test failures.

D. Phase 3: Local Defect Reproduction and Patch Verification

After obtaining the defects, fault revealing test cases, and

their corresponding patches, we reproduce these defects in our

local machine and verify whether the corresponding patches

can really fix the defects. To do this, we follow the subsequent

steps one-by-one.

Checking out the code for both buggy and fixed versions.
To get exactly the same source code of both versions, we

clone the project repository from GitHub using the commit

identifier in the builds. However, checking out code could fail

in the following cases: 1) commits might have been deleted

due to amended commits or updated branches performed with

the push force option; 2) the branch that contained the build’s

commit was deleted if the type of build is pull request. In such

cases, we stop the defect reproduction phase and remove the

defects from our dataset.

Building project and running tests for buggy versions. This

step is to check whether we can reproduce defects in the

buggy version of each defect. Generally, we use the command

mvn install to build the project, which usually includes

resolving the dependencies, compiling source code, running

test cases, and packaging the project. For each build, we create

a new local cache directory for Maven to avoid conflicts among

the same dependent libraries. To execute the tests of a project,

we run the command mvn test.

Then, for each buggy version, we check the local test

outputs to confirm that there are failed test cases. If so, we

compare the failed test cases with the outputs in build logs

generated by CI. If both the failed test cases and the thrown

exceptions are the same, the defect is considered locally

reproducible. Otherwise, the defect is discarded.

Building project and running tests for fixed versions. This

step is to verify whether the commit change in the fixed

versions really fixes the defects in the corresponding buggy

versions. We build and run tests for the fixed versions in

the same way as the buggy versions. Then, if there are no

failed test cases, the human patch is considered to really fix

the bug; otherwise, we discard the patch. At the end of this

step, we get 102 defects from 40 projects. Filtering the bugs

took us approximately 900 man hours, including tasks such

as manually building and resolving build issues, e.g., missing

dependencies, and manually reproducing the bugs, etc. We

spent two or three hours resolving build issues, beyond which

we left the bug to inspect later at low priority. We acknowledge

that there is a trade-off to be made here between the accuracy

and inspection time.

IV. DATA STATISTICS

Our benchmark contains 102 defects from 40 systems

obtained via several processing steps described in Section III.

To further justify the quality of our constructed benchmark, in

this section, we summarize project included in the benchmark,

and then categorize defects into several classes.

A. Constituent Projects

Table IV summarizes the projects in our defect benchmark.

Due to space limitation, we only present the details of 10

projects that have at least three defects in the benchmark.

We note that the 40 projects in the benchmark are diverse in

terms of types and sizes. The projects span JDBC connection

pool, GPS tracking system, library for interaction with Bitcoin

exchanges, JavaScript compiler, style and grammar checker,

and many more. As Table IV shows, the project that has the

largest number of lines of code (LOC) is hapi-fhir with

∼1.8 millions LOC, while the project that has the smallest

number of LOC is HikariCP with ∼12 thousands LOC. The

projects in the benchmark are developed by both large and

small teams; the mean and standard deviation of the number

of project contributors are 86 and 72, respectively. We also

compute the number of test cases and their corresponding

mean LOC for each project. The mean and standard deviation

of test case count are 521 and 633, respectively. Among these

projects, fastjson has much larger number of test cases

than others despite having not very large LOC. Moreover, we

collect statement coverage for each project using a Maven

plugin – Cobertura [1]. The mean and standard deviation of

statement coverage are 54% and 30%, respectively.

B. Defect Categorization

We further justify the diversity of our benchmark by char-

acterizing the constituent defects. We divide defects in the

benchmark into several different categories, of which some

are obtained from the Java defect classes proposed by Pan et

55

TABLE IV
SOFTWARE PROJECTS IN OUR BENCHMARK.

test cases
Project #Defects kLOC #Contributors Count LOC (mean) description

brettwooldridge/HikariCP 9 12 78 47 145 high-performance JDBC connection pool
datacleaner/DataCleaner 8 131 34 392 68 data quality solution
alibaba/fastjson 7 149 69 2,375 48 JSON parser/generator
jamesagnew/hapi-fhir 5 1,861 59 743 222 API for HL7 FHIR
owlcs/owlapi 4 154 16 264 126 API for W3C Web Ontology Language
tananaev/traccar 4 49 73 251 32 GPS tracking system
nutzam/nutz 3 27 50 187 76 web framework
vavr-io/vavr 3 128 72 340 100 language extension for Java 8
apache/pdfbox 3 91 74 489 53 library for PDF documents
caelum/vraptor4 3 92 53 487 51 web MVC framework
google/closure-compiler 3 72 23 191 229 JavaScript checker and optimizer

other projects (mean) 165 94 544 97
all (mean) 199 86 521 112

al. [45] and Tan et al. [53]. Each defect category is character-

ized by the changes made to fix the defect. Table V presents

the defect categories for our dataset and the corresponding

number of defects belonging to each category. There are six

categories of defects in our dataset, i.e., if condition, method
call, variable, assert, exception, and others. We describe the

detail of each category as follows:

If condition: The defects in this category are related to condi-

tion check in if statements. This category has the most number

of defects (26/102) in our dataset. Out of these 26 defects,

7 and 1 defects are fixed by adding additional expressions

to tighten (i.e., with && operation) and loosen (i.e., with ||
operation) condition check in if statements, respectively. 11

defects are fixed by only modifying the original condition

expressions in if statements. 7 defects are fixed by inserting an

if statement to ensure that a precondition is met. We have two

sub categories for this case: one is to add an if statement that

is copied from elsewhere in the project source code, another

is to add an if statement that might be created by developers

from scratch. Both of the categories have five defects in our

dataset. The remaining two defects are fixed by adding an

if-else code block.

Method call: There are 21 defects in this category, which

are fixed by applying changes on method calls. The number

of defects that can be fixed by adding/removing one or more

method calls are 3 and 2 defects, respectively. Two defects

are fixed by replacing a method call. The new method call

usually has a similar name or function to the old one. The

sub category modify method invoker is a defect fix pattern

that replaces the object from which a method is called. The

new object must be of the same type as the old one. The

other two defect fix patterns are change parameter list (3

defects) and change parameter value (7 defects). The first

case changes a method call by using different numbers of

parameters, or different parameter types. The second case

changes the expression passed into one or more parameters

of method calls.

Variable: There are 24 defects in this category, which are fixed

by applying changes on variables. Out of these 24 defects, 6, 5,

and 3 defects are fixed by adding, modifying, and removing one

or more statements of variable assignment, respectively. There

is 1 defect fixed by removing some keywords (“final”, “static”,

“transient” in our dataset) occurring before some variables.

The remaining 9 defects are fixed by replacing the type of a

variable with another one.

Assert: The defects in this category are triggered when de-

velopers change a certain part of code but do not modify the

corresponding assert check. There are only two defects that

belong to this category, which are fixed by modifying and

removing one assert statement, respectively.

Exception: The defects in this category are fixed by preventing

certain exceptions to interrupt the program execution. We have

six cases: one adds a try catch block and the other five changes

the exception type.

Others: There are still 24 defects for which we cannot

determine an obvious category. Out of these 24 defects, three

defects are fixed by adding an interface (“Serializable” in both

cases); one defect is fixed by adding return and 11 defects by

modifying the return statement, respectively; two defects is

fixed by modifying the resource files and seven bugs are due

to changes in the method implementation.

V. EMPIRICAL EVALUATION

In this section, we seek to answer two research questions,

demonstrating various features and the usefulness of our

dataset presented in Section 4.

A. Characteristics of Failure-exposing Test Cases

RQ1: How different are failure-exposing test cases in our

dataset than those included in Defects4J?

Methodology. To answer this research question, we compute

a number of statistics shown in Table VI from failure-exposing

test cases of 102 bugs in our dataset and compare with those

of 395 bugs from Defects4J [14]. In total, we compute 4

statistics (i.e., S1, S2, S3, and S4) listed in Table 4 to assess

quantity, bug localizability, and similarity of failure-exposing

test cases to bug fix patches. In particular, S1 specifies the

average number of failure-exposing test cases in each bug.

The more failure-exposing test cases, the larger is the region

56

TABLE V
DEFECT CATEGORIES.

Category Sub Category #Defect

if condition tighten if condition 7
loosen if condition 1
modify if condition 11
insert if condition from code 2
insert if condition from unknown 3
insert if condition with else 2

method call add method call 3
remove method call 2
replace method call 2
modify method invoker 4
change parameter list 3
change parameter value 7

variable add variable assignment 6
modify variable assignment 5
remove variable assignment 3
remove keyword before variable 1
replace variable declaration type 9

assert modify assert expression 1
remove assert expression 1

exception add try-catch block 1
modify exception type 5

others move statement 0
add interface 3
insert return 1
change return 11
replace array access 0
remove annotation 0
modify resource files 2
modify method implementation 7

TABLE VI
STATISTICS EXTRACTED FROM FAILURE-EXPOSING TEST CASES AND

SOURCE CODE OF EACH BUG.

ID Description
Notations

RC
Number of unique classes that have to be repaired and explicitly
called by failure-exposing test cases

C Number of unique classes explicitly called by failure test cases

RM
Number of unique methods that have to be repaired and explicitly
called by failure-exposing test cases

M Number of unique methods explicitly called by failure test cases
Statistics

S1 Average number of failure-exposing test cases
S2 Average of RC / C
S3 Average of RM /M

S4
Average number of shared identifiers between failure-exposing test
cases and patches

of code that may be deemed suspicious, and thus enlarging

the search space for repair. S2 and S3 are the percentage of

classes and methods that need to be repaired among those are

explicitly called by test-exposing test cases – they measure

the bug localizability potential of the test cases. The higher

values of S2 and S3 are, the higher chances failure-exposing

test cases contain hints leading to root causes of bugs. Finally,

S4 measures similarity between failure-exposing test cases and

bug fix patches in terms of shared identifiers.

Results. All Projects: We note that mean of S1 for our

dataset and Defects4J are 15.39 and 2.37, respectively. This

shows that the average number of failure-exposing test cases

per bug in our dataset is more than six times larger than

TABLE VII
APR TOOLS EVALUATION FOR DEFECTS4J AND OUR DATASET. JGEN AND

CARD STAND FOR JGENPROG AND CARDUMEN RESPECTIVELY.

Defects4J - 224 Bugs
Tool jGen jKali Arja RsRepair Mean

Patched Bugs 27 22 59 44 38

Patched % 12.05% 9.82% 26.34% 19.64% 16.96%

Our dataset - 102 bugs
Tool jGen jKali Arja RsRepair Card Mean

Patched Bugs 4 4 0 0 3 2.5

Patched % 3.92% 3.92% 0% 0% 2.94 2.16%

the number for Defects4J. Wilcoxon rank-sum test [60]

shows that the difference is statistically significant (i.e., p-

value=0.000016).

The mean of S2 for our dataset and Defects4J are 0.042

and 0.142, respectively; mean of S3 in our dataset and

Defects4J are 0.026 and 0.088, respectively. We note that

failure-exposing test cases in our dataset are approximately

three times less localizable than those in Defect4J. In other

words, Defects4J’s failure-exposing test cases have much

higher chance leading to root causes of bugs than those in our

dataset. Wilcoxon rank-sum test shows that the differences in

S2 and S3 between our dataset and Defect4J are statistically

significant with p-values of 0.000620 and 0.002736, respec-

tively.

The mean of S4 for our dataset and Defects4J are 0.426

and 0.604, respectively. This indicates that failure-exposing

test cases in our dataset is less similar to bug fix patches than

those in Defects4J by approximately 70%.

Failure-exposing test cases per bug in our dataset are

more than six times larger than those for Defects4J;

they are also three times less localizable and close to

70% less similar to bug fix patches.

B. Effectiveness of APR

RQ2: Are there differences in automated program repair

effectiveness evaluated using our dataset as compared to

Defects4J?

Methodology. Using our dataset, we evaluate five well-

known APR techniques namely GenProg, Kali, Cardumen

implemented in Astor [39], Arja [65],and RsRepair [48].

We subsequently compare the effectiveness of APR evalu-

ated on our dataset with that on Defects4J that is recently

reported by Martinez et al. and Chen et al. [8], [38]. We

note that the effectiveness of APR tools on a dataset rep-

resents the overall difficulty of the dataset on repair task.

Thus, our evaluation metric to estimate an average score for

program repair effectiveness is correct patch rate measured as

#CP/(#Tools∗#Bugs), where #CP is the total number of

correct patches generated by all the APR tools used, #Tools is

the number of APR tools used to generate repairs, and #Bugs
is the number of bugs used for evaluating APR in total. Note

that a machine-generated patch is judged as correct if: (1) it

passes all tests in existing test suite in fixed commit, and (2)

it is identified as semantically equivalent to the ground-truth

57

patch by manual human evaluation; each machine-generated

patch is manually reviewed by two authors of this paper,

wherein each author provides their own label for the patch (i.e.,

correct, incorrect, or unknown) independently, and reciprocally

discusses on disagreement cases until a consensus is achieved.

Semantic equivalence of patches is evaluated by following

rules described by Liu et al. [32]. For example, one of the

10 rules described in Table 3 in [32] is “Unnecessary code

uncleaned”; this rule means that two patches are considered

semantically equivalent even if applying one of them result in

harmless unnecessary code that is uncleaned.

Results. Experimental results show that, the five APR tools

that were run against the 102 bugs, found patches for only 6

bugs in common. Among the 6 common bugs patched, jKali,

jGenProg and Cardumen patched 4, 4 and 3 bugs respectively.

Based on the study in [65] and our experiments, Table VII

presents the mean patch rate of APR tools against Defects4J

and our benchmark which is 16.9% and 2.16% respectively.

This indicate 8 times lower patch rate on our benchmark

despite the fact that our dataset has fewer lines of code

modified per bug on average as compared to Defects4J as

shown in Table II.

Overall, the results indicate a lower patch rate on

our dataset as compared to Defects4J, suggesting

that it is more difficult for APR to generate correct

patches on our dataset.

VI. DISCUSSION

Beyond Program Repair. Our constructed dataset can be

useful to evaluate automated techniques in other research areas

beyond program repair that use dynamic analysis. One such

area is fault localization [3], whose research interests have

intensified in recent years [4], [46], [47], [66].

Fault localization techniques (FL) have been evaluated on

several benchmarks in various studies [4], [46], [47], [66],

which either contain artificial faults manually intentionally

injected by human, e.g., SIR [10], or involve bugs with future
test cases, e.g., Defects4J [14]. Our dataset can serve as a

means to estimate how well FL would perform in practice.

It is possible that the evaluation results of FL on our dataset

would be different from that on other less realistic benchmarks

as shown in previous studies [4], [66].

We believe that by focusing on realistic evaluations of APR,

such as evaluations on continuous integration as ours, would

help bring APR closer to real-world adoption in the future as it

helps evaluate APR more fairly to reflect the true performance

of APR in practice. Also, more efforts are needed from the

APR community to help cultivate datasets that facilitate such

evaluations. The take home messages of our paper for APR

researchers include: (1) please consider the benchmark that

we have created in the evaluation of future APR tools (as the

future should not be used to fix the past), (2) please create

larger benchmarks considering curated continuous integration

failures from various systems.

Threat to Validity. Threats to internal validity relate to errors

in our implementation and experiments. We have rechecked

our implementation and experiments and fixed errors that we

have found. Still, there could be additional errors that we did

not notice. Additionally, one potential threat that can affect

the quality of our dataset is the reproducibility of defects we

collected. We have carefully reproduced defects as described

in Section III-B and discarded ones that are not reproducible.

Threats to external validity correspond to the generalizabil-

ity of our findings. In this study, we have collected 102 real

bugs from 40 different Java programs, and evaluated APR tools

on the dataset. Still, more programs with more real bugs can

be collected, and more APR tools can be evaluated to mitigate

the threats further. We plan to do this in our future work.

Threats to construct validity correspond to the suitability of

our evaluation metrics. For RQ1, we use some intuitive metrics

to characterize failure-exposing test cases. For RQ2, we use

correct patch rate to measure the effectiveness of APR tools,

which has been similarly used in prior studies, e.g., [23], [25].

Still, there could other metrics that may be used for the two

RQs, we leave that investigation for future work.

VII. RELATED WORK

In this section, we highlight related work on automated pro-

gram repair including state-of-the-art techniques, benchmarks

and empirical studies.

A. Automated Program Repair

Weimer et al. propose AE that leverages an adaptive search

strategy to find similar syntactic repairs [59]. Qi et al. propose

RSRepair by employing a random search strategy to determine

repair candidates, and RSRepair is shown to be more effective

than GenProg on a subset of GenProg’s benchmark [49].

Long et al. propose SPR that combines staged program repair

and condition synthesis to effectively search for repair candi-

dates [34]. Prophet is a novel approach that infers probabilistic

models for assigning probabilities to repair candidates in the

search space [36]. Le et al. propose HDRepair that leverages

history of bugs fixes of thousands of projects from GitHub

to guide the repair process [24]. It uses genetic programming

to generate repair candidates, and rank the candidates based

on the likelihood of being correct, which is measured by how

frequent the changes made by the candidates appear in the bug

fix history.

Konighofer and Bloem utilize symbolic execution to

construct repair candidates for linear expressions [17].

Nguyen et al. propose a constraint-based approach, named

SemFix, that leverages symbolic execution, constraint solving,

and program synthesis for automated program repair [42].

There are other existing techniques that employs abstract inter-

pretation, unguided by test suites, but these techniques require

specially-written, well-specified code (e.g., [33]). Ke et al.

introduce SearchRepair that leverage semantic code search

by encoding human-written code portions as SMT constraints

on input-output behavior [15]. Angelix is a semantics-based

method that introduces a novel lightweight repair constraint

58

for repairing large-scale real-world software systems [41].

Le et al. translate and extend Angelix [41] to work on Java

programs [19]. Le et al. subsequently also proposed regression

errors repair for Java program [20].

B. Program Repair Benchmarks

IntroClass benchmark contains several hundreds of small

student-written C programs [29]. Tan et al. [54] create Code-

flaws that contains 3,902 defects from 7,436 small programs

from programming contests hosted on Codeforces7. Similar

to IntroClass, each program in Codeflaws contains two in-

dependent test suites, in which one test suite can be used to

validate APR-generated patches [54]. Nilizadeh et al. provided

a dataset of bugs equipped with formal specifications [43],

[44].

GrowingBugs [13] is a recent bug repository composed of

1,381 real-world bugs and their concise patches, automatically

collected from 151 well-known and widely used Java applica-

tions. Different from GrowingBugs, our dataset is specifically

for regression bugs.

BugSwarm [56] a collection of the unprocessed bugs from

CI failed builds, it contains 3091 pairs of failing and passing

continuous integration builds. The dataset is created by means

of automated mining of fail-pass pairs from CI builds [56].

There has been critical analysis shows several limitations in

the bugswarm benchmark: only 50 Java and 62 Python bugs

out of 3091 (pair of builds) are suitable to evaluate techniques

for automatic fault localization or program repair. This result

has been obtained by applying the seven filters (1) Test-case

failure, (2) Only change source file, (3) No test changed, (4)

Build reproduced five times, (5) Available Docker image, (6)

Unique commit, (7) Not Empty diff [11].

A recent study [31] showed that 90% of benchmark bugs

in Defects4J [14], Bugs.jar [51] and Bears [37] are associated

with bug-triggering test cases that have been processed, i.e.,

added/updated after the bug is reported. We also note that

the benchmark authors have taken steps to curate the buggy

programs to facilitate program repair tools. Several APR sys-

tems may be overfitting to the available benchmarks, therefore

lacking generalizability on other bug targets.

Our work introduces a new bench mark, which includes

buggy versions, correct versions, test suites, and all of them

available in our GitHub repository CIBugs8. Different from

existing benchmarks, bugs included in our benchmark are all

from continuous integration (CI) failures that are detected

using test cases that were created before the bugs were

detected.

C. Empirical Studies on Program Repair

Qi et al. manually evaluate patches produced by previous

heuristic techniques to highlight the risks that test cases pose

when guiding repair search [50]. Smith et al. empirically and

systematically evaluate the overfitting issue in search-based

program repair techniques [52], including GenProg [58] and

7http://codeforces.com/
8https://github.com/CI-Bugs/Repo1

RSRepair [49]. Long et al. show that search spaces of search-

based approaches are often large and correct repair candi-

dates sparsely occur within the search spaces [35]. Le et al.

assess the effectiveness of synthesis engines when deployed

for semantics-based program repair [23]. Recently, Le et

al. proposed a new approach to automatically assess patch

correctness via program invariants and machine learning [27].

Le Goues et al. quantitatively assess impact of generated

patches in a closed-loop system for detection and repair

of security vulnerabilities [30]. Kim et al. assess relative

acceptability of patches generated by a novel technique via a

human study [16]. Fry et al. conduct a human study of patch

maintainability, finding that generated patches can often be as

maintainable as human patches [12].

Recently, Urli et al. report their experiences and insights

gained for designing a program repair bot namely Repair-

nator [57]. It employs three APR tools namely Nopol [63],

Astor [39], and NPEFix [9], to operate on 11523 test fail-

ures over 1609 open source projects. Repairnator focuses on

highlighting challenges and experiences of building a repair

bot, while our work focuses on building benchmarks for APR

tools. Repairnator’s experiment data, despite being released,

does not possess suitable features that are amenable for future

APR evaluations. In particular, Repairnator’s data is raw, does

not provide ground-truth fixes of bugs, and is not well-bundled

to support controlled experiments like our dataset.

Our work complements the above-mentioned work by in-

vestigating another angle, namely, impact of future test cases
on effectiveness of APR solutions. We highlight that test

suites that are created before patches were made have different

properties than those that are created at the same time or after
patches were submitted. We provide some empirical evidence

that test suites that satisfy the no future test case criterion

better reflects reality and poses a harder challenge that is yet

to be solved by the APR research community.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we argued that benchmarks that have been

used to evaluate the effectiveness of APR, e.g., Defects4J [14]

and ManyBugs [29] still may not fully reflect how well APR

would perform in practice. We constructed a benchmark, con-

taining 102 bugs identified via continous integration failures

from 40 real-world large programs to evaluate APR. We find

that failure-exposing test cases in our dataset are substantially

more, less localizable and less similar to bug fix patches. We

subsequently applied our benchmark to evaluate five well-

known APR tools namely GenProg, Kali, Cardumen, Arja

and RsRepair. Experiment results suggest that it is six time

more difficult for APR tools to generate correct patches on

our dataset as compared to existing dataset, i.e., Defects4J.

As future work, we plan add more bugs from more programs

and evaluate more APR techniques on our dataset. We also

plan to use our dataset to evaluate other techniques that

leverage dynamic analysis, such as fault localization, etc.

59

IX. ACKNOWLEDGMENTS

This research was funded (partially) by the Australian

Government through the Australian Research Council’s Dis-

covery Early Career Researcher Award, project number

DE220101057. This research / project is supported by the

National Research Foundation, Singapore, under its Industry

Alignment Fund – Pre-positioning (IAF-PP) Funding Initia-

tive. Any opinions, findings and conclusions or recommen-

dations expressed in this material are those of the author(s)

and do not reflect the views of National Research Foundation,

Singapore.

REFERENCES

[1] Cobertura. http://cobertura.github.io/cobertura/.
[2] Travis ci. https://travis-ci.org/.
[3] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. On the accuracy

of spectrum-based fault localization. In Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION (TAICPART-
MUTATION 2007), pages 89–98, 2007.

[4] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. A
learning-to-rank based fault localization approach using likely invariants.
In Proceedings of the 25th International Symposium on Software Testing
and Analysis, pages 177–188. ACM, 2016.

[5] Moritz Beller, Georgios Gousios, and Andy Zaidman. Travistorrent:
Synthesizing travis ci and github for full-stack research on continuous
integration. In Proceedings of the 14th working conference on mining
software repositories, 2017.

[6] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer
Katzenellenbogen. Reversible debugging software. Technical report,
University of Cambridge, Judge Business School, 2013.

[7] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. An-
gelic debugging. In International Conference on Software Engineering,
ICSE’11, pages 121–130, 2011.

[8] Liushan Chen, Yu Pei, and Carlo A Furia. Contract-based program repair
without the contracts. In Automated Software Engineering (ASE), 2017
32nd IEEE/ACM International Conference on, pages 637–647. IEEE,
2017.

[9] Benoit Cornu, Thomas Durieux, Lionel Seinturier, and Martin Monper-
rus. Npefix: Automatic runtime repair of null pointer exceptions in java.
arXiv preprint arXiv:1512.07423, 2015.

[10] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering, 10(4):405–435,
2005.

[11] Thomas Durieux and Rui Abreu. Critical review of bugswarm for fault
localization and program repair, 2019.

[12] Zachary P. Fry, Bryan Landau, and Westley Weimer. A human study of
patch maintainability. In International Symposium on Software Testing
and Analysis (ISSTA), pages 177–187, 2012.

[13] Yanjie Jiang, Hui Liu, Xiaoqing Luo, Zhihao Zhu, Xiaye Chi, Nan Niu,
Yuxia Zhang, Yamin Hu, Pan Bian, and Lu Zhang. Bugbuilder: An
automated approach to building bug repository. IEEE Transactions on
Software Engineering, pages 1–1, 2022.

[14] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database
of existing faults to enable controlled testing studies for java programs.
In International Symposium on Software Testing and Analysis, ISSTA
’14, pages 437–440, 2014.

[15] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. Repairing
programs with semantic code search. In International Conference on
Automated Software Engineering (ASE), pages 295–306, 2015.

[16] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Au-
tomatic patch generation learned from human-written patches. In
International Conference on Software Engineering, ICSE ’13, pages
802–811, 2013.

[17] Robert Könighofer and Roderick Bloem. Automated error localization
and correction for imperative programs. In Proceedings of the Interna-
tional Conference on Formal Methods in Computer-Aided Design, pages
91–100. FMCAD Inc, 2011.

[18] Dinh Xuan Bach LE. Overfitting in automated program repair: Chal-
lenges and solutions. 2018.

[19] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and
Willem Visser. Jfix: Semantics-based repair of java programs via
symbolic pathfinder. In International Symposium on Software Testing
and Analysis, ISSTA’17, 2017 (to appear).

[20] Xuan-Bach D Le and Quang Loc Le. Refixar: Multi-version reasoning
for automated repair of regression errors. In 2021 IEEE 32nd Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pages
162–172. IEEE, 2021.

[21] Xuan Bach D. Le, Quang Loc Le, David Lo, and Claire Le Goues.
Enhancing automated program repair with deductive verification. In
International Conference on Software Maintenance and Evolution (IC-
SME), pages 428–432, 2016.

[22] Xuan-Bach D Le, Tien-Duy B Le, and David Lo. Should fixing these
failures be delegated to automated program repair? In International
Symposium on Software Reliability Engineering (ISSRE), pages 427–
437, 2015.

[23] Xuan-Bach D Le, David Lo, and Claire Le Goues. Empirical study on
synthesis engines for semantics-based program repair. In International
Conference on Software Maintenance and Evolution, ICSME’16, pages
423–427, 2016.

[24] Xuan Bach D Le, David Lo, and Claire Le Goues. History driven
program repair. In International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 213–224. IEEE, 2016.

[25] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues.
Overfitting in semantics-based automated program repair. 2017.

[26] Xuan Bach Dinh Le, Duc Hiep Chu, David Lo, Claire Le Goues, and
Willem Visser. S3: syntax-and semantic-guided repair synthesis via
programming by example. FSE. ACM, 2017.

[27] Thanh Le-Cong, Duc-Minh Luong, Xuan Bach D Le, David Lo, Nhat-
Hoa Tran, Bui Quang-Huy, and Quyet-Thang Huynh. Invalidator:
Automated patch correctness assessment via semantic and syntactic
reasoning. IEEE Transactions on Software Engineering, 2023.

[28] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each. In International Conference on Software
Engineering, ICSE’12, pages 3–13, 2012.

[29] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun,
Premkumar Devanbu, Stephanie Forrest, and Westley Weimer. The
ManyBugs and IntroClass benchmarks for automated repair of C pro-
grams. Transactions on Software Engineering (TSE), 41(12):1236–1256,
Dec. 2015.

[30] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair.
IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[31] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein,
and Tegawendé F Bissyandé. A critical review on the evaluation of
automated program repair systems. Journal of Systems and Software,
171:110817, 2021.

[32] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F
Bissyandé, Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao,
and Yves Le Traon. On the efficiency of test suite based program
repair: A systematic assessment of 16 automated repair systems for
java programs. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pages 615–627, 2020.

[33] Francesco Logozzo and Thomas Ball. Modular and verified automatic
program repair. SIGPLAN Not., 47(10):133–146, October 2012.

[34] Fan Long and Martin Rinard. Staged program repair with condition syn-
thesis. In European Software Engineering Conference and International
Symposium on Foundations of Software Engineering (ESEC/FSE), pages
166–178, 2015.

[35] Fan Long and Martin Rinard. An analysis of the search spaces
for generate and validate patch generation systems. In International
Conference on Software Engineering (ICSE), pages 702–713. ACM,
2016.

[36] Fan Long and Martin Rinard. Automatic patch generation by learning
correct code. In Symposium on Principles of Programming Languages
(POPL), pages 298–312, 2016.

[37] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus.
Bears: An extensible java bug benchmark for automatic program repair
studies. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 468–478. IEEE,
2019.

60

[38] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan,
and Martin Monperrus. Automatic repair of real bugs in java: A
large-scale experiment on the defects4j dataset. Empirical Software
Engineering, pages 1–29, 2016.

[39] Matias Martinez and Martin Monperrus. Astor: A program repair
library for java. In Proceedings of the 25th International Symposium
on Software Testing and Analysis, pages 441–444. ACM, 2016.

[40] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Directfix:
Looking for simple program repairs. In International Conference on
Software Engineering (ICSE), pages 448–458. IEEE Press, 2015.

[41] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix:
Scalable multiline program patch synthesis via symbolic analysis. In
International Conference on Software Engineering (ICSE), pages 691–
701. IEEE, 2016.

[42] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. Semfix: Program repair via semantic analysis. In
International Conference on Software Engineering (ICSE), pages 772–
781. IEEE Press, 2013.

[43] Amirfarhad Nilizadeh, Marlon Calvo, Gary T Leavens, and Xuan-
Bach D Le. More reliable test suites for dynamic apr by using
counterexamples. In 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE), pages 208–219. IEEE, 2021.

[44] Amirfarhad Nilizadeh, Gary T Leavens, Xuan-Bach D Le, Corina S
Păsăreanu, and David R Cok. Exploring true test overfitting in dynamic
automated program repair using formal methods. In 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST),
pages 229–240. IEEE, 2021.

[45] Kai Pan, Sunghun Kim, and E James Whitehead. Toward an understand-
ing of bug fix patterns. Empirical Software Engineering, 14(3):286–315,
2009.

[46] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,
Michael D Ernst, Deric Pang, and Benjamin Keller. Evaluating and im-
proving fault localization. In IEEE/ACM 39th International Conference
on Software Engineering (ICSE), pages 609–620. IEEE, 2017.

[47] Alexandre Perez, Rui Abreu, and Arie van Deursen. A test-suite
diagnosability metric for spectrum-based fault localization approaches.
In Proceedings of the 39th International Conference on Software Engi-
neering, pages 654–664. IEEE Press, 2017.

[48] Yuhua Qi, X. Mao, Y. Lei, Ziying Dai, and Chengsong Wang. The
strength of random search on automated program repair. Proceedings
of the 36th International Conference on Software Engineering, 2014.

[49] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang.
The strength of random search on automated program repair. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 254–265. ACM, 2014.

[50] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis
of patch plausibility and correctness for generate-and-validate patch
generation systems. In International Symposium on Software Testing
and Analysis, pages 24–36. ACM, 2015.

[51] Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R
Prasad. Bugs. jar: a large-scale, diverse dataset of real-world java bugs.
In Proceedings of the 15th International Conference on Mining Software
Repositories, pages 10–13, 2018.

[52] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. Is the

cure worse than the disease? overfitting in automated program repair. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 532–543. ACM, 2015.

[53] Shin Hwei Tan, Jooyong Yi, Sergey Mechtaev, Abhik Roychoudhury,
et al. Codeflaws: a programming competition benchmark for evaluating
automated program repair tools. In Proceedings of the 39th International
Conference on Software Engineering Companion, pages 180–182. IEEE
Press, 2017.

[54] Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roy-
choudhury. Codeflaws: A programming competition benchmark for
evaluating automated program repair tools. In ICSE Poster, 2017. To
appear.

[55] G. Tassey. The economic impacts of inadequate infrastructure for
software testing. Planning Report, NIST, 2002.

[56] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-
Chuan Liu, Premkumar T. Devanbu, Bogdan Vasilescu, and Cindy
Rubio-González. Bugswarm: Mining and continuously growing a dataset
of reproducible failures and fixes. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 339–349, 2019.

[57] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus.
How to design a program repair bot? insights from the repairnator
project. In 40th International Conference on Software Engineering,
Track Software Engineering in Practice (SEIP), pages 1–10, 2018.

[58] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu
Nguyen. Automatic program repair with evolutionary computation.
Communications of the ACM, 53(5):109–116, 2010.

[59] Westley Weimer, Zachary P Fry, and Stephanie Forrest. Leveraging
program equivalence for adaptive program repair: Models and first
results. In Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering, pages 356–366. IEEE Press, 2013.

[60] Frank Wilcoxon. Individual comparisons by ranking methods. Biomet-
rics bulletin, 1(6):80–83, 1945.

[61] Qi Xin and Steven P Reiss. Identifying test-suite-overfitted patches
through test case generation. In International Symposium on Software
Testing and Analysis, pages 226–236. ACM, 2017.

[62] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang
Huang, and Lu Zhang. Precise condition synthesis for program repair.
In International Conference on Software Engineering, pages 416–426.
IEEE Press, 2017.

[63] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebas-
tian Lamelas, Thomas Durieux, Daniel Le Berre, and Martin Monperrus.
Nopol: Automatic repair of conditional statement bugs in java programs.
Transactions on Software Engineering, 2016.

[64] Jooyong Yi, Umair Z Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik
Roychoudhury. A feasibility study of using automated program repair
for introductory programming assignments. In Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering, pages 740–751.
ACM, 2017.

[65] Yuan Yuan and Wolfgang Banzhaf. Arja: Automated repair of java
programs via multi-objective genetic programming. CoRR, 2017.

[66] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. Boost-
ing spectrum-based fault localization using pagerank. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 261–272. ACM, 2017.

61

