
Patchmatch: A Tool for Locating Patches of Open
Source Project Vulnerabilities

1st Kedi Shen
Hangzhou City University

China

skuld 1456@163.com

2nd Yun Zhang‡
Hangzhou City University

China

yunzhang@zucc.edu.cn

3rd Lingfeng Bao
Zhejiang University

China

lingfengbao@zju.edu.cn

4th Zhiyuan Wan
Zhejiang University

China

wanzhiyuan@zju.edu.cn

5th Zhuorong Li
Hangzhou City University

China

lizr@zucc.edu.cn

6th Minghui Wu
Hangzhou City University

China

mhwu@zucc.edu.cn

Abstract—With the rapid development of open source projects,
the continuous emergence of vulnerabilities in the project brings
great challenges to the security of the project. Security patches
are one of the best ways to deal with vulnerabilities, but
are not well applied currently. Although there are sites like
CVE/NVD that provide information about vulnerabilities, many
of the vulnerabilities disclosed by CVE/NVD are not accompanied
by security patches. This makes it difficult for developers to
apply patches. In the present study, a sorting method based on
extracting multidimensional features from auxiliary information
in CVE/NVD was proposed. And we made a further step, we
proposed VCMATCH, a model for mining semantic information
in vulnerability description and code commit messages, which
has good recall rate and applicability across projects. On this
basis, we established Patchmatch, a tool for helping developers
to quickly locate patches. Given a vulnerability, Patchmatch can
forecast the implicit patches in the code repository’s commits.
Patchmatch also has a visual webpage for information statistics
and a display web page to help developers manage all kinds
of information in the code repository. A demo video of Patch-
match is at https://www.youtube.com/watch?v=nOBSMFtZV8A.
Patchmatch is in https://github.com/Sklud1456/patchmatch.

Index Terms—Vulnerability, Model application, Manage tool

I. INTRODUCTION

Open source software (OSS) is widely adopted by the soft-

ware industry. However, vulnerabilities in OSS pose significant

risks to practical applications. In addition, the number of OSS

vulnerabilities is increasing. According to the Georgia analysis

[1], more than twice as much vulnerability data was collected

by the National Institute of Standards and Technology (NIST)

[2] between 2009 and 2019 as it did between 1999 and

2009. Common Vulnerabilities and Exposures (CVE) [3] has

collected more than 170,000 vulnerability data up until now.

Common Vulnerabilities & Exposures (CVE) is a spe-

cialized vulnerability information list sponsored by the U.S.

Department of Homeland Security. Each CVE entry contains

This research was supported by the Natural Science Foundation of Zhejiang
Province under Grant No. LQ21F020008, the National Science Foundation of
China (No. 62102358), and the 2019 Innovation at Hangzhou Program for
High-level Returned Oversea Scholars.

‡Corresponding author

information related to the vulnerability, such as the CVE-ID,

vulnerability description, vulnerability reference, and creation

date. The CVE-ID is the unique identifier of vulnerability data

assigned by The CVE Numbering Authorities (CNAs). The

vulnerability description mentions vulnerable software repos-

itories and the consequences of remote attackers. Sometimes,

the description also mentions the function name, file name,

and software version of the vulnerability, which is important

in identifying the patch of this vulnerability.

The National Vulnerability Database (NVD), sponsored by

the National Institute of Standards and Technology (NIST),

provides enhanced information based on CVE lists that can

complement CVE information such as severity scores, fix

information, and CWE. CWE (Common Weakness Enumera-

tion) is a category system that uses CWE-ID and CWE name

to identify vulnerability types.

Even with public release information such as CVE, locating

security patches (often in the form of code commits in

code repositories) for vulnerabilities still is a challenge. One

reason is that numerous CVE/NVD entries lack information

about security patches. Additionally, manually obtaining and

identifying patches for vulnerabilities can be difficult. Hogan

et al. [4]reported that manual tagging is a highly skilled, time-

consuming task that is still prone to error because of the lack

of knowledge. Therefore, there must be an automatic method

to identify the vulnerability patches.

The vulnerability description field in the CVE and sec-

ondary information in the code commit message (such as

CVE-ID or bugID) can be used to automatically match vul-

nerabilities and patches in the code repository. However, most

patches cannot be automatically matched using this method

directly as the auxiliary information is often incomplete.

Therefore, some researchers intend to use the method of

machine learning. Tan et al. [5] proposed a model of matching

vulnerabilities and security patches named PatchScout, which

transformed the search problem of locating security patches

into the problem of sorting code commit, and achieved good

results. However, PatchScout only considers digital features

175

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00049

20
23

 IE
EE

/A
CM

 4
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 S
of

tw
ar

e 
En

gi
ne

er
in

g:
 C

om
pa

ni
on

 P
ro

ce
ed

in
gs

 (I
CS

E-
Co

m
pa

ni
on

) |
 9

79
-8

-3
50

3-
22

63
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
SE

-C
O

M
PA

N
IO

N
58

68
8.

20
23

.0
00

49

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:42:18 UTC from IEEE Xplore.  Restrictions apply. 



in the vulnerability description and commit information fields,

and lacks semantic information contained in the text. More-

over, the researchers did not provide a visual tool to help others

understand the use of the model more intuitively.

Based on our previous work [6], we proposed a web-based

tool called Patchmatch. The function of Patchmatch is divided

into two parts: (i) Information visualization: developers can

import the local Git repository into MySql database and add

relevant CVE information, and then Patchmatch will display

some statistics on the home page, such as count the number

of CVEs by type, time and risk score and display them in

the form of chart. Of course, Patchmatch can also display

the code commit information by chart. (ii) Forecast patch:

When the developer enters a new CVE information that has

not been matched to a patch, they can use the page for patch

prediction. Patchmatch can use the trained VCMATCH model

to predict the patch for the CVE and display the patch in

order according to the predicted score, which is used for

manual validation by developers. Figure 1 presents the overall

framework of Patchmatch, which is composed of VCMATCH

and its supporting front and back end display system. The

rest of the paper is organized as follows: Section 2 introduces

the construction details of our VCMATCH model. Section

3 introduces the implementation details and key application

scenarios of Patchmatch. Section 4 evaluated our VCMATCH

and Patchmatch. Section 5 summarizes our work.

II. MODEL BUILDING

We built the model in five stages: data collection, data

pre-processing, manual feature extraction, deep text feature

extraction, ranking voting fusion model.

Data collection. We selected 10 popular OSS projects,

including FFmpeg, ImageMagick, Jenkins, OpenSSL, QEMU,

Wireshark, Linux, Moodle, PHP-src, and phpMyAdmin. These

projects have been extensively studied in previous vulnerabil-

ity analysis studies. We cloned these ten code repositories from

GitHub or GitLab to get these project code commits. And use

gitlog to get its log files, which is used to extract the details

from each commit. Each commit is uniquely identified by a

40-bit long commit ID. For information of vulnerabilities, we

collect their CVE-ID, text description, and creation date from

the CVE website, and collect their supplementary information

from NVD. At the same time, snyk [7] database was combined

to ensure that each collected CVE would have the correspond-

ing commit, which is the security patch for the vulnerability.

Data pre-processing. After confirming the security patch

of each vulnerability, we preprocessed the text information

of CVE and commit (like vulnerability description, commit

information, CWE name, etc.) comprehensively. We use the

natural language processing tool — BERT to tokenize the text

message, and get the token set of vulnerability and the token

set of code commit. And in order to reduce the later calculation

consumption and reduce the data scale, we processed the

intersection of the two, and the result was considered as

“Useful Token”, while the other tokens were abandoned.

Manual feature extraction. Based on the features used

by PatchScout, we extracted additional features and divided

them into four feature dimensions to measure the correlation

between vulnerability and commit: LOC dimension, identity

dimension, location dimension and token dimension. The LOC

dimension represents the information related to the number

of code lines submitted for modification. The identity dimen-

sion represents various identity information contained in the

commits, such as CVE-ID, bugID, problem ID, etc. At the

same time, we also extract URL from the commit message to

obtain more information. The location dimension represents

the correlation degree between the modified file name, file

path name, function name and the vulnerability description

in the code commit, these are dimensions in space location.

And the time interval between the two is also recorded from

the dimension in time location. Token dimension is to extract

mathematical statistics from the token set generated in data

preprocessing. Meanwhile, TF-IDF vectors for vulnerability

description and commit messages are respectively generated

to explicitly indicate the similarity between vulnerability and

code commit in terms of text information.

Deep text feature extraction. We use BERT, a state-of-the-

art pre-training model, to generate the coded characteristics of

vulnerability descriptions and commit messages respectively.

BERT can map the content of text to a deep semantic vector

space to mine the deep semantic information in natural lan-

guage. At the same time, we also reduced the dimension of the

generated vector to 32 dimensions, so that it can be adapted

to the model for subsequent use.

Ranking voting fusion model. We extracted 36 hand-

crafted features and 64 deep text features (32 for each vulner-

ability and commit) for each pair of vulnerabilities, totaling

100 features. We put these 100 features into three models

(XGBoost, LightGBM and CNN) for training and model

fusion to achieve the final prediction.

Identifying security patches is a matter of categorizing

highly unbalanced data. Given a vulnerability, only a few

commits in code repository are security patches (the positive

cases), while the rest are negative cases. Traditional machine

learning models can easily lead to inadequate fitting and in-

correct separation of positive and negative samples. Therefore,

we choose the XGBoost, the LightGBM and a CNN model

equipped with focus loss function, because they show good

classification effect on unbalanced data.

In terms of model fusion, we adopt a new ranking fusion

method based on voting. Given a vulnerability, we get the

ranking of each candidate commit according to the matching

probability scores of the three classifiers, which are respec-

tively rankXGB , rankLGB and rankCNN . Then we take the two

closest values from the three submitted rank values, denoting

the first and second rank values as the two most trusted levels.

Finally, we calculate the average of rank1 and rank2, denoted

as rankavg . Our submissions based on rankavg and get the new

level of the submissions.

176

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:42:18 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Overview of the method framework

III. SYSTEM IMPLEMENTATION DETAILS

In this section, we will introduce how we build the system

from various angles.

A. Data Collection

When we collected data for train in the second section, we

also collected some other data for information statistics and

presentation. The information includes commit author, commit

time, description information, CVE risk score and rating, CVE

release time, CWE-ID and its name, etc. We sorted out this

information and stored them in the MySql database for unified

management, which is convenient for later use.

B. Backend Model

In order to shorten the user interaction wait time, we saved

the model weight of VCMATCH locally, so that the model

can be directly used to predict the ranking of patches. For the

backend, we chose the flask framework, which use the same

programming language we used to train the model.

C. Frontend User Interface

The frontend is mainly divided into two modules. One is

the information display module, which is used to display the

commit and vulnerability information stored in the backend.

At the same time, some statistics (such as the number of CVE

in each repository) are also carried out to display. The other

one is the model prediction module. When the patch of a

vulnerability is missing, developers can enter this page for

model prediction, and the system will automatically extract

the vulnerability related feature data from the database into

the VCMATCH model, then return the model prediction results

to the front interface for developers to confirm the patch.

Fig. 2. The information Page

1) Exhibiting Information: Figure 2 is the information dis-

play page of Patchmatch, which is also divided into two web

pages of vulnerability and commit. In this part, the functions

of the two pages are similar. Developers can visually find, add,

and view vulnerabilities/commits information here. Click the

“Details” button on the right of the page to see more informa-

tion about the vulnerabilities/commits. Of course, Patchmatch

also provides the function of filtering vulnerabilities/commits

by the name of the repository to meet the various needs of

developers for information collection.

2) Model Application: If the corresponding patch is miss-

ing, Patchmatch will turn the “details” button yellow to remind

the developer that the patch is missing. Figure 2 simulates the

user scenario. It can be seen that the patch is missing for the

vulnerability in the second row. The developer can interact to

enter the model prediction page and use the model to check

the possibility of each commit becoming the corresponding

vulnerability patch. Figure 3 is the model prediction page

in Patchmatch. Developers can click the “prediction” button

to use the model and data in the backend for patch sorting

prediction. When the prediction is complete, the results are

transmitted backend to the frontend. Developers can also tog-

gle the number of top entries in the TopN column. Developers

177

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:42:18 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
RECALLS OF EACH MODEL

Top K 1 3 5 10

Logistic Regression 10.43% 14.56% 17.44% 23.13%
Linear Regression 65.97% 75.67% 78.38% 82.38%
PatchScout 71.12% 81.43% 86.10% 89.45%
XGBoost 88.67% 93.83% 95.21% 96.70%
LightBGM 86.01% 92.27% 94.19% 95.74%
CNN 85.80% 90.98% 92.51% 94.31%
VCMATCH 88.86%88.86%88.86% 94.01%94.01%94.01% 95.33%95.33%95.33% 97.06%97.06%97.06%

TABLE II
MANUAL EFFORTS OF EACH MODEL

Top K 1 3 5 10

Logistic Regression 1.0000 2.7687 4.4627 8.4685
Linear Regression 1.0000 1.6087 2.0743 3.0695
PatchScout 1.0000 1.5093 1.8610 3.0695
XGBoost 1.0000 1.1947 1.3116 1.5164
LightBGM 1.0000 1.2312 1.3774 1.6327
CNN 1.0000 1.2468 1.4182 1.7435
VCMATCH 1.00001.00001.0000 1.19111.19111.1911 1.30381.30381.3038 1.49971.49971.4997

can click on “Details” button to check the details screen of

each commit to verify that the commit is correct. Then confirm

the patch for the vulnerability by click “confirm” button.

Fig. 3. The model prediction Page

IV. EVALUATION AND USER STUDY

In order to evaluate whether Patchmatch can meet users’

expectations, we analyzed Patchmatch from two perspectives:

on the one hand, we evaluated the recall and manual effort

from the perspective of the model; on the other hand, we

evaluated its practicality from the perspective of system tools.

About model.About model.About model. We hope that the ranking of patches is as high

as possible. The higher the ranking of patches is, the better

the performance of the model is. We quantify and evaluate

the performance of the model through two mathematical

dimensions: recall and manual effort. Manual effort is the

number of commits that need to be checked to get the correct

patch results. If the correct patch is in the front K, the manual

effort value is the rank of the patch, otherwise it is K, this

means that all K results are checked, but the correct patch is

not available. When K is equal to 1, the manual effort value

must be equal to 1, because we must need to check one patch.

TABLE III
USER FEEDBACK (TEN”)

Question Users’ average score

The score for the presentation of statistics 7.5
The score for management information 7.6
The score for the application of the model 7.8
The score for the UI 7.0
The score for the overall use 8.2

Table 1 and Table 2 show the recalls and manual efforts of

VCMATCH and other baseline models. It can be seen that the

VCMATCH has better performance than the traditional models

and has an excellent ability in predicting patches. With the

excellent performance of VCMATCH model as the base, our

Patchmatch system has guaranteed basic functions.

About user usage.About user usage.About user usage. We recruited 14 participants (3 Female

and 11 Male) who were related to computer technology at

university. Three participants were undergraduate students, five

were master’s students, four were Ph.D. students, and two were

software developers (one in server security). All of them have

two to five years of development experience.

We handed them Patchmatch to use. Before using it, func-

tions of various parts of Patchmatch will be introduced in

detail and some specific usage scenarios will be informed to

facilitate them to score. After using Patchmatch, we will give

them the prepared questionnaire for rating and ask them for

their suggestions on Patchmatch. After survey, we counted and

calculated their scores, and finally got an overall rating of 8.2.

Due to space constraints, we only show the summary

scores. Detailed information can be seen on GitHub (https://

github.com/Sklud1456/patchmatch), file “user research” shows

questions in each area and their specific scores. From the above

scores, we can see that Patchmatch has a good application in

the aspect of statistical information and model application; but

the information display interface has some deficiencies. After

further inquiry, they all said that Patchmatch could meet their

needs to a certain extent but needed some optimization. For

example, polish the UI, broaden the universality of information

display and optimize the information management.

In summary, Patchmatch is a successful application of VC-

MATCH, and provides certain practicability and convenience

for developers. Although it has defects, developers are willing

to try to use the Patchmatch.

V. SUMMARY AND FUTURE WORK

We demonstrated Patchmatch, a Web-based tool that applies

the VCMATCH model to help developers locate patches in

OSS. Developers can use the tool to visually view commits or

vulnerabilities information and some statistical graphs in the

code base. Developers can also use the built-in VCMATCH

model to predict and rank security patches for vulnerabilities

that have not yet been patched. In future work, we will

further improve the model by collecting more vulnerability

information and optimize the system (such as more informa-

tion presentation and better UI) to meet the needs of more

developers.

178

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:42:18 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Georgios Aivatoglou, Mike Anastasiadis, Georgios Spanos, Antonis
Voulgaridis, Konstantinos Votis, Dimitrios Tzovaras, and Lefteris An-
gelis. 2022. A RAkEL-based methodology to estimate software vul-
nerability characteristics & score-an application to EU project ECHO.
Multimedia Tools and Applications 81, 7 (2022), 9459–9479.

[2] 2022. “National Institute of Standards and Technology — NIST”.
[Online]. Available: https://www.nist.gov/.

[3] 2022. “Common Vulnerabilities Exposures — CVE”. [Online]. Avail-
able: https://cve.mitre.org/.

[4] Kevin Hogan, Noel Warford, Robert Morrison, David Miller, Sean Mal-
one, and James Purtilo. 2019. The challenges of labeling vulnerability-
contributing commits. In 2019 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops (ISSREW). IEEE, 270–275.

[5] Xin Tan, Yuan Zhang, Chenyuan Mi, Jiajun Cao, Kun Sun, Yifan
Lin, and Min Yang. 2021. Locating the Security Patches for Disclosed
OSS Vulnerabilities with Vulnerability-Commit Correlation Ranking. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 3282–3299.

[6] Shichao Wang, Yun Zhang, Lingfeng Bao, Xin Xia, and Minghui Wu.
2022. VCMATCH: A Ranking-based Approach for Automatic Security
Patches Localization for OSS Vulnerabilities. In 29th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER 2022).

[7] 2022. “Snyk — open Source Vulnerability Database”. [Online]. Avail-
able: https://security.snyk.io/.

179

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:42:18 UTC from IEEE Xplore.  Restrictions apply. 


