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ABSTRACT

It is increasingly suggested to identify emerging software vulner-
abilities (SVs) through relevant development activities (e.g., issue
reports) to allow early warnings to open source software (OSS)
users. However, the support for the following assessment of the de-
tected SVs has not yet been explored. SV assessment characterizes
the detected SVs to prioritize limited remediation resources on the
critical ones. To fill this gap, we aim to enable early vulnerability
assessment based on SV-related issue reports (SIR). Besides, we
observe the following concerns of the existing assessment tech-
niques: 1) the assessment output lacks rationale and practical value;
2) the associations between Common Vulnerability Scoring System
(CVSS) metrics have been ignored; 3) insufficient evaluation sce-
narios and metrics. We address these concerns to enhance the prac-
ticality of our proposed early vulnerability assessment approach
(namely proEVA). Specifically, based on the observation of strong
associations between CVSS metrics, we propose a prompt-based
model to exploit such relations for CVSS metrics prediction. More-
over, we design a curriculum-learning (CL) schedule to guide the
model better learn such hidden associations during training. Aside
from the standard classification metrics adopted in existing works,
we propose two severity-aware metrics to provide a more compre-
hensive evaluation regarding the prioritization of the high-severe
SVs. Experimental results show that proEVA significantly outper-
forms the baselines in both types of metrics. We further discuss
the transferability of the prediction model regarding the upgrade
of the assessment system, an important yet overlooked evaluation
scenario in existing works. The results verify that proEVA is more
efficient and flexible in migrating to different assessment systems.
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1 INTRODUCTION

Nowadays, software vulnerabilities (SVs) continue to be discovered
and exploited, leading to an explosive increase in cyber-attacks
and data breaches. Given the limited resources in practice (e.g.,
lack of manpower), it is important to prioritize the remediation of
critical SVs (i.e., those tend to pose great security risks) [23, 45].
Especially, commercial companies are obligated to comply with
security Service Level Agreements (SLA) [20, 23], which mandate
the mitigation of critical SVs within a specified timeframe (e.g., 15
days). SV assessment is a crucial phase in the SV management lifecy-
cle [30, 33, 45], which unveils the characteristics of SVs detected in
the discovery phase to locate the potential “hot spots", and supports
to devise an optimal prioritization plan for the remediation phase.
Common Vulnerability Scoring System (CVSS) [3] is the “de facto"
standard for SV assessment [22], which measures the severity of
an SV from multiple aspects (see Section 2.1 for more details).

Presently, most practitioners rely on National Vulnerability Data-
base (NVD) as the primary source for newly disclosed SVs and
reference the CVSS scores provided by NVD to devise the remedia-
tion schedule [40]. However, there are two dangerous delays before
the CVSS score becomes available in such practice, which provide
window of opportunity for attackers: ❶ The CVSS score provided by
NVD is manually analyzed by security experts, causing a delay to its
publishment after the SV disclosure. Such delay could be fatal since
upon the disclosure of an SV, the usage of exploits can increase by
up to five orders of magnitude [26, 31]. Our preliminary study (see
Section 2.2) reveals that this delay has been increasing since 2019
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and reaches a median of 8 days in 2023. ❷ Another delay comes
from the disclosure process of SVs. The widely adopted coordinated
vulnerability disclosure (CVD) [1, 12] requires open source software
(OSS) maintainers to first fix the SV privately before public disclo-
sure. However, several recent studies [40, 59, 63, 72] have revealed
that, in practice, the associated development activities (e.g., issue
reporting, patching) may leak sensitive SV information before pub-
lic disclosure. This prompts the development of early identification
techniques to help practitioners sense the threats and take mitiga-
tions in time instead of waiting for the public disclosure. However,
the existing approaches [59, 62, 63] only detect the existence of SVs
(e.g., through associated issues), but do not automate the following
assessment. It would still cost practitioners considerable time and
efforts to manually assess the numerous detected SVs before taking
effective mitigation, compromising the value of early remediation.

Most of the existing SV assessment approaches are based on the
SV descriptions from NVD [39, 45, 48]. However, such curated de-
scriptions are not available until public disclosure. In this study, we
take a step further to automate the assessment under the scenario of
early remediation, aiming to close the disclosure delay. Specifically,
we build assessment model based on the SV-related issue reports
(SIR). Besides, in a recent survey regarding SV assessment, Le et
al. [45] conclude that SIRs have been unexplored and encourage
future works to investigate IR-based assessment since IRs usually
contain more detailed SV information (e.g., steps to reproduce) than
the summarized descriptions from NVD.

Furthermore, we observe several practical concerns of the exist-
ing assessment methods that need to be addressed: ❶ According
to the official specification document of CVSS [6], the severity
score/rating should always be displayed with the vector string
(i.e., a formatted text string recording the value assigned to each
metric). To assess an SV, analysts assign each CVSS metric to pro-
duce a vector string. Then, the severity score (which can be further
mapped into the qualitative rating) is calculated based on the as-
signed metrics using the standard equations [6]. Several existing
works [34, 39, 44, 68] directly predict the severity rating while ne-
glecting the vector string. Without the detailed metric values, the
severity rating alone lacks rationale and practical value. For exam-
ple, considering an SV with high impact but is hard to be exploited
(e.g., requires certain privileges of the target system), it won’t be
rated with CRITICAL severity, but practitioners may still want
to prioritize its remediation given the specific contexts. ❷ Other
works [46–48] take the prediction of vector string into account.
However, they typically regard the prediction as separated classifi-
cation tasks of each CVSSmetric but fail to consider the associations
between metrics. Our preliminary study (see Section 2.3) provides
empirical evidence of potential associations between CVSS metrics,
which could benefit the automation of SV assessment. This finding
indicates that the assessment approach should exploit such associa-
tions and predict the vector string as a whole rather than simply
combining the separated predictions of each metric. ❸ Most of the
existing assessment approaches [39, 44–48, 65] are based on the
CVSS v2 standard [45], which is deprecated in practice. The newer
v3, introduced in 2015 to address the limitations of prior versions
(e.g., inaccurate severity rating [52]), has become the current stan-
dard. For example, NVD, one of the most widely used SV databases,

has finished evolving from CVSS v2 to v3 and announced the re-
tirement of v2 [16]. Thus, the practical value of existing assessment
approaches is very limited. More importantly, this draws another
important aspect of measuring the practicalness of an assessment
model, i.e., the transferability to migrate across different assessment
systems. Given the fact that the assessment system (e.g., CVSS) is
in continuous evolution [16] or requires customization according
to specific application contexts [14, 23], a practical model should be
able to transfer efficiently and flexibly. However, to the best of our
knowledge, none of the existing works discuss about this aspect.
❹ The primary objective of SV assessment is to prioritize the lim-
ited remediation resource on the most critical SVs [45]. However,
the evaluation metrics used in the existing works [39, 46–48], such
as F1-score and Matthews Correlation Coefficient (MCC) [54], are
standard measures for classification tasks and may not accurately
reflect the prioritization performances in real-world scenarios.

In this study, we propose an approach (namely proEVA) towards
more practical automation of SV assessment by enabling IR-based
EarlyVulnerabilityAssessment and addressing the aforementioned
concerns. We first conduct a preliminary study to investigate the
potential associations between CVSS metrics. Based on the observa-
tions of strong associations, we propose a prompt-based model to
exploit such associations to automate the SV assessment. Moreover,
to reinforce the learning of the associations during model training,
we further incorporate partial metrics predictions as auxiliary tasks
and design a curriculum-learning (CL) [69] based training schedule.
Specifically, in each epoch, we mask several metrics and train the
model to predict them based on the left ones. The number of masked
metrics (which reflects the difficulty of the training task) increases
as the training progresses. We build the experiment dataset by cross-
referencing the SV data from NVD and IR data from GitHub, which
consists of 7,037 SV-related IRs from 2,431 repositories. Regarding
the evaluation metrics, aside from the standard classification met-
rics (e.g., F1-score) adopted in the existing studies, we propose two
severity-aware metrics which focus on measuring the assessment
performance in prioritizing high-severe SVs. Our approach outper-
forms the baselines significantly on both classification metrics and
the proposed severity-aware metrics, validating its effectiveness
in facilitating early SV assessment. Moreover, we further conduct
experiments to investigate the model transferability regarding the
upgrade of the assessment system. Specifically, we discuss two spe-
cific applications under this practical scenario, i.e., transferring an
existing model to assess the future SVs and re-asses the old SVs ac-
cording to the new standard. The results demonstrate that proEVA
is more efficient and flexible in knowledge transferring, suggesting
a larger practical value over the baselines.
• To the best of our knowledge, we are the first to introduce the task
of IR-based SV assessment to enable early severity estimation.
We collect a large SIR dataset (i.e., 7,037 IRs from 2,431 OSS)
by cross-referencing CVEs from NVD and IRs from GitHub. We
automate the SV assessment under the modern CVSS v3 standard.
We provide a replication package of our work [24].

• We demystify the associations between CVSS metrics with empir-
ical evidence and further propose a prompt-based approach that
explicitly explores such associations to improve SV assessment
performance. Experimental results show that proEVA outper-
forms baselines substantially.
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• We are the first to discuss the practical scenario regarding the
upgrade of the assessment system and identify two specific ap-
plications. We investigate the model transferability and verify
that proEVA is more efficient and flexible.

2 MOTIVATION AND PRELIMINARIES

In this section, we first introduce the background of CVSS. Then,
we provide a motivating example, and conduct a preliminary study.

2.1 Common Vulnerability Scoring System

Common Vulnerability Scoring System (CVSS) is the de facto stan-
dard for SV assessment [3]. CVSS consists of three metric groups:
1) Base metrics for intrinsic properties of an SV; 2) Temporal metrics
for characteristics that evolve over the SV lifetime; 3) Environmen-
tal metrics for characteristics of an SV that are relevant and unique
to a particular user environments. Public assessments of SV sever-
ity (e.g., NVD [15], vulnDB [21]) refer exclusively to Base metrics,
which represent the innate characteristics of SVs that are constant
over time and across specific user environments [6]. Hence, we
also focus on the prediction of the Base metrics in our study as the
other two groups of metrics are unlikely to be obtained solely from
the project artifacts (e.g., IR). Table 1 lists the eight specific metrics
in the Base group, which characterize SVs from two aspects (i.e.,
exploitability and impact).

2.2 Motivating Example

Figure 1 presents a motivating example to demonstrate the necessi-
ties of taking early assessment. CVE-2022-31267 [5] is an “Improper
Privilege Management” SV that affects Gitblit [10], i.e., a popular
(2.2k GitHub stars) open source and pure Java solution for manag-
ing Git repositories. This SV allows attackers to create new users
or gain higher privileges by injecting malicious characters when
modifying their own information.

This SV was first posted through a public GitHub issue report
(IR) [11], and was not officially disclosed as a CVE record [5] until 82
days later. As shown in Figure 1, the issue reporting this SV leaked
sensitive security information, e.g., the vulnerable behaviour and
the steps to reproduce, allowing malicious actors to launch attacks
when the general public was unprepared. The coordinated vulner-
ability disclosure (CVD) process suggests to keep SV information
private to allow maintainers conduct necessary mitigation until the
official disclosure. However, in practice (just like this example), the
stakeholders may not strictly follow the recommended process (due
to a lack of security expertise or sense) by reporting and discussing
SVs in a public channel, leaving a window-of-opportunity wide open
for attackers [40, 59, 63].

Table 1: Base metric group of CVSS

Category Metric Names Metric Values

Exploitability

Attack Vector (AV) Network, Adjacent, Local, Physical
Attack Complexity (AC) Low, High
Privileges Required (PR) None, Low, High
User Interaction (UI) None, Required
Scope (S) Unchanged, Changed

Impact
Confidentiality Impact (C) None, Low, High
Integrity Impact (I) None, Low, High
Availability Impact (A) None, Low, High

- Severity Low, Medium, High, Critical

Feb 28, 2022Report Date:

A user privilege elevation vulnerability in the latest version of gitblitIssue Title:

Principle of the vulnerability
Gitblit uses file storage to manage user information, passwords,
account types, and permissions. When a user with low privileges
modifies their information, if they use line breaks and space characters,
they can create new users or assign higher privileges.
The relevant code logic is in ...
The reason for the problem is that gitblit does not do a checksum on
the characters entered by the user, and malicious characters are
printed directly in the file, causing gitblit to parse the file incorrectly
when reading it.
…
Vulnerability recurrence
1. The attacker has an account with no privileges, username test,

password test1, and privileges None, and the current users.conf is.
<Code Snippet>

2. After logging in, click on Profile->Preferences in order
<Screenshot>

…

Issue Body:

May 21, 2022Disclosure Date:

CVE-2022-31267CVE ID:

Gitblit 1.9.2 allows privilege escalation via the Config User Service: a
control character can be placed in a profile data field, such as an
emailAddress%3Atext 'attacker@example.com\n\trole = "#admin"'
value.

CVE Description:

Init Analysis Date:                          June 07, 2022

Vector String:                                  CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

CVSS v3.1 Base Score:                   9.8 (CRITICAL)

CWE-ID:                                            CWE-269 (Improper Privilege Management)

~82
days

~16
days

Figure 1: Motivating Example of CVE-2022-31267. The NVD

disclosure is 82 days after the initial issue report, and there is

another 16-days delay before the CVSS scores are available.

Moreover, after the disclosure of the SV, it took another 16 days
for NVD analysts to manually assign the CVSS scores. During this
gap, it could be difficult for practitioners to decide the appropriate
remediation measures without referencing the assessment results,
while the risks of SVs being exploited could increase explosively
upon the disclosure [31]. Using our collected SV data from NVD
(see Section 4.1), we observe an increase in manual analysis delay
since 2019, i.e., from 2.7 days (2019) to 8.2 days (2023) in median.

Recent studies [40, 59, 63] has revealed the necessities of taking
early remediation and taken the first step to develop identifica-
tion techniques to enable early warnings. We aim to take a step
further to enable early assessment of the detected SV-related IRs,
without which practitioners still couldn’t take effective mitigation
promptly. Considering a software vendor whose products rely on
multiple OSS components, the vendor monitors the emerging SVs
in these OSS by deploying the existing early identification tech-
niques [59, 63] to detect the newly posted SIRs. The vendor can
receive early warnings of the leaked SVs (like the one shown in the
motivating example). However, it is impossible to mitigate all the
identified SVs in a timely manner given the limited resources, e.g., a
typical organization is only capable of mitigating one out of the ten
identified SVs [23]. To minimize the overall risks and comply with
the security Service Level Agreement (SLA) [20], the vendor has to
prioritize the remediation of serious SVs. The SV assessment results,
which characterize SVs from aspects including exploitability and
impact, are the basis to determine such priorities [45]. The sever-
ity of the SV presented in our motivating example is CRITICAL
(with a score of 9.8), suggesting a high priority to take effective
mitigation. Specifically, according to the vector string, it can be
easily exploited (i.e., through network access with low complexity,
requiring no privileges or user interaction), while causing huge im-
pacts (i.e., high across all three aspects). However, to pick up such
hot spots, the vendor currently still need to manually assess all the
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Figure 3: MCA results of the eight CVSS metrics

identified SVs, which is time-consuming and leads to large delay be-
fore taking effective mitigation. Automating the assessment of the
identified SVs can save considerable manual efforts, and the vendor
can directly reference the assessment results to devise the optimal
remediation priorities. It is important for automated assessment
approaches to provide the vector string (i.e., values of the detailed
CVSS metrics) instead of directly predicting the overall severity
rating/score. The rating/score alone lacks rationale and practical
value, since it is one summarized reflection of the SV characteristics
(i.e., calculated based on the vector string). The vector string, as the
raw SV assessment result, explains how the score is derived, and
more importantly supports the customization of the prioritization.
For example, to provide more precise priorities by considering SV
characteristics specific to the vendor’s environment, the vendor can
alter the calculation of the final severity score by including extra
Environmental metrics (see Section 2.1).

2.3 Preliminary Study

To the best of our knowledge, most of the existing works [46–
48] regard the prediction of CVSS metrics (listed in Table 1) as
independent tasks, and thus adopt separated classifiers. However,
we argue that CVSS metrics (i.e., different characteristics of an SV)
are not independent and the hidden associations can benefit the
prediction model. We conduct a preliminary study to explore the
potential associations between CVSS metrics.

First, we observe that the vector strings (i.e., the combination
of CVSS metrics values) used in practice are limited, and heavily
biased toward a few frequently used ones. In our collected dataset
(see Section 4.1), there are 208 different vector strings, which is far
less than the theoretically (the independent assumption adopted
by the existing studies) possible combinations, i.e., 2,592. More-
over, we observe that 72% of vector strings only correspond to less
than 5 CVEs (see Figure 2), while the three most frequently used
vector strings account for 35% of the CVEs in collected dataset.

The above findings show that vector strings frequently used in
practice are squeezed in a very limited subspace of the theoreti-
cally eight-dimensional space. By exploring possible associations
between metrics and predicting the vector string as a whole may
help the model narrow down the search space, thus benefiting the
performance.

We further apply Multiple Correspondence Analysis (MCA) [37,
38] to unveil the specific associations among CVSS metrics. MCA is
amultivariate analysismethod that has beenwidely utilized to study
and visualize the relations among categorical variables [25, 37]. Fig-
ure 3 visualizes the projections of eight CVSS metrics on the two
largest components (i.e., the eigenspace) produced by MCA. Each
point refers to one specific value of a metric (differentiated by differ-
ent colors), and is denoted as {metric}_{value} in the figure. Refer to
Table 1 for the specific metric name and value corresponding to the
abbreviations presented in the figure. The proximity of the points
represents the strength of the associations among the CVSS metrics.
Thus, the highly associated metric values are now visualized as
areas of centralized points. For example, the three Impact metrics
(i.e., Confidentiality, Integrity, Availability) appear to often share the
same value, which suggests that the exploit of an SV tends to result
in similar levels of impact across these three aspects to the target
system. We further perform the chi-square test between the pairs of
Impact metrics, all of which turn out to exist statistically significant
associations (i.e., 𝑝 < 0.005). Another set of strongly associated met-
ric values is S:C/PR:L/AV:L. We further calculate the confidence of
the association rule S:C/AV:L→PR:L (i.e., 0.85), which indicates that
if an SV can only be exploited through local access (i.e., AV:L) and
can affect other system components (i.e., S:C), then the exploitation
is likely (i.e., 85%) to require only low-level privileges (i.e., PR:L).

The above analysis shows that CVSS metrics are not completely
independent. This observation motivates us to build an assess-
ment model that is able to explore the hidden associations between
metrics and predict the vector string as a whole (i.e., predict the
combination of CVSS metrics values).

3 APPROACH

In this section, we introduce our approach, namely proEVA.We first
present the details of the proposed model architecture. Then, we in-
troduce our designed curriculum learning based training schedule.

3.1 Model Architecture

Among the assessment approaches [46–48, 65] that take the vector
string into account, the majority build separated machine learn-
ing (ML) classifiers for each metric. There is one recent work by
Le et al. [47] that proposes a deep learning (DL) model to auto-
mate the commit-level SV assessment. Specially, they speculate
that the predictions of CVSS metrics may share common patterns
and thus adopt a shared encoder to generate unified commit fea-
tures for metric-specific classifiers following the multitask learning
paradigm [27]. Their model outperforms the existing ML-based
techniques. However, beyond the feature sharing, we argue the
prediction of the vector string can further benefit from considering
the inherent associations between CVSS metrics (see Section 2.3).

To propose an approach capable of exploring such inherent as-
sociations, we do not design our own dedicated model. Instead,
we observe an opportunity in utilizing the general and standard
prompt tuning [51] of pretrained language models (PLM) to tackle
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input prompt

Figure 4: Comparisons of existing methods and our approach

this problem. To better demonstrate the differences between our
approach and the exiting ones, we convert the existing techniques
accordingly by replacing the encoder into PLM while maintain-
ing the exact model architecture. Specifically, Figure 4(a) and (b)
present two types of existing approaches, i.e., separated model for
each metric [46, 48] and metric-specific classifiers attached upon
a shared encoder [47], respectively. The key drawback of these
two approaches is that there is no interaction between the feature
vectors (either from separated models or shared across metrics)
used for predicting different CVSS metrics. Figure 4(c) presents
the general architecture of our prompt-based approach. We add a
natural language prompt to the original input. Each CVSS metric
corresponds to a [MASK] token (i.e., the special token that denotes
the token being masked in the masked language modeling task [29])
in the prompt and utilizes its hidden vector for prediction. In this
way, the feature vectors for predicting metrics naturally interact
with each other, since the multi-head self-attention mechanism of
the Transformer layer [67] (i.e., the building block of PLMs) effec-
tively enables semantic interactions between all sequence tokens.
Note that the prompt tuning itself also brings benefits that are
not specific to this task [51], e.g., unleashing the full power of the
PLM and improving transferability. In Section 6.1, we discuss that
the benefits in transferability are also essential for developing a
practical assessment model.

We further introduce the details of proEVA and demonstrate
its advantages over the existing techniques. Figure 5 presents the
model architecture of proEVA, which is composed of:
Prompt Template. First, we reconstruct the input by adding a
natural language prompt, denoted as 𝑥𝑝𝑟𝑜𝑚𝑝𝑡 = T (𝑥𝑖𝑛). The
PLM is later leveraged to auto-complete the the masked tokens
in the prompt. The prompt template T that used to rewrite the
input for our SV assessment task can be formulated as: T (𝑥𝑖𝑛) =
“ ⟨𝑥𝑖𝑛⟩ ” + “ The vulnerability can be exploited via [MASK]𝐴𝑉 access
with [MASK]𝐴𝐶 complexity. The attack requires [MASK]𝑃𝑅 privi-
leges, [MASK]𝑈 𝐼 user interaction, and [MASK]𝑆 scope. The vulnera-
bility can cause [MASK]𝐶 confidentiality impact, [MASK]𝐼 integrity
impact, and [MASK]𝐴 availability impact. The severity of this vul-
nerability is [MASK]𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 .” The input slot ⟨𝑥𝑖𝑛⟩ is reserved for
the original input (i.e., SV-related IR used for assessment), while the
following answer slots (i.e., using [MASK] token as the placeholder)
are to be filled by the model with predicted label words (i.e., a group
of selected tokens from the PLM vocabulary that will be further
mapped into classification labels). We design the prompt based on

manual summarization of the linguistic patterns found in relevant
descriptions from the official CVSS specification document [6].
Transformer Encoder. The PLM auto-completes the prompt by
filling in the blank (i.e., predicting the masked tokens) based on the
contextual information retrieved by the multi-head self-attention
mechanism of the Transformer layer. Specifically, each input token
is first mapped through the embedding layer to get the initial vector
representation ℎ0

𝑖
∈ R𝑑 . The vector representations of all tokens

output by layer 𝑙 can be packed into a matrix, denoted as 𝐻 𝑙 . For
each layer (there are 𝐿 layers in an encoder), the output representa-
tions 𝐻 from the previous layer are linearly projected into queries
𝑄 , keys 𝐾 , and values𝑉 through corresponding projection matrices
𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑 , respectively. The attention mechanism can
be generally described as mapping a query and a set of key-value
pairs to an output, i.e., the sum of the values weighted by the degree
of compatibility between the corresponding key and the query [67].

𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 ,𝑉 = 𝐻𝑊𝑉

Attention (𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇
√
𝑑

)
𝑉

(1)

where the compatibility is measured by dot-product𝑄𝐾𝑇 , scaled by
dimension 1√

𝑑
, and further normalized using the softmax function.

Figure 5 illustrates how we manage to explore the associations
between CVSS metrics using the attention mechanism. Specifically,
in this demonstration, the metric AV interacts with metric A at the
semantic level through dot-product 𝑞𝐴𝑉 · 𝑘𝑇

𝐴
, the result of which is

used to determine the importance of metric A to metric AV. Since
there is no clear causal relationship between CVSS metrics, we
choose to use bi-directional PLMs rather than the autoregressive
(i.e., left-to-right) ones, which allow each metric to interact with
other metrics from both directions [13, 51, 60].

In specific implementations, each Transformer layer repeats
the above attention mechanism 𝑡 times (i.e., the so-called multi-
head) to improve performance. The concatenated outputs of the
multi-head self-attention mechanism are further passed through a
Feed-Forward module to get the final output of the current layer.
Masked Language Modeling (MLM) Head. Next, we introduce
how to infer the predicted class based on the label words filled by
the PLM. For the classification of each CVSS metric, we denote the
mapping from the label space Y to words in the PLM vocabulary
V as M : Y → V . We adopt the simple one-to-one mapping,
i.e., using the exact metric value word as the only label word of
that category (e.g., word Network for value Network of the AV
metric). Table 1 lists the possible values of each CVSS metric. With
the prompt template T and the mapping M, we reformulate the
classification task into an MLM problem [35], and the probability
of predicting class 𝑦 ∈ Y is now modeled as:

𝑝 (𝑦 | 𝑥𝑖𝑛) = 𝑝
(
[MASK] = M (𝑦) | 𝑥𝑝𝑟𝑜𝑚𝑝𝑡

)
=

exp
(
𝑤M(𝑦)ℎ [MASK]

)
∑
𝑦
′ ∈Y exp

(
𝑤M(𝑦′ )ℎ [MASK]

) (2)

where ℎ [MASK] is the hidden vector of the token [MASK] corre-
sponding to the target CVSS metric and 𝑤𝑣 denotes the weights
vector in the MLM head that corresponds to token 𝑣 ∈ V . Different
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Figure 5: Model architecture of proEVA
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Figure 6: Partial metrics prediction based CL strategy

from the finetuning setting where the classification (CLS) head
is trained from scratch, our approach reuses the MLM head from
the pretraining stage by narrowing down the label space from the
entire vocabulary V to task-specific label words M(Y). Thus, our
approach does not introduce any new task-specific parameters.

Based on the class probability defined in Eq. 2, we adopt the cross-
entropy as loss function. Specifically, we also follow the multitask
learning paradigm [27] to simultaneously predict all CVSS metrics
using a shared model. Thus, the model is trained to optimize the
average cross-entropy loss of all CVSS metrics. Since the prediction
of severity rating also provides supervision that benefits model
training, we include it as a training objective following [46, 47].
In evaluation, however, we only use the severity rating calculated
based on the predicted vector string.

𝑙𝑜𝑠𝑠 =
∑︁
𝑚∈𝑀

𝑙𝑜𝑠𝑠𝑚, 𝑀 = {𝐴𝑉,𝐴𝐶, 𝑃𝑅,𝑈 𝐼, 𝑆,𝐶, 𝐼 , 𝐴, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦}

𝑙𝑜𝑠𝑠𝑚 = −
∑︁
𝑦∈Y𝑚

𝑞𝑚 (𝑦 | 𝑥𝑖𝑛) log (𝑝𝑚 (𝑦 | 𝑥𝑖𝑛)) ,

𝑞𝑚 (𝑦 | 𝑥𝑖𝑛) = 1 𝑖 𝑓 𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠 𝑒𝑙𝑠𝑒 0

(3)

3.2 Curriculum Learning Based Model Training

To reinforce the model to learn associations between CVSS metrics,
we further propose a curriculum-learning (CL) [69] based training
strategy. proEVA aims to predict the vector string as a whole (i.e.,
simultaneously predict all CVSS metrics) based on the given SIR.
However, instead of optimizing this single task throughout the
entire training process, we introduce a set of additional auxiliary
training tasks and design a schedule to guide the model training.
Specifically, we incorporate the partial CVSS metrics prediction
tasks into training. As shown in Figure 6, aside from the SIR, the

true values of part of the CVSS metrics (denoted as Known Metrics)
are also provided to the model as inputs. The model is trained to
predict other metrics (denoted as Metrics to Predict) based on the
known ones and the given SIR. We further introduce howwe design
the training schedule, using a set of partial metrics prediction tasks,
to guide the model in learning the associations between metrics.

Learning to predict all CVSSmetrics simultaneously is a consider-
ably challenging task. Directly training on this multi-task learning
objective may result in poor performance or slow convergence [69].
Following the “easy to hard” spirit of CL (imitating human curric-
ula) [69], we design a schedule to gradually guide model training
towards the target objective (i.e., predicting all metrics) through a
set of auxiliary tasks (i.e., predicting partial metrics). Specifically,
we start the training by learning to predict only one metric. With
the training progresses, we gradually shift to more challenging
tasks by increasing the number of metrics for model to predict (i.e.,
decreasing the number of known metrics provided to the model).

In the detailed implementation, the number of metrics to predict
𝑛 is an increasing function of the current training epoch 𝑒 , denoted
as 𝑛 = 𝑓 (𝑒). As the gradient calculation and model update are done
on a batch-wise basis, samples within a training batch share the
same “fill in the blank” task setting. For each batch in epoch 𝑒 , we
randomly mask 𝑓 (𝑒) metrics to predict on the fly during training.
For themasked and the left metrics, we fill the corresponding slots in
the prompt with [MASK] and the corresponding true metric value,
respectively. The designed training strategy brings the following
benefits: 1) the incorporated auxiliary tasks (i.e., partial metrics
prediction) explicitly force the model to exploit the associations
between metrics, and enrich the training objectives to prevent
model from over-fitting. 2) the CL schedule guides the model to
learn more effectively and efficiently.

4 EXPERIMENT SETUP

In this section, we first introduce our data collection procedure.
Then, we describe our experiment settings.

4.1 Data Collection

To automate IR-based early SV assessment, we build a dataset uti-
lizing both IR information from a set of GitHub OSS and SV in-
formation from two well-known SV databases (i.e., NVD [15] and
OSV [18]). Similar to a recent study [59], we use IRs referenced
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by CVE (i.e., listed in external references) as a proxy of SV-related
IRs (SIR). We first collect SV relevant information (e.g., GitHub IR
links, CVSS metrics) from SV databases. Then, we crawl original IR
information and label them with the corresponding CVSS metrics.
STEP 1: Collect SV-relevant information. We first collect all
CVE records from NVD and OSV, respectively. OSV is a recently
popular OSS SV database maintained by Google [18]. Note that
NVD and OSV can provide different SV metadata (e.g., external
references, CVSS metrics), as these data are curated by their own
security analysts. We only use OSV as an additional source for
completing external references, while extract all other SV metadata
from NVD to ensure consistency. We merge the external references
from two databases using CVE ID as the unified SV identifier, and
retrieve GitHub IR links with regular expressions.
STEP 2: Collect original issue report information. We further
collect IR data (e.g., title and body) based on the extracted IR links.
Specially, since we aim to enable early severity estimation at the
very beginning of the SV reporting, we collect the original IR data
fromGHArchive [9] rather than the current one recorded byGitHub.
Finally, we link each crawled IR with the corresponding CVE record
and label it with the CVSS v3 metrics provided by NVD.

Different from the existing SV assessment datasets [39, 44, 48, 65]
that map CVE descriptions to CVSS metrics, we further retrieve
the associated IR that first reports this SV as we aim to enable early
severity estimation. Besides, we automate SV assessment based on
the modern CVSS v3 metrics instead of the deprecated v2 metrics.

4.2 Data Preparation

We further process the collected dataset with following two steps:
STEP 1: Data cleaning.We exclude the following IRs from experi-
ments: 1) IRs with both missing titles and bodies. 2) IRs whose cor-
responding CVE records lack valid CVSS v3 metrics. NVD does not
give CVSS v3 scores to SVs that were analyzed before Dec. 20, 2015,
except in some special cases where the SVs are re-analyzed [22].
Finally, our dataset consists of 7,037 IRs from 2,431 OSS projects.
STEP 2: Processing of issue reports.We combine the IR title and
body (i.e., the first comment) as the model input, since both of them
contain valuable information of the reported SV. The title usually
provides a summary of the key information (e.g., the SV type), while
more details (e.g., the vulnerable behaviour, proof-of-concept) are
described in the body. In addition, IRs often embed with stack traces,
URLs and other noises aside from the natural language descriptions.
To clean the IRs, we utilize regular expressions to replace these
special tokens into specific tags (e.g., ERRORTAG).

4.3 Experiment Setting

The experimental environment is a server with the NVIDIA GTX
3090 GPU, Intel Xeon 6226R CPU, running Ubuntu OS.
Implementation Details.We build and evaluate our SV assess-
ment model based on the modern CVSS v3 standard. We use the
pre-trained BERT weights from the Hugging Face Transformer
library [2] to initialize our model. We use AdamW [53] as the op-
timizer. The learning rate is set to 5𝑒−5 following [29]. To avoid
overfitting, we apply dropout [66] with the drop rate set to 0.1 and
early stopping with patience set to 10. The text sequence of the IR
description is truncated by 512 tokens (i.e., the maximum input of
the PLM model), which covers 94% cases in our dataset.

Baselines.We adopt the following machine learning (ML) classi-
fiers as our baselines: Random Forest (RF), Support Vector Machine
(SVM), Logistic Regression (LR), K-Nearest Neighbors (KNN), XG-
Boost (XGB), and Light Gradient Boosting Machine (LGBM). These
methods are widely adopted in the related works regarding SV
assessment [47, 48, 65] and IR-based early SV identification [59, 63].
For the above ML baselines, we follow [47, 59, 65] to apply bag-
of-words (BoW) as features and build the vocabulary of 10k most
frequent tokens. We also tune the hyper-parameter (refer to our
online appendix [24] for the detailed settings) of these ML baselines.
The parameters are the same to those used in prior studies [46, 47].
For each ML baseline, we select the optimal hyper-parameter by
performing grid search on the validation set and report the test
performance under such parameter setting.

We also include the following deep learning (DL) approaches
as our neural baselines: CNN and Bi-LSTM. Han et al. [39] and
Le et al. [47] propose CNN-based model to automate SV assessment
based on CVE descriptions and SV-inducing commits, respectively.
They report better performances against ML baselines. Bi-LSTM is
another commonly adopted approach in recent software security
related tasks, e.g., patch identification [73], SV type prediction [58].
For neural baselines, we follow Le et al. [47] to use a shared encoder
to get the input embedding, attached with separated classification
layers for each CVSS metric. We adopt the same hyper-parameters
from the existing works [47, 58] to set up these models. Specifically,
we also limit the vocabulary size to 10K and use the pretrained
300-dimensional Glove word embedding [61].
Evaluation Metrics. To evaluate the performance of SV assess-
ment, we follow the existing studies [46–48] to adopt classification
metrics including weighted F1, macro F1, andMatthews Correlation
Coefficient (MCC) [36]. Note that MCC is not directly proportional
to F1-scores. We report these metrics for severity rating calculated
by the predicted vector string. Existing works [46–48] evaluate with
the predicted severity rating, which is impractical (see Section 1).

Although the existing SV assessment studies all adopt classifica-
tion metrics to measure model performance, SV assessment itself is
not a typical classification task. An important goal of SV assessment
is to prioritize the remediation of critical SVs, so that given limited
resources, the overall threats to the systems can be mitigated to
the greatest extent [45]. The classification metrics alone may not
comprehensively reflect the assessment performance in practice.
For example, considering a target SV with critical severity (i.e.,
the highest rating that requires the most priority), model A and B
predict its severity as high and low, respectively. Although both
models make wrong classifications by underestimating the severity,
we argue model A is better in practice as it suggests a closer priority
to the ground truth. Besides, it is important to also evaluate with
the continuous severity scores aside from the discrete severity rat-
ings (derived from the scores), which are of bigger practical value
regarding the prioritization scenario. Furthermore, faced with the
sheer number of newly discovered SVs, a typical organization in
practice only has the capacity to remediate one out of every ten
SVs [23]. It is important to take such a real-world resource limit
(e.g., 10% of the SVs) into account in evaluation.

To address the above concerns, we propose to evaluate with
severity scores. Specifically, we use the true severity score of an
SV as the proxy to quantify its threats to the system and use the
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predicted severity score to prioritize (i.e., larger the score, higher
the priority) its remediation. Besides, we also propose to evaluate
under a real-world resource limit, i.e., comparing the overall threats
that can be mitigated given the limited available resource. We find
that such an evaluation setting is similar to that of effort-aware
defect prediction, which aims at finding more software defects
with limited code inspection budget [42, 43, 55, 56]. Thus, we adapt
the corresponding evaluation metrics used in these studies to pro-
pose two severity-aware metrics. We define the severity-aware
metrics based on the concept of Alberg diagram [55], an example
of which under the context of SV assessment is shown in Figure 7.
The diagram illustrates the relationship between the volume of
threats mitigated (i.e., measured by the sum of true severity scores
of mitigated SVs in 𝑦-axis) and the remediation resource costed (i.e.,
measured by the number of mitigated SVs in 𝑥-axis). Except for the
model to be evaluated, two auxiliary models (i.e., the optimal and
the worst) are also included, which prioritize the remediation of SVs
in descending and ascending order according to the true severity
scores, respectively. The optimal and worst model are used for nor-
malization by acting as the upper and the lower bound, respectively.
We further define the following two severity-aware metrics:
• 𝑀𝑇@𝐿 measures the volume of Mitigated Threats when the
first 𝐿 SVs is remediated. It can be computed as 𝑀𝑇@𝐿 =
𝑦𝑝𝑟𝑒𝑑−𝑦𝑤𝑜𝑟𝑠𝑡

𝑦𝑜𝑝𝑡−𝑦𝑤𝑜𝑟𝑠𝑡
, where𝑦𝑝𝑟𝑒𝑑 ,𝑦𝑤𝑜𝑟𝑠𝑡 , and𝑦𝑜𝑝𝑡 represent the overall

threats mitigated at 𝑥 = 𝐿 of the prediction model to be evaluated,
the worst model, and the optimal model, respectively. A larger
𝑀𝑇@𝐿 indicates that more severe SVs could be mitigated within
the given resource limit. Specifically, we investigate with𝑀𝑇@5%
and𝑀𝑇@10% in our study, as mitigating 10% of the discovered
SVs is reported as the typical resource limit for cybersecurity
industry in practice [23].

• 𝐴𝑈𝐶𝑀𝑇@𝐿 also measures the mitigated threats under a given
resource limit (i.e., 𝐿). However, different from𝑀𝑇@𝐿 that eval-
uates the performance at a single point (i.e., 𝑦 at 𝐿), 𝐴𝑈𝐶𝑀𝑇@𝐿
evaluates the overall performance within the resource limit (i.e.,
integral of 𝑦 at 𝑥 ≤ 𝐿, equals to the Area Under Curve). It is
defined as 𝐴𝑈𝐶𝑀𝑇@𝐿 =

𝐴𝑝𝑟𝑒𝑑−𝐴𝑤𝑜𝑟𝑠𝑡

𝐴𝑜𝑝𝑡 −𝐴𝑤𝑜𝑟𝑠𝑡
, similar to 𝑀𝑇@𝐿 but

changing the mitigated threats 𝑦 into the area under curve 𝐴.
Larger the 𝐴𝑈𝐶𝑀𝑇@𝐿, smaller the performance difference be-
tween the prediction model and the optimal one. Same to the
resource limit considered for𝑀𝑇@𝐿, we calculate 𝐴𝑈𝐶𝑀𝑇@5%
and 𝐴𝑈𝐶𝑀𝑇@10%.

5 EXPERIMENT RESULTS

In the experiment, we aim to answer the following two RQs:
• RQ1: How effective is proEVA compared to baselines for

IR-based early SV assessment?

• RQ2: How effective are the key designs of proEVA?

5.1 RQ1. The Effectiveness of proEVA

Method. To verify the effectiveness of proEVA in IR-based early
SV assessment, we compare its performance with both ML and
DL baselines (see Section 4.3) using the SIR dataset collected in
Section 4.2. We split the collected dataset into train set, validation
set, and test set with a ratio of 8:1:1. The dataset is divided chrono-
logically following the existing SV assessment works [47, 48, 65].
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Figure 7: An example of the relationship between the percent-

age of the volume of mitigated threats and the percentage of

the number of mitigated SVs.

Table 2: The performance comparisons between proEVA and

baselines for IR-based early SV assessment

Model

Severity Rating Severity Score

F1-W F1-M MCC MT (5%,10%) AUCMT (5%,10%)

RF 0.498 0.490 0.314 0.599, 0.629 0.656, 0.638
SVM 0.455 0.446 0.198 0.572, 0.638 0.516, 0.596
LR 0.495 0.497 0.296 0.588, 0.654 0.565, 0.615
KNN 0.452 0.442 0.170 0.692, 0.675 0.738, 0.693
XGB 0.551 0.541 0.357 0.660, 0.667 0.615, 0.652
LGBM 0.520 0.515 0.319 0.720, 0.695 0.713, 0.708

CNN 0.530 0.523 0.292 0.710, 0.763 0.686, 0.718
Bi-LSTM 0.484 0.470 0.311 0.677, 0.679 0.683, 0.678

proEVA 0.622 0.611 0.411 0.885, 0.847 0.865, 0.856

This splitting of dataset is essential to ensure accurate and reliable
evaluation regarding SV-related prediction tasks [32, 41]. Specifi-
cally, it aligns with the practical scenario, i.e., use the assessment
model built from the existing SVs to assess the incoming ones.
Results. Table 2 presents the performance comparisons between
proEVA and baselines for IR-based early SV assessment. The best
results are highlighted in bold. Note that F1-W and F1-M denotes
theWeighted F1 and Macro F1, respectively. Regarding the ML base-
lines, XGB achieves the best classification performance. However,
its performance on severity-aware metrics is not as good as LGBM.
As discussed in Section 4.3, the rating-based classification metrics
may not be directly proportional to the score-based severity-aware
metrics, though the severity rating is generally a discrete form
of the severity score (i.e., breaks down scores into bins with pre-
defined thresholds [17]). The above observation further verifies our
discussion, as well as the value of introducing severity-aware met-
rics to provide a more comprehensive evaluation of the assessment
performance. While the classification metrics reflects the overall
performance regarding SV triage, the severity-aware metrics focus
more on the effectiveness of prioritizing the remediation of the
most severe SVs. Regarding the performance of DL baselines, CNN
is generally better than Bi-LSTM on both two types of metrics.

Our approach yields the best performances on all metrics. Specif-
ically, regarding rating-based classification metrics, proEVA im-
proves the best-performing baselines by 12.9%, 12.9%, and 15.1%
in weighted F1, macro F1, and MCC, respectively. In terms of
score-based severity-aware metrics, the prioritization efficiency



Towards More Practical Automation of Vulnerability Assessment ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: The performance comparisons in the ablation study

Model

Severity Rating Severity Score

F1-W F1-M MCC MT (5%,10%) AUCMT (5%,10%)

proEVA-p 0.539 0.524 0.380 0.708, 0.701 0.703, 0.699
proEVA-cl 0.596 0.591 0.380 0.835, 0.829 0.825, 0.830

proEVA 0.622 0.611 0.411 0.885, 0.847 0.865, 0.856

improves over 17.6% on average. Specifically, with the priorities
recommended by proEVA, practitioners are able to cover 30.3% of
the CRITICAL SVs by only fixing the top 10% of the discovered
SVs. Moreover, AUCMT (0.856) further suggests that proEVA holds
a sustained advantage over the baselines under the prioritization
scenario for resource limit under 10%. Actually, the priorities rec-
ommended by proEVA are very close to the optimal model, since
AUCMT reflects the normalized margin between the model the
optimal one (see Section 4.3). The satisfactory performances on
both types of metrics demonstrate the comprehensive advantages
proEVA holds against the baselines.

RQ-1: proEVA outperforms baselines for IR-based early SV assess-
ment on both classification and severity-aware metrics, demon-
strating larger practical value.

5.2 RQ2. The Key Designs of proEVA

Method. Our findings in RQ1 have verified that proEVA outper-
forms the baselines significantly. With RQ2, we aim to further pro-
vide insights into the effectiveness of the key designs of proEVA.
Specifically, we compare the performances of proEVA with several
variants, each lacking one of the following key designs: 1) the design
of exploring the associations between CVSSmetrics by adopting the
prompt tuning (see Section 3.1). The variant (proEVA-p) adopts the
architecture used in the existing works instead (see Figure 4(b)), i.e.,
using the PLM as the shared feature encoder and further attaching
separated classifiers for each metric. Specifically, we implement
each metric-specific classifier using one linear layer following [29],
which takes the shared [CLS] embedding as input. Note that such
process aligns with the classic fine-tuning paradigm of the PLM.
2) the design of incorporating the partial CVSS metrics prediction
as auxiliary training tasks to form a curriculum learning (CL) sched-
ule (see Section 3.2); The variant (proEVA-cl) adopts the regular
schedule, i.e., optimizing the target task (i.e., the prediction of all
CVSS metrics) throughout the entire training process.
Results. Table 3 presents the performance comparisons between
proEVA and variants. The core novelty of proEVA lies in the design
of exploring the hidden associations between CVSS metrics, which
is demystified in our preliminary study (see Section 2.3) with empir-
ical evidence while neglected by the existing studies. Specifically,
instead of predicting each CVSS metric separately, we predict the
vector string as a whole and manage to enable the interactions
between feature vectors used for predicting the metrics through
prompt tuning (see Section 3.1). Comparing the performance of
proEVA with proEVA-p, the weighted F1-score, macro F1-score,
and MCC improve by 15.3%, 16.5%, and 8.2%, respectively. Aside
from the classification metrics, large improvements are also ob-
served on the severity-aware metrics, i.e., over 22.8% on average.

Furthermore, we propose to incorporate the partial CVSS metrics
predictions as auxiliary tasks and design a CL training schedule to
guide the model to learn the associations from easy to hard. The
experimental results also verify the effectiveness of this design
in improving the model performance (comparing proEVA with
proEVA-cl). To sum up, we first manage to utilize prompt tuning to
enable the modeling of associations between CVSS metrics at the
model architecture level, then we design a CL schedule that incor-
porates partial metrics predictions as auxiliary tasks to reinforce
the learning of such associations during model training.

RQ-2: The experimental results verify the effectiveness of leverag-
ing the associations between CVSS metrics to improve the assess-
ment performance.

6 DISCUSSION

In this section, we discuss another important scenario for evaluating
the practicality of the assessment model, and the threats to validity.

6.1 Adapting to Evolving Assessment System

As the SV scoring system (e.g., CVSS) is continually refined based
on security practices, it evolves through an ongoing process of
improvement. We introduced that NVD has retried CVSS v2 and
only provides v3 scores to newly published SVs [16]. In fact, at the
time of this writing, the preview documentation of CVSS v4 has
been released [7], which further clarifies several known issues of
the v3 standard. NVD expects to begin introducing components
of CVSS v4 in late 2023 [16]. Thus, another important factor that
makes a practical assessment model is the ability to transfer across
multiple scoring systems. The evolution of the scoring system is
an incremental process, i.e., the new version is based on the old
one and further makes several improvements. Thus, the underly-
ing knowledge to interpret SVs can be shared across assessment
models, despite the adjustments made to the assessment outputs.
When upgrading the assessment system, it is more practical to
transfer the knowledge from the existing assessment model (e.g.,
reuse its weights to initial the new one), rather than training a com-
pletely new model from scratch. This could significantly lower the
computational costs and the required number of labeled training
samples (i.e., a few-shot setting), enabling practitioners to handle
the upgrade in a more timely and efficient manner.

In this discussion, we investigate the transferability of proEVA
and the baseline models under the scenario of upgrading the assess-
ment system. To the best of our knowledge, none of the existing
studies takes this important evaluation aspect into consideration.
We identify two specific applications regarding the upgrade of the
scoring system: 1) Assess the future SVs according to the new stan-
dard. 2) Re-assess the old SVs published before the release of the
new standard. Old SVs can still be actively exploited in recent at-
tacks [8, 46]. For example, CVE-2004-0113 [4], a memory-leak SV in
Apache HTTP server project that allows remote attackers to cause
a denial of service to servers, was disclosed in 2004 yet still actively
exploited in 2018 [8]. Thus, it is important to re-assess the old SVs
under the new standard, so that security analysts could evaluate
them together with the newly disclosed SVs under a unified and
more accurate standard. However, due to the constraint man-power,
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Table 4: The performance comparisons in the assessment of

future SVs under the new standard

Model

Severity Rating Severity Score

F1-W F1-M MCC MT (5%,10%) AUCMT (5%,10%)

proEVA-p 0.664 0.524 0.469 0.819, 0.843 0.824, 0.829
proEVA 0.706 0.584 0.526 0.882, 0.875 0.855, 0.874

proEVA-p (s) 0.645 0.500 0.446 0.815, 0.810 0.849, 0.832
proEVA (s) 0.676 0.543 0.484 0.843, 0.869 0.850, 0.855

Table 5: The performance comparisons in the re-assessment

of old SVs under the new standard

Model

Severity Rating Severity Score

F1-W F1-M MCC MT (5%,10%) AUCMT (5%,10%)

proEVA-p 0.747 0.672 0.612 0.954, 0.953 0.944, 0.954
proEVA 0.791 0.692 0.681 0.992, 0.984 0.986, 0.991

it is impractical for security analysts to manually re-assess these old
SVs. For example, NVD has announced that they won’t conduct the
re-assessment for old SVs unless updates are reported to them [22].

NVD began adopting CVSS v3 extensively in 2015-12-20 [22].
To evaluate the transferability of proEVA, we simulate a upgrade
scenario where a software vendor plans to fully upgrade its internal
SV assessment system into the v3 standard in the second quarter
of year 2016, i.e., there is a three-month transition period for the
vendor to make adjustments to align with the new standard. Specif-
ically, we use the SV data from NVD before 2016 (with only v2
scores) to train a v2-based model (simulating the old assessment
model used by the vendor), and further use the SV data from the first
three months of 2016 (with both v2 and v3 scores) to upgrade the
v2-based model to accomplish the aforementioned two applications.
We adopt the variant proEVA-p as the baseline, which shares the
same PLM with proEVA and follows the same architecture design
of the existing works [47] (see Section 5.2 for more details).
Assessment of Future SVs. To evaluate the performance of as-
sessing future SVs, we use the SV data disclosed in the next month
(i.e., April, 2016) as our test set. Table 4 presents the performance
comparisons between proEVA and the baseline. proEVA achieves
much better performances than the baseline on both classification
metrics and severity-aware metrics, showing an advantage regard-
ing the scenario of upgrading the assessment system. One possible
explanation is that proEVA is able to make the maximum use of
the trained weights from the v2-based model (i.e., transferring both
the Transformer encoder and the MLM head), while the baseline
can only reuse the encoder (see Section 3). Thus, the knowledge
transferring of proEVA is more efficient. We also present the results
of proEVA and the baseline when training from scratch using the
three-month SV data (the last two rows in Table 4), respectively.
Both models outperform the variants trained from scratch signif-
icantly. This verifies the effectiveness of reusing the knowledge
of the existing model (i.e., the transfer-learning setting) over the
training-from-scratch setting under the upgrading scenario.
Re-assessment of Old SVs. Different from the assessment of fu-
ture SVs that solely takes the SV description as input, re-assessment
of old SVs should utilize both the description and the old assessment

result (i.e., the v2 vector string). Dealing with such changes in the
task setting leads to another advantage of our designed prompt-
based approach, i.e., the natural language prompt inserted in the
model input can incorporate task-specific knowledge to facilitate
adaptions to downstream tasks [50, 64]. Specifically, supplying the
prediction model with the additional old assessment result, which
can be regarded as the specific knowledge of the re-assessment
task, can be achieved by directly injecting it into the prompt. We
modify the prompt template in Section 3 into T (𝑥𝑖𝑛) = “ ⟨𝑥𝑖𝑛⟩ ” + “
The vulnerability can be exploited via

〈
𝑙𝑎𝑏𝑒𝑙𝑜𝑙𝑑

𝐴𝑉

〉
access, · · · ” + “ The

vulnerability can be exploited via [MASK]𝐴𝑉 access, · · · ”. The newly
added second item provides information of the v2 vector string. It
shares the same template context with the prompt for the v3 vector
string (i.e., the third item) but replaces the [MASK] token with the
known metric value. The existing approaches lack such flexibility,
thus requiring practitioners to design and train another separated
model for the re-assessment task. The flexibility to handle both
upgrading applications (i.e., the assessment of future SVs and the
re-assessment of old SVs) makes proEVA more cost-effective in
maintaining and updating in practice. Moreover, the essence of
both applications lies in upgrading an existing model to assess SVs
(either from future or past) according to the new standard, thereby
necessitating the knowledge sharing between models.

To evaluate the performance of re-assessing old SVs, we use the
SV data disclosed before the adoption of the v3 standard and later
re-assessed by NVD as our test set. Table 5 presents the comparison
results of re-assessing the old SVs. Note that the variant proEVA-p
does not support taking the old assessment results as the additional
input. Thus, we directly use the proEVA-p transferred for assess-
ing the future SVs (introduced earlier) for comparison, which also
makes assessment under the new standard but only based on the SV
description. The performance of proEVA is much better than the
baseline. Especially, the value of severity-aware metrics are nearly
approaching the optimal, suggesting the priorities recommended
by proEVA almost align with the ground truth. These findings
verify the importance of leveraging old assessment results for the
re-assessment task, and the advantages of proEVA in incorporating
such task-specific knowledge to facilitate flexible adaptions under
the re-assessment scenario.

Discussion: The above findings prove that proEVA is more effi-
cient and flexible than the baseline regarding the upgrade of the
assessment system. Note that the upgrading scenario is one typical
case of transferring the assessment system. Another typical case in
practice is that practitioners may customize the assessment system
(e.g., CVSS) according to their own needs [28] (e.g., attach more
importance to the impact aspects of SVs). For example, though both
NVD and Synk [19] (a well-known commercial SV database) adopt
the CVSS standard, the assessment results of a same SV are often
different across these two databases. We argue that findings in our
discussion, i.e., proEVA holds better transferability (i.e., efficiency
and flexibility), can be generalized to more common scenarios
regarding the migration across different assessment systems. Such
transferability is an important factor of a practical assessment
model, yet it has been overlooked by the existing works.
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6.2 Threats to Validity

Threats to internal validity refer to the experiment biases and
errors. Threat related to our approach is that we do not optimize
the template and the label words in prompt tuning (see Section 3.1),
despite the fact that doing so can improve the performance by bet-
ter unleashing the power of PLM [35, 51]. The primary motivation
for us to adopt prompt tuning is not to exploit its superiority in
utilizing the knowledge of PLM, which has already been sufficiently
discussed in literature [35, 51]. Our goal is to exploit the hidden
associations between CVSS metrics. Instead of designing our own
dedicated model architecture, we observe an opportunity in utiliz-
ing prompt tuning (more specifically the attention mechanism of
Transformer) as a more general and standard method to solve this
problem. Besides, we show that the adoption of prompt tuning also
brings benefits in transferability (see Section 6.1), which is essential
regarding the practical scenario of assessment system migration.
Threats to external validity refer to the generalizability of our
approach. We collect our dataset using only the SV data from NVD
and the IR data from GitHub, which may not represent all SV-
related IRs (SIRs). Future works should study SIRs from other data
sources, i.e., a different SV database (e.g., Synk) or a different issue
tracking system (e.g., Bugzilla), to investigate the generalizability of
our approach. Specially, proEVA enables early severity estimation
to close the disclosure delay caused by the leaked SIRs. Though
leaked SIRs are common for projects hosted on GitHub [59, 63], for
projects (e.g., Chromium) whose practitioners strictly follow the
Coordinated Vulnerability Disclosure process [1, 12] (i.e., hide the
SV information until disclosure) and employ issue tracking systems
(e.g., Gerrit) that support private issues, the value of proEVA in
mitigating the disclosure delay is limited. Another threat is that
proEVA is designed to automate SV assessment according to CVSS,
where we observe the existence of associations among metrics.
Thus, proEVA might not be compatible with other assessment sys-
tems (e.g., without associations between metrics). However, CVSS is
the industry standard for SV assessment and most other assessment
systems are modified based on it.

7 RELATEDWORK

In this section, we describe two aspects of the related work:
SV Assessment. Le et al. [45] have conducted a comprehensive
survey to summarize the research on data-driven SV assessment
and prioritization. Among the works related to CVSS, most ap-
ply machine learning (ML) classifiers to predict one specific met-
ric [39, 44, 68] or a group of metrics separately [46, 48, 57, 71].
Some recent and representative studies are: Han et al. [39] pro-
pose a CNN-based model to automate the prediction of the overall
severity rating based on SV descriptions from NVD. Their approach
demonstrates better performances than ML classifiers. Le et al. [47]
speculate that the prediction of CVSS metrics may share common
features and thus propose a unified model to assess seven CVSS v2
metrics simultaneously. They prove that the adoption of multitask
learning outperforms building metric-separated models. Different
from existing works, we revisit the literature with a focus on the
gap between the approach settings and the practical ones. We iden-
tify several practical concerns of existing approaches and propose

corresponding solutions (see Section 1). We aim to take a further
step towards more practical automation of SV assessment.
Early Identification of SVs. Given the transparency of OSS, mali-
cious actors could probe for SVs from public development activities
(e.g., issue reporting SVs, fixing commits) to launch dangerous zero-
day attacks [40, 49]. Many recent studies have pointed out the neces-
sities of taking early remediation and taken the first step to develop
identification techniques to enable early warnings [59, 63, 70, 72].
Zhou et al. [72] utilize CodeBERT to represent commit-level code
changes to identify silent SV patches. Wu et al. [70] later enhance
the patch identification by incorporating the code structure infor-
mation using GNN. Regarding IR-based early identification tech-
niques, Sawadogo et al. [63] revisit the early ML-based approaches
and point out several limitations, e.g., the datasets are small and
with-in project scope, lacking rationale for algorithm selection. Re-
cently, Pan et al. [59] build a large-scale dataset by crawling GitHub
IRs that are referred by NVD. They further propose a memory-
augmented network to incorporate the external SV knowledge to
improve the detection performance. Different from previous studies,
we take a step further to automate the following assessment for
SVs detected by existing identification approaches, without which
practitioners still can not take effective mitigation promptly.

8 CONCLUSION AND FUTUREWORK

In this paper, we automate the IR-based SV assessment to enable
early severity estimation. Moreover, we address several practical
concerns of the existing assessment techniques. We first empirically
unveil the potential associations between CVSS metrics. We then
design a prompt-based model to exploit the associations among the
CVSS metrics. To reinforce the learning of hidden associations, we
further incorporate partial metrics predictions as auxiliary tasks
and design a CL schedule for model training. We collect a dataset
containing 7,037 SV-related IRs from 2,431 OSS repositories. To pro-
vide a comprehensive evaluation of the assessment performance, we
propose two severity-aware metrics which measure the effective-
ness of prioritizing high-severe SVs. The experimental results show
that proEVA outperforms the baseline on both types of metrics,
and verify the effectiveness of the key designs. Finally, we discuss
an important but yet un-investigated practical scenario, i.e., the
upgrade of the assessment system. We show that the transferability
is also a critical aspect to constitute a practical assessment model,
and proEVA is more efficient and flexible in adapting to different
assessment systems.

We plan to investigate and further extend proEVA to comply
with the practical requirements of incorporating user-specific con-
text information (e.g., the production environment) to provide cus-
tomized and more accurate SV assessment.
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