
Code Reviewer Recommendation in Tencent: Practice,
Challenge, and Direction∗

Qiuyuan Chen*
Zhejiang University

Hangzhou, Zhejiang, China
chenqiuyuan@zju.edu.cn

Dezhen Kong*
Zhejiang University

Hangzhou, Zhejiang, China
timkong@zju.edu.cn

Lingfeng Bao†
Zhejiang University

Hangzhou, Zhejiang, China
lingfengbao@zju.edu.cn

Chenxing Sun
Tencent Technology

Shenzhen, Guangdong, China
marssun@tencent.com

Xin Xia
Zhejiang University

Hangzhou, Zhejiang, China
xin.xia@acm.org

Shanping Li
Zhejiang University

Hangzhou, Zhejiang, China
shan@zju.edu.cn

ABSTRACT
Code review is essential for assuring system quality in software
engineering. Over decades in practice, code review has evolved
to be a lightweight tool-based process focusing on code change:
the smallest unit of the development cycle, and we refer to it as
Modern Code Review (MCR). MCR involves code contributors com-
mitting code changes and code reviewers reviewing the assigned
code changes. Such a reviewer assigning process is challenged by
efficiently finding appropriate reviewers. Recent studies propose
automated code reviewer recommendation (CRR) approaches to
resolve such challenges. These approaches are often evaluated on
open-source projects and obtain promising performance.

However, the code reviewer recommendation systems are not
widely used on proprietary projects, and most current reviewer se-
lecting practice is still manual or, at best, semi-manual. No previous
work systematically evaluated these approaches’ effectiveness and
compared each other on proprietary projects in practice. In this
paper, we performed a quantitative analysis of typical recommen-
dation approaches on proprietary projects in Tencent. The results
show an imperfect performance of these approaches on proprietary
projects and reveal practical challenges like the “cold start prob-
lem”. To better understand practical challenges, we interviewed
practitioners about the expectations of applying reviewer recom-
mendations to a production environment. The interview involves
the current systems’ limitations, expected application scenario, and
information requirements. Finally, we discuss the implications and
the direction of practical code reviewer recommendation tools.

∗Work done while this author was an intern at Tencent.

†Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513035

CCS CONCEPTS
• Software and its engineering→ Software maintenance tools.

KEYWORDS
code review, code reviewer recommendation, recommendation al-
gorithm

ACM Reference Format:
Qiuyuan Chen*, Dezhen Kong*, Lingfeng Bao†, Chenxing Sun, Xin Xia,
and Shanping Li. 2022. Code Reviewer Recommendation in Tencent: Prac-
tice, Challenge, and Direction. In 44nd International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP ’22), May
21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3510457.3513035

1 INTRODUCTION
Code review (i.e., manual inspection of the source code) is an es-
sential process that helps improve the software quality [3]. Early
code review is a heavy process that focuses on the strict inspec-
tion of the source code like Fagan Style code inspection [7]. Over
decades in practice, code review has evolved to be lightweight, fo-
cus on code changes, and adopts particular code review tools. This
inspection process is referred to as Modern Code Review (MCR) in
literature [19]. Even though code review has become a standard step
in software development practice, MCR is still a labour-intensive
process. To improve the efficiency, MCR aims to reduce time con-
suming and appears to be informal and asynchronous [19].

Modern code review involves two roles - code contributors and
code reviewers. In a simplified code review procedure, code con-
tributors commit code changes and propose a code review request;
code reviewers respond to the request asynchronously, then review
code changes and give feedback. However, practitioners often find
reviewers manually or, at best, semi-manually in practice. There-
fore, researchers proposed Code Reviewer Recommendation (CRR)
(also known as code reviewer assignment or reviewer matching)
approaches to recommend code reviewers efficiently [23, 28, 30–
32]. The CRR approaches are expected to be embedded in the code
review tools in which code contributors can invite code reviewers
based on the list provided by the recommendation system.

These approaches are often achieved by learning the histori-
cal data of code review activity, including the developers’ code

https://doi.org/10.1145/3510457.3513035
https://doi.org/10.1145/3510457.3513035

ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA Chen et al.

changes and participation in prior code reviewers. Previous works
often evaluate these approaches on open-source projects, and most
approaches obtain promising performance, sometimes as high as
92% [12] in terms of accuracy@top-5, one of commonly usedmetrics
to evaluate a code reviewer recommendation approach. However,
most current reviewer selecting practice is still manual or, at best,
semi-manual. For example, a popular code review tool, Gerrit, can
only invite code reviewers by typing names. There are attempts to
attack the challenge of building a CRR system in practice [2, 18, 21],
but little previous work systematically evaluated the effectiveness
of existing approaches and compare each other on proprietary
projects in practice.

Tencent is an international internet and technology company
with more than 90,000 employees. It has a range of business areas
such as communication and social, cloud computing, advertising,
FinTech, and other enterprise services, containing tens of thousands
of code projects in different areas. Nowadays, Tencent is promot-
ing inner-source practice, which aims to improve the coordination
of proprietary projects. Inner-source projects require the propri-
etary projects to be readable and useful for other developers in the
company. With hundreds of thousands of projects, up to 70% of
projects in Tencent are inner-sourced. However, inner-sourcemakes
it harder to find appropriate code reviewers as developers may not
be as familiar with each other as in the same project. The code
review tool in Tencent matches code reviewers based on manually
maintained configuration files, suffering from a lack of scalability
and flexibility. At the same time, existing machine-learning-based
CRR approaches can update and recommend automatically. There-
fore, we investigate the first research question:
RQ1: What is the effectiveness of code reviewer recommen-
dation approaches on proprietary projects?

We select top ten proprietary projects with the largest number of
reviewers, covering areas of infrastructure, Fintech, database, and
so on. We select five typical existing code reviewer recommenda-
tion algorithms, i.e., RevFinder [22], TIE [28], IR (VSM-based) [31],
Comment Network (CN) [31], and cHRev [32]. Some other ap-
proaches are excluded because of the data limitation in practice
(e.g., Carrot [21] requires context information; WLR-REC [1] re-
quires confidential personal information).

We apply these approaches to the selected projects and found
they do not perform as well as the original reports. We find that
project characteristics can impact the effectiveness of CRR ap-
proaches, and projects with “dominant reviewers” are intended
to perform well. However, CRR approaches can be less helpful in
this kind of project and even skews the reviews assignment. In
particular, we notice a “cold start problem” that cause an ML-based
CCR recommendation system to be invalid when it is applied to a
new project.

Based on the findings in the quantitative analysis, we further
conduct a qualitative analysis to understand the practical challenges.
We try to answer the second research question:
RQ2: What are the perceptions and expectations of practi-
tioners on the reviewer recommendation?

We interviewed 11 (two for pilot interview and nine for for-
mal interview) practitioners about the reviewer recommendation
systems. The interviewees discussed the limitation of the current

reviewer recommendation system, expected application scenario,
and information requirements.

We find that current configuration-based recommendations in
Tencent can support daily requirements of finding reviewers when
contributor-reviewer relationships are relatively stable. But it suf-
fers from scalability and environmental change like staff turnover [17].
In addition, interviewees mentioned that inviting too many review-
ers does cause a “notification noise” issue, which requires a trade-off
between the recommendation size and the accuracy. For the expec-
tation on application scenarios, practitioners are optimistic about
the machine-learning-based CRR approaches. However, we should
consider various situations (e.g., targets passing code review quickly
or improving top-level design by design) to design a practical CRR
system. Last, practitioners expect the CRR system to consider as
much code review related information as possible for the informa-
tion requirements. Apart from improving algorithm accuracy, we
also suggest the CRR system improve information transparency to
help code contributors and code reviewers get familiar with each
other, facilitating the reviewer selecting process and improve user
experience.

In summary, our study makes the following contributions:

• We apply various existing CRR approaches and compare
the performance differences on proprietary projects in Ten-
cent. We evaluate the approaches from different dimensions,
including tool usability and scenario feasibility.

• We interview 11 professionals from different areas to shed
light on practitioners’ perceptions and expectations towards
the CRR system in practice.

• We present the results of quantitative and qualitative of
CRR in practice. We highlight the challenges of applying the
existing approaches in practice and provide suggestions to
meet practitioners’ expectations better.

We believe that our findings can help improve CRR system from
the perspectives of the algorithm, developer perception, and sce-
nario in practice. The remainder of the paper is organized as follows:
Section 2 describes the background and related work. Section 3
shows the methodology of this paper, including the experiment
methodology for RQ1 and the interview methodology for RQ2. Sec-
tion 4 shows the results of the two research questions and illustrates
our findings. Section 5 discusses the implications and the influence
of code reviewer recommendation on the code review process. Sec-
tion 6 describes the threats to the validity of this paper. Section 7
concludes the paper and shows our future work.

2 BACKGROUND AND RELATEDWORK
2.1 Code Review Workflow in Tencent
Tencent has many projects in various business areas leading to
customized code review practice in detail. We briefly describe a
common code review workflow and highlight the code reviewer
recommendation scenario as follows.

• (S1) At the beginning of a code review workflow, a contrib-
utor fetches code changes and contribute their own code
to the repositories. This process will ask to create a code
review request if code review on this branch is configured
to be required.

Code Reviewer Recommendation in Tencent: Practice, Challenge, and Direction ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA

• (S2)When creating theCR request, the systemcan give
a list of recommended reviewers for the code contrib-
utors to select. The recommendation is based config-
uration files recording ownership and authorship of
code. Contributors can also added reviewers outside of
the recommended list by searching qualified review-
ers. Then the final list will be sent out to invite candi-
date reviewers.

• (S3) The candidate reviewers can choose to accept, reject, or
ignore the request. Reviewers who accept the request will fin-
ish code review and give feedback on the code changes(“accept”,
“reject”, or “need revision”). Contributors can further revise
their commits to address the feedback. The selected review-
ers stay the same for the next iteration.

• (S4) The contributed code changes can be merged if they
pass the code review, or they will be abandoned if they are
evaluated not suitable and should be given up.

Code reviewer recommendation works in S2, which is the re-
search target in the scenarios mentioned above because it is embed-
ded in the code review process. Some tools may provide separate
tools for recommendation [21], but they may distract developers,
causing more development costs.

2.2 Code Reviewer Recommendation in
Practice

We investigate the code reviewer recommendation embedded in
code review tools. Many open source organizations conduct code
reviews on Gerrit1, Reviewboard2, or Git-based platforms (e.g.
GitHub). Giant companies also develop code review products (e.g.,
Phabricator3 by Facebook, and Upsource4 by JetBrain), and they
often adopt more than one code review tool for different needs.
For example, Google adopts several tools, including their tool Cri-
tiques [19]; Microsoft also adopts different internal code review
tools, including their CodeFlow [20] and in-project customized
tools [12]. These tools provide basic support of code reviewer rec-
ommendations. For example, Critique recommends code reviewers
based on the reviewed history on particular files [19].

There are attempts to attack the challenge of building a CRR
system in practice [2, 10, 12, 15, 21]. Strand et al. [21] deployed a
code reviewer recommendation system called Carrot in Erricson.
Carrots adopt the LightFM algorithm, which combines collaborative
filtering and context-based filtering and trains the model on the
code changes in the history of the CR system (i.e., Gerrit). They
performed interviews and user studies to confirm the effectiveness.
Asthana et al. [2] propose WhoDo, which recommends reviewers
based on (1) whether a developer reviewed/committed a particular
file/directory and (2) load balancing of a developer. They deploy the
system on five repositories within Microsoft and analyze the results
in practice qualitatively and quantitatively. Kovalenko et al. [12]
deployed an IR-based CRR system in two companies (Microsoft and
JetBrain) and analyzed practical data in production environments.
They also interviewed and surveyed practical users to measure the

1https://www.gerritcodereview.com/
2https://www.reviewboard.org/
3https://secure.phabricator.com/
4https://www.jetbrains.com/upsource/

influence of recommendations on users’ choices. Unlike their work,
our study analyzes the effectiveness of state-of-the-art existing
CRR algorithms and compare each other instead of analyzing CRR
based on a deployed tool. We also asked the developers about their
expectations and suggestions to help design a better practical tool.
Kagdi et al. [11] propose an approach to recommend reviewers
by estimating how likely one has good knowledge of the target
PRs. It utilizes several heuristics to measure candidates’ expertise,
change activity, and commit contributions. Ying et al. [29] propose
an approach to recommend reviewers by constructing a graph
architecture to depict the expertise and authority of developers as
well as their interactions. In this work, we perform an empirical
study evaluating various existing CRR approaches using proprietary
projects and summarizing practical implications by interview.

Research of code reviewer recommendation involves abundant
technical and empirical studies. Due to the space limitation, this
paper only analyses CRR in practical tools and introduces several
works related to the production environment. We convey more
related CRR approaches to a comprehensive survey. Please refer to
the review studies proposed by Cetin et al. [33].

3 RESEARCH METHODOLOGY
3.1 Overview
Figure 1 shows an overview of our research methodology which
consists of two stages.
Stage 1: We performed experiments on the top ten proprietary
projects that contained the largest number of reviewers. The exper-
imental results provide the implications of current code reviewer
recommendation approaches; it also motivates us to interview prac-
titioners in the next stage. The experimental results also help us
design the interview guide.
Stage 2: We interview professionals on their perceptions of CRR
approaches. All interviewees come from the projects in stage 1. In
this stage, we have a pilot interview with professionals of Tencent’s
current code review tool and designed an interview guide. Then
we conduct a formal semi-structured interview with practitioners
recruited from different areas in Tencent.

3.2 Experiment Methodology
3.2.1 Project Selection and Data Characteristics. Intuitively, the
developer number in a project can indicate whether a project needs
to adopt a code reviewer recommendation system. For example, a
project with only several developers can find code reviewer eas-
ily. In contrast, a large size of a project can make it hard to find
appropriate code reviewers. In this paper, we select ten projects
that contains the largest number of reviewers in Tencent for experi-
mental analysis. We extract all historical developing and reviewing
records in these projects. The analysis granularity is “one” code
review in which all iterations (in cases of “need revision”) will be
attached to this one. Then we exclude the noise and invalid informa-
tion in these data (e.g., automatically generated commits). Finally
we perform different code reviewer recommendation algorithms
on these projects.

3.2.2 CRR Approach Selection. There are many code reviewer rec-
ommendation approaches (CRR approaches) in literature [28, 31]

ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA Chen et al.

CR History

Semi-structured
Interview

Interview
Analysis

Approach
Selection

Evaluation

Code
Repository

Interview Guide

Pilot
Interview

Card Sorting

Transcriptions

RQ1. Recommendation Effectiveness

on proprietary projects

RQ2. Perception and expectation
of practitioner

Stage 1: Experiment

Experimental
Analysis

Stage 2: Interview

RQs

Extracting
Data

Figure 1: Research methodology overview

considering different factoring during the code review process. We
focus on the historical data in the projects including commits and
code reviews. We choose the following representative traditional
recommendation approaches, which are still state-of-the-art ones
according to the study performed by Hu et al. [9]. The selected code
reviewer recommendation approaches are listed as follows:

(1) RevFinder [23] is an expertise-based approach that lever-
ages file paths, assuming that the files located in close files
may share similar functionality and are likely to be reviewed
by reviewers with common experience.

(2) TIE [28] uses multinomial Naive Bayes to measure the com-
mit message’s textual content (i.e., commit message) simi-
larity and a VSM-based approach to measure the file path
similarity. Then it combines the weighted scores and ranks
them to recommend the reviewers.

(3) IR (VSM-based) [31] vectorizes the PR’s description using
VSM, calculates the textual similarities, and ranks the re-
viewers in the resolved PRs.

(4) CommentNetwork (CN) [31] is a recommender that ranks
reviewers who share common interests with the contribu-
tors of target PR by mining historical comments traces and
construct a comment network. Intuitively, developers who
always review the author’s code change or the dominant par-
ticipants of the project are more tended to be recommended.

(5) cHRev [32] considers the reviewing history (review number,
review time). It counts the number of comments to the file
as part of scores. It also considers the frequency and recency
of historical contributors to measure the reviewer expertise
and give a final recommendation.

Besides, We do not include some approaches because of the data
availability (e.g., libraries specific to the current code changes) and
sensitivity (e.g., personal information like records of developers’
time and expertise experience). For example, Carrot [21] requires

context information and WLR-REC [1] requires personal informa-
tion.

3.2.3 Metrics. We adopt commonly used metrics top-k accuracy
MRR, precision, and recall to evaluate CRR approaches. The first two
metrics are widely used in literature of software engineering [23,
28]. We denote a reviewer as r and multiple reviewers as Rs; denote
a code review as cr and multiple code reviews as CRs.
Top-k Accuracy: Top-k accuracy is the ratio of code reviews where
their ground truth reviewer are ranked within the top-k positions
in the recommended ranked lists of reviewers. Specifically, given a
code review cr, we can recommend a ranked list of reviewers Rs. If
at least one of its top-k code reviewers actually reviews the code
review cr (i.e., Reviewed(cr, top-k)), we consider the reviewers are
correctly recommend, and set the value Reviewed(cr, top-k) to 1;
otherwise if there is no one actually reviews the cr, we set the value
to 0, which means it is wrongly recommended. Given a set of code
reviews CRs (chronological order), the top-k prediction accuracy is
computed as:

𝑇𝑜𝑝@𝑘 =

∑
𝑐𝑟 ∈𝑅𝑒𝑣𝑖𝑒𝑤𝑒𝑑 (𝑐𝑟,𝑡𝑜𝑝−𝑘)

|𝐶𝑅𝑠 | (1)

The higher the value, the better a reviewer recommendation ap-
proach is. In Practice, top-k accuracy measure the probabilistic of
hitting at least one valid reviewer so that the code change can be
reviewed. In literature, we set 𝑘=1, 3, 5, and 10, which is the same
as previous studies [9, 28].
Mean Reciprocal Rank (MRR): MRR is a popular metric for in-
formation retrieval technique [4] that is suitable for measuring the
ranked recommendation list. Given a code-review cr, its reciprocal
rank is the inverse of the first correct reviewer r in a rank list of
the recommendation. Mean Reciprocal Rank (MRR) is the average
of the average of the reciprocal ranks of code-reviews in a set of
chronological code-reviews. The MRR of a set of code-reviews CR
is computed as:

𝑀𝑅𝑅(𝑅) = 1
|𝑅𝑒𝑣𝑖𝑒𝑤𝑠 |

∑
𝑟 ∈Reviews

1
𝑟𝑎𝑛𝑘 (𝑟) (2)

where |𝐶𝑅𝑠 | denotes the number of code-reviews and rank(r) refers
to the rank of the first reviewer r in the recommended list. The
higher the MRR, the higher the ranking of the first correctly recom-
mended reviewer is.

Precision and recall are also common metrics used to evaluate
the effectiveness of CRR in previous work and we adopt the same
definitions [32].

3.3 Interview Methodology
3.3.1 Protocol. The first author of this paper conducted a series
of face-to-face interviews with nine software practitioners with
experience of reviewing code and being reviewed by others5. Each
interview took 35-45 minutes. We observed saturation of opinions
when our interviews were near the end.
Pilot Interview. The interview was semi-structured, which is
based on an interview guide. The guide contains general group-
ings of topics and questions instead of a pre-determined specific

5Participants were instructed that we wanted their opinions; privacy and sensitive
resources were not explicitly mentioned.

Code Reviewer Recommendation in Tencent: Practice, Challenge, and Direction ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA

set and order of questions. We build the interview guide in the pilot
interview with two interviewees. The pilot interview is an open-
ended discussion with senior developers developing or maintaining
the code review tool in the company. Interviewees in the pilot in-
terview are more familiar with the reviewer recommendation than
other developers. They introduce the hands-on experience of find-
ing code reviewers with assistance with a recommendation system.
The pilot interview helps us cover more topics and improve the
expression of questions. During the pilot interview and literature
review, we iteratively refine the questions in the interview guide,
which is used in the formal interview.

The formal interview consists of four parts in Table 1. Table 1
summarizes the main content and complete interview guide is on-
line6. In the first part, we asked demographic questions about the
programming preference, especially the interviewee’s experience
reviewing code and being reviewed by others. We also provided
interviewees with the experimental results in RQ1, explained the
detailed metrics, and asked their opinions about the performance.

In the second part, we asked several open-ended questions about
how they find appropriate code reviewers in assistance with a
recommendation system and the perceptions of the current system.
The purpose of this part is to allow the interviewees to express
feelings and expectations freely about the practical scenarios of
finding appropriate code reviewers.

In the third part, we presented interviewees with three lists of
topics covering three aspects (i.e., detailed feedback, scenarios, and
algorithm). We asked the interviewees to discuss topics that they
had not explicitly mentioned. The first list comes from the pilot
interviews to further investigate the detailed feedback of the cur-
rent recommendation system. The second list is designed to discuss
the scenarios of the reviewer recommendation system. The third
list briefly introduced the algorithm of the machine-learning-based
recommender. We asked interviewees to discuss the potential infor-
mation that we could use to augment the algorithm. The third list
also combines the questions in literature [12]. We choose the three
aspects (detailed feedback, scenarios, and algorithm) to ensure that
we can fully cover the topics of (1) understanding the practitioners’
requirements, (2) expected application scenarios, and (3) selecting
practical and cost-effective algorithms with necessary information.

In the fourth part, we presented rating questions (in 5-point
Likert scale: from Strongly Disagree to StronglyAgree) about the
relevant topics of code reviewer recommendation, including knowl-
edge sharing, environment challenges, tool feasibility, and review-
ing workload. The purpose of this part is to investigate how the
reviewer recommendation can impact other code review activities.

At the end of both the pilot and formal interviews, we allowed
interviewees to provide free-text comments, suggestions, and opin-
ions about code reviewer recommendations and our interview. An
interviewee may or may not provide any final comments. Last, we
thanked the interviewees and briefly introduced our next plan.

3.3.2 Participant Selection. We recruited full-time employees fa-
miliar with modern code review (MCR) in Tencent. This study is
intended to improve the code review tool experience so we can
communicate with the developers with on-hand experience about

6Interview guide online: https://mfr.osf.io/render?url=https%3A%2F%2Fosf.io%
2Fvcqpe%2Fdownload

Table 1: Summarization of four parts in the interview guide.

Part I: Demographic

Part II: Open-ended Discussion

Discussion 2.1: feelings and perceptions

Discussion 2.2: user experience improvements

Part III: Specific Topic Discussion

Discussion 3.1: Existing Practice Feedback

Topic 1: can current CRR system meets need
Topic 2: find reviewers in unfamiliar scenario
Topic 3: deal with inappropriate reviewers
Topic 4: deal with wrongly assigned reviewers
Topic 5: Information for selecting reviewers

Discussion 3.2: Code Review Recommendation Scenario

Topic 1: code review scenario
Topic 2: inner-source code review experience
Topic 3: differences between inner-source and open-source

Discussion 3.3: Code Review Recommendation Algorithm

Topic 1: expected algorithm
Topic 2: "hidden information" requests
Topic 3: algorithm improvements

Part 4: Statement Agreements

reviewer recommendation in the pilot interview as mentioned in
Section 3.3.1. We recruited interviewees by contacting the active
users of the in-company code review tool, who have a strong will-
ingness to provide suggestions to improve the code review process.

In this way, we recruited 11 interviewees (two for aforemen-
tioned pilot interview and nine for formal interview), and they
come from various business areas. All interviewees have an aver-
age of 7.1 years of professional experience (min: 4, max: 11, median:
5). Most interviewees preferred to describe themselves as multi-
language users, including Java, C++, Objective-C, Python, and other
script languages. Interviewees can only give a rough number of
reviewing/being during a particular period because it is not con-
stant. Most interviewees said performing 3-4 code reviews on each
day is suitable for them. All interviewees describe their role as
the developer, and two interviewees also take responsibility for
project management. In the remainder of the paper, we denote
these interviewees as I1 to I9.

3.3.3 Interview Data Analysis. To analyze the recorded interview
data, we conduct a thematic analysis [6] coupled with open card
sorting. We adopt the following steps after completing the last
interview.
Transcribing andCoding.We transcribed and verified the record-
ings of the interviews and built a comprehensive understanding
by reviewing the transcripts. The first author of this paper read
the transcripts and coded the interviews using NVivo qualitative
analysis software [27] in which similar statements or meanings are
marked as the same code number. The second author then verified
the initial codes created by the first author and helped improve
the way of coding. Last we merged the codes with nearly identical
or meanings and extract unique codes. We noticed that when the

https://mfr.osf.io/render?url=https%3A%2F%2Fosf.io%2Fvcqpe%2Fdownload
https://mfr.osf.io/render?url=https%3A%2F%2Fosf.io%2Fvcqpe%2Fdownload

ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA Chen et al.

Table 2: Counts of the selected proprietary projects.

Project ID Time Period # Reviews # Reviewers # Files # Review Per Day

P1 2018/10 - 2020/07 9,273 84 25,845 15.05
P2 2018/11 - 2021/06 24,413 195 33,717 25.86
P3 2019/02 - 2021/04 159 45 1,596 0.2
P4 2019/03 - 2021/06 674 87 2,143 0.81
P5 2019/09 - 2021/06 395 54 1,341 0.63
P6 2019/10 - 2021/06 1,028 165 177 1.74
P7 2019/11 - 2021/06 1,970 118 3,215 3.46
P8 2019/12 - 2020/09 177 49 262 0.63
P9 2020/01 - 2021/06 242 66 863 0.47
P10 2020/02 - 2021/06 3,060 77 3,556 6.18

interviews were near the end, the collected codes reached satura-
tion. There are no new codes that emerged, and the code list was
considered stable.
Open Card Sorting. This paper’s first two authors (labellers) read
and analyzed the derived codes separately and rephrased them
into cards. Then they sorted the generated cards and turned them
into potential themes for thematic similarity (used by Latoza et
al. [14] and Wan et al. [24]). The themes are not pre-defined before
the sorting phase. There can be bias caused by different subjective
cognition, sowe then use the Cohen’s Kappameasure [8] to examine
the agreement between the two labellers. The overall Kappa value
between the two labelers is 0.76, which indicates substantial7 After
completing the labelling process, the two labellers discussed the
disagreements to reach a consensus. To further reduce the bias from
the two authors, they both reviewed and agreed on the final set
of themes. Last, we derived the final statements that describe the
status and expectations of the code reviewer recommendation in
practice.

4 RESULTS
In this section, we show the results of two research questions. For
the first research question, we illustrate the results on proprietary
projects and further investigate the factors that influence the ef-
fectiveness. For the second research question, we organize the
interviewees’ opinions in the four parts separately and summarize
the practical findings in the interview.

4.1 RQ1: Effectiveness of CRR Approaches on
Proprietary Projects in Tencent

Table 2 shows the characteristics of the selected ten projects. Ta-
ble 3 shows the experimental results of the selected approaches on
projects from P1 to P10, covering areas of infrastructure, Fintech,
database, and so on. We refer to such an analysis as a retrospective
analysis as it is performed based on the historical data.

We can observe the results from the perspective of different met-
rics in Table 3. As the results are very informative, we analyze from
different perspectives to derive findings and discuss implications.
In a typical recommendation scenario, MRR can show the rank of
the correctly recommended reviewers when a particular algorithm
or scores order the results. Here it has a slightly different meaning
because the current system does not show reviewer lists sorted in

7Kappa value of [0.01, 0.20], (0.20, 0.40], (0.40, 0.60], (0.60, 0.80], and (0.80, 1] is consid-
ered as slight, fair, moderate, substantial, and almost perfect agreement, respectively

particular. Instead, it records the original order of selecting candi-
date reviewers. In other words, contributors invite code reviewers
by adding them into the candidate list one by one, and the system
can record such a process. Therefore, MRR can reflect how perfectly
the reviewer recommendation approaches can fit this “selection
process”. We can observe that MRR scores range from 0.2 (IR) to 0.47
(CN), which is equivalent to average ranks range from 5 to 2.1 in the
recommendation list. In other words, on average, the approaches
present an actual reviewer in ranks from 5 (IR) to about 2 (CN)
of the list of recommendations. We find the accuracy of different
recommendation numbers has the same descending trend (i.e., the
larger the number, the lower the performance). In particular, we can
pay attention to the top-5 accuracy as it reflects a practical usage
scenario: when a contributor launches a code review request, the
system showed a recommendation list where the number is about
5 (also mentioned in Section 2). The best-performed approach, CN,
reaches a score of 0.64, which means in about three in five (we can
also treat it as a probabilistic) reviews, at least one reviewer could
be actually recommended. In contrast, other approaches cannot
reach even a half. Finally, precision and recall have nearly the same
trend as accuracy, except that precision decreases when the recom-
mendation number enlarges. Most reviews require only one code
reviewer, thus the more it recommends, the lower the precision is.

We find that the selected approaches do not perform as well
in the original reports [23, 28, 30–32], which is applied on open-
source projects8. Even though ten projects are hard to cover all
situations and a larger scale may draw different conclusions, these
projects can still be representative of massive proprietary projects
with many developers.
� Finding 1. The selected CRR approaches perform worse on

proprietary projects than open-source projects.
From the perspective of approach differences, CN performs the

best on nearly all metrics, considering the average results. In con-
trast, IR has the worst performance. As for the project perspective,
average results cover up the differences between the projects; we
can see that CRR approaches in P8 and P9 perform better in nearly
all metrics. In particular, CN reaches 0.93 of accuracy@top-5 on P8,
which is considered to be very promising. Therefore, we further
investigate how the project characteristics can impact the results.
By analyzing the reviewer distributions on code reviews, we notice
a phenomenon that several reviewers covered a large proportion of
code reviews. For example, in P8 and P10, the top three reviewers
participated in over a half of total code reviews even when these
their projects were large (involving 49 and 77 reviewers as in Ta-
ble 2). We describe a project with “dominant reviewers” when less
than five reviewers participate in more than a half code reviews.
The project should be middle or large (more than 20 developers) as
small projects naturally have “dominant reviewers”. Note that our
definition is based on ten proprietary projects in Tencent, and a
more accurate definition and precise thresholds could be given by a
larger scale study. When there are “dominant reviewer” in projects,
CRR approaches that only involves the experience of commit histo-
ries may achieve a relatively lower performance (i.e., approaches
except for CN), which is consistent with the explanation by Yu
et al. [31]. Besides, in projects with “dominant reviewers”, CRR

8We also performed replication experiments to confirm the conclusions as in Section 5

Code Reviewer Recommendation in Tencent: Practice, Challenge, and Direction ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA

Table 3: MRR and accuracy, precision, and recall of top 1, 3, 5, 10 of the selected approaches on ten proprietary projects.

Approach Project MRR top1@acc. top3@acc. top5@acc. top10@acc. top1@prec. top3@prec. top5@prec. top10@prec. top1@recall top3@recall top5@recall top10@recall

RevFinder P1 0.16 0.06 0.19 0.30 0.46 0.06 0.06 0.06 0.05 0.06 0.19 0.29 0.45
P2 0.27 0.14 0.31 0.46 0.60 0.14 0.10 0.09 0.06 0.14 0.31 0.45 0.59
P3 0.07 0.00 0.17 0.17 0.17 0.00 0.06 0.03 0.02 0.00 0.17 0.17 0.17
P4 0.17 0.06 0.23 0.31 0.52 0.06 0.08 0.06 0.05 0.06 0.23 0.31 0.52
P5 0.15 0.13 0.16 0.17 0.18 0.13 0.05 0.03 0.02 0.13 0.16 0.17 0.18
P6 0.13 0.10 0.16 0.17 0.24 0.10 0.05 0.03 0.02 0.10 0.16 0.17 0.23
P7 0.20 0.13 0.21 0.29 0.45 0.13 0.07 0.06 0.05 0.10 0.19 0.26 0.41
P8 0.60 0.33 0.89 0.89 0.93 0.33 0.31 0.20 0.11 0.23 0.72 0.75 0.78
P9 0.42 0.27 0.51 0.73 0.73 0.27 0.19 0.17 0.09 0.19 0.37 0.59 0.63
P10 0.50 0.33 0.64 0.73 0.79 0.33 0.24 0.18 0.10 0.21 0.48 0.59 0.67

Average 0.27 0.16 0.35 0.42 0.51 0.16 0.12 0.09 0.06 0.12 0.30 0.38 0.46

TIE P1 0.37 0.24 0.36 0.53 0.67 0.24 0.12 0.11 0.07 0.21 0.33 0.49 0.63
P2 0.24 0.11 0.27 0.37 0.57 0.11 0.09 0.07 0.06 0.09 0.21 0.28 0.45
P3 0.06 0.02 0.04 0.06 0.15 0.02 0.01 0.01 0.01 0.02 0.04 0.06 0.15
P4 0.16 0.07 0.15 0.22 0.41 0.07 0.05 0.04 0.04 0.07 0.15 0.22 0.41
P5 0.35 0.20 0.44 0.53 0.60 0.20 0.15 0.11 0.06 0.20 0.44 0.52 0.59
P6 0.19 0.11 0.23 0.28 0.33 0.11 0.08 0.06 0.03 0.11 0.23 0.28 0.33
P7 0.21 0.14 0.20 0.26 0.37 0.14 0.07 0.05 0.04 0.12 0.18 0.24 0.35
P8 0.51 0.28 0.76 0.76 0.80 0.28 0.25 0.16 0.09 0.18 0.47 0.50 0.55
P9 0.44 0.24 0.55 0.70 0.80 0.24 0.20 0.17 0.10 0.17 0.37 0.52 0.61
P10 0.46 0.22 0.67 0.74 0.80 0.22 0.24 0.16 0.09 0.17 0.56 0.63 0.69

Average 0.30 0.16 0.37 0.45 0.55 0.16 0.13 0.09 0.06 0.13 0.30 0.37 0.48

IR P1 0.25 0.07 0.33 0.52 0.71 0.07 0.11 0.10 0.07 0.05 0.28 0.47 0.66
P2 0.17 0.04 0.18 0.37 0.60 0.04 0.06 0.07 0.06 0.03 0.15 0.29 0.49
P3 0.02 0.00 0.06 0.06 0.06 0.00 0.02 0.01 0.01 0.00 0.06 0.06 0.06
P4 0.05 0.00 0.04 0.06 0.30 0.00 0.01 0.01 0.03 0.00 0.04 0.06 0.30
P5 0.07 0.03 0.09 0.11 0.16 0.03 0.03 0.02 0.02 0.03 0.09 0.11 0.16
P6 0.08 0.05 0.09 0.13 0.17 0.05 0.03 0.03 0.02 0.05 0.09 0.13 0.17
P7 0.19 0.13 0.21 0.27 0.39 0.13 0.07 0.05 0.04 0.10 0.18 0.14 0.36
P8 0.45 0.31 0.44 0.74 0.81 0.31 0.18 0.18 0.11 0.20 0.33 0.54 0.63
P9 0.20 0.11 0.21 0.31 0.52 0.11 0.08 0.06 0.06 0.07 0.16 0.22 0.37
P10 0.51 0.36 0.61 0.67 0.80 0.36 0.23 0.16 0.10 0.22 0.44 0.49 0.65

Average 0.20 0.11 0.23 0.32 0.45 0.11 0.08 0.07 0.05 0.08 0.18 0.25 0.39

CN P1 0.41 0.24 0.51 0.64 0.85 0.24 0.17 0.13 0.09 0.24 0.50 0.63 0.84
P2 0.67 0.57 0.77 0.83 0.86 0.57 0.26 0.17 0.09 0.56 0.75 0.81 0.85
P3 0.26 0.20 0.30 0.30 0.50 0.20 0.10 0.06 0.05 0.20 0.30 0.30 0.50
P4 0.50 0.41 0.57 0.63 0.70 0.41 0.19 0.13 0.07 0.40 0.57 0.63 0.70
P5 0.58 0.51 0.66 0.70 0.71 0.51 0.22 0.14 0.07 0.50 0.64 0.68 0.70
P6 0.28 0.21 0.32 0.40 0.47 0.21 0.11 0.08 0.05 0.21 0.32 0.40 0.47
P7 0.42 0.24 0.57 0.68 0.75 0.24 0.19 0.14 0.07 0.24 0.52 0.63 0.70
P8 0.60 0.33 0.89 0.93 0.93 0.33 0.32 0.21 0.12 0.23 0.73 0.78 0.83
P9 0.48 0.33 0.56 0.67 0.80 0.33 0.21 0.17 0.10 0.23 0.42 0.57 0.69
P10 0.50 0.35 0.62 0.66 0.78 0.35 0.23 0.15 0.10 0.22 0.45 0.49 0.64

Average 0.47 0.34 0.58 0.64 0.74 0.34 0.20 0.14 0.08 0.30 0.52 0.59 0.69

cHRev P1 0.24 0.16 0.28 0.35 0.47 0.16 0.09 0.07 0.05 0.15 0.27 0.34 0.46
P2 0.32 0.23 0.35 0.45 0.55 0.23 0.12 0.09 0.06 0.22 0.34 0.44 0.54
P3 0.04 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.28
P4 0.27 0.20 0.31 0.37 0.44 0.20 0.10 0.07 0.04 0.20 0.31 0.37 0.44
P5 0.49 0.39 0.56 0.63 0.68 0.39 0.19 0.13 0.07 0.38 0.55 0.62 0.67
P6 0.18 0.12 0.23 0.27 0.30 0.12 0.08 0.05 0.03 0.12 0.23 0.27 0.30
P7 0.33 0.23 0.41 0.47 0.51 0.23 0.14 0.09 0.05 0.20 0.38 0.43 0.47
P8 0.11 0.04 0.07 0.07 0.39 0.04 0.02 0.01 0.04 0.02 0.04 0.04 0.27
P9 0.27 0.17 0.31 0.41 0.49 0.17 0.12 0.10 0.06 0.11 0.24 0.32 0.39
P10 0.64 0.49 0.74 0.84 0.89 0.49 0.30 0.21 0.12 0.34 0.60 0.71 0.80

Average 0.29 0.20 0.33 0.39 0.50 0.20 0.12 0.08 0.06 0.17 0.30 0.35 0.46

approaches are intended to recommend “dominant reviewers” re-
peatedly. CRR approaches in such projects are likely to be less
helpful as practitioners may not need such recommendations, and
the repetition skewed reviews assignment in turn.

� Finding 2.We find that project characteristics can impact
the effectiveness of CRR approaches, and projects with “dom-
inant reviewers” are intended to perform well.

We notice a “cold start problem” when discussing how to em-
bed the code reviewer recommendation in a practical code review
tool. “Cold start problem” is a common issue in recommendation
system [13, 26]. It happens when machine-learning-based CRR
approaches do not learn a good-enough model at the beginning
of a project, determining the feasibility of a newly deployed CRR
approach in turn.

Figure 2 shows the performance (average top5@accuracy and
MRR of the ten projects) of the CN (the best performed CRR ap-
proach) in chronological order. We get the results by extracting
the performance of CN week by week. We can observe that their
performance of CN suffers from a relatively low performance at
the first several weeks and fluctuations before reaching the best
performance. Similarly, other selected CRR approaches suffer from
the “cold start problem” that the performance cannot increase in

1 5 10 15 20 25
Week

0.40

0.45

0.50

0.55

0.60

0.65

Top-5 Accuracy
MRR

Figure 2: Average top-5 accuracy and MRR of CN (the best
performed CRR approach) on ten proprietary projects in
chronological order (by weeks).

a short time at the beginning [5]. In particular, on the project P9,
all CRR approaches fail to hit any correct reviewers for a long time
(i.e., get zero scores for up to three weeks). We describe it as a
project-level “cold start problem” in CRR.

ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA Chen et al.

Though the project-level “cold start problem” is not explicitly
touched before, a prior study proposed by Asthana et al. mentioned
a different “cold start problem” in CRR that [2] when new files are
added to the repositories, they are not possible to directly link the
new files to the potential reviewers. We describe it as a file-level
“cold start problem”. We can treat the file-level one as a partial ex-
planation of the project-level “cold start problem” because CRR ap-
proaches need time to learn the weight of new files (if the approach
involves files). Manymachine-learning-based CRR approaches train
models chronologically, making it hard to avoid “cold start” when
there are little data at the beginning. We can consider algorithm
improvement (e.g., few-shot learning [25] for an early phase) or
adopt other strategies (e.g., manual rules) to alleviate the “cold start
problem”.

� Finding 3. “Cold start problem” impacts the machine-
learning-based CRR approaches, determining the feasibility
and effectiveness of newly deployed approaches.

4.2 RQ2: Interview with Practitioners on Code
Reviewer Recommendation

The formal interview consists of four parts, as mentioned in Sec-
tion 3.3.1. We show the summarized results and the findings for
each part, respectively.

The second part is an open-ended discussion (the Part II as
in Table 1). We asked interviewees about the feedback of using
the current reviewer recommendation system (i.e., the scenario
S2 mentioned in background Section 2). The current system is
configuration-based which records the authorship and ownership
of code changes. More than a half of interviewees (5) said the cur-
rent system could satisfy their requirements in daily development
because when the contributor-reviewer relationships are relatively
stable, such a fixed configuration can support the requirements of
finding reviewers.

However, such a configuration is maintained manually, which
cannot update in time if the contributor-reviewer relationship
changes. We categorize such “relationship change” into four kinds
of situations mentioned in the interview. First, staff turnovers can
make the configuration invalid. For example, I6 said “Sometimes
such a configuration is the only resource for me to find code reviewers.
However, it can be invalid when the recorded developer resigns.”. It is
also noticed in previous work [17]. Second, newcomers who are not
familiar with the project cannot be assigned to the configuration,
leading to delayed updates. Third, the configuration is invalid for
some inner-source projects as it is hard to maintain such a configu-
ration. For example, I8 said in some inner-source projects, “I can
only ask the project leader to manually identify who should review,
causing a time waste”. Last, some legacy system lacks such a code
ownership configuration. In summary, the configuration-based sys-
tem cannot assure scalability, and the configuration accuracy decays
quickly, confronting the situations above.

� Finding 4. When the contributor-reviewer relationship is
relatively stable, configuration-based recommendations sup-
port daily requirements of finding reviewers. However, the
manual-maintained configuration cannot assure scalability,
and its quality decays quickly.

For the third part, we asked several aspects of code reviewer
recommendation (the Part III shown in Table 1). When discussing
the user experience of code reviewer recommendation, four inter-
viewees mentioned a “notification noise” of code review requests.
When code contributors create code review requests, they are in-
tended to invite many code reviewers. As most files or directories
require only one code reviewer, most CR request invitations are
ignored. For example, I3 said “Though I finish about ten code re-
views each week, I may receive up to 100 code review requests. Most
of these requests are ignored. Urgent requests are covered up, and
contributors have to ask for reviewing code by calling or in other
ways.” From the perspective of code contributors, it is reasonable as
MCR asynchronously finishes code review and inviting more code
reviewers can guarantee the CR process. However, it is hard for the
code reviewers to prioritize code review requests on the invitation
system, especially when they are overwhelmed by the notifications.
Note that such a “notification noise” is not simply equivalent to
a heavy code review workload. It is more likely to be caused by
excessive code review invitation. I3 said “ I have to ignore the whole
CR notifications and decide what to review based on my schedule and
manually decide the prioritization.” Hence, we observe such noises
risk making the invitation phase (S3) invalid and turning the auto-
matic workflow back to manual. I4 mentioned that he expected the
intelligent CRR can help reduce the the number of code reviewer
invitaion. To improve the feasibility of CRR, practical tool should
consider a trade-off between the recommended reviewer number
and the CRR accuracy.

� Finding 5. An excessive of invitation in the CRR system
can cause “notification noise” for code reviewers, even inval-
idating the code review invitation process. Code reviewer
recommendations should consider the issue and find a trade-
off between the recommendation size and the accuracy.

We introduced the standard algorithm of CRR approaches (in-
cluding the selected five approaches) during the interview. We
briefly described them as “learning the historical CR-related data to
predict and recommend reviewers”.We referred to it as an “machine-
learning-based code reviewer recommendation” and asked their
opinions and expectation. All interviewees showed positive atti-
tudes towards these approaches and expected it could help improve
the efficiency when finding code reviewers. However, some inter-
viewees pointed out that we need more efforts to make such an
“machine-learning-based CRR” useful in practice. Precisely, though
the CRR performance of the selected approaches is acceptable as
discussed in RQ1, retrospective analysis can only reflect the history.
In practice, various code review situations should be considered
when recommending code reviewers. Sometimes code contributors
expect the code can be merged as quickly as possible, which is also
an (implicit) of many approaches in literature. However, in other
situations, contributors may expect to gain knowledge from the
code review process. For example, I3 said, “I do not always need
the recommendation learned from historical data. When I want my
code to be improved during code review, I prefer a senior profes-
sional to give high-level suggestions instead of reviewers who are
already familiar with the code.”

In particular, the implementation of code reviewer recommenda-
tions matters. Five interviewees gave special care about the speed

Code Reviewer Recommendation in Tencent: Practice, Challenge, and Direction ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA

of the machine-learning-based CRR approaches. The training speed
and the inference speed (recommendation speed) can impact the
user experience. A good reviewer recommendation should be de-
signed in a non-invasive way that interrupts the code review.

� Finding 6. Even though practitioners are confident about the
machine-learning-based CRR approaches, a practical CRR
system should consider various situations and works in a
non-invasive way.

When discussing the CRR algorithm improvement, most in-
terviewees (5) mainly focused on provided suggestions about in-
cluding more CR-related information based on their experience
and intuition. Their suggestions include (1) the time recency (e.g.,
“newer modified reviewers are likely to be active”), (2) improving new
files’ weights and frequency, (3) learning similar file path and code
changes, and (4) considering the reviewers’ social networks. Even
though the suggested information are all covered in literature [2],
such suggestions provide empirical evidence of adopting these data
in the algorithm.

All interviewees suffer from unfamiliar reviewers as they could
get limited information on from the system. Therefore, an expecta-
tion of code reviewer recommendation is bridging the information
gap between code contributors and code reviewers, especially when
they are not familiar with each other. For example, all interviewees
agreed that showing recommending reasons for code contributors
could help find appropriate reviewers. Similarly, I6 expressed that
code reviewers also expected more information about the CR re-
quests in turn.

� Finding 7. Practitioners expect the CRR system considers
as much code review related information as possible. CRR
system should help code contributors and code reviewers get
more information about each other to facilitate the reviewer
selecting process.

5 DISCUSSION
Code reviewer recommendation is an essential step in the whole
code review workflow. Automating such a process can have an
impact on the code review process in turn. Therefore, we discuss
such implications of CRR approaches on the code review. Figure 3
shows the results of the statement agreements (the Part IV as in
Table 1). We discussed all statements under the background of CRR.
Interviewees expect to find reviewers who are familiar with the code
changes, and they can also help gain knowledge and improve their
ability. Inner-source practice does challenge the CRR as it involves
more developers across different projects. Besides, reviewers also
expect CRR to alleviate the review burden by helping reduce the
invitation numbers (if accurate enough).
Different effectiveness of CRR approaches between propri-
etary and open-source projects. In RQ1, we conclude the se-
lected approaches do not perform as well on the original reports. To
avoid bias caused by experimental settings, We applied the selected
approaches on originally used open-source projects Android, Open-
Stack, LibreOffice, and QT. We use the Mann-Whitney’s U test [16]
in terms of MRR, accuracy, precision, and recall on review requests
of two kinds of projects. The results confirm that the difference in
performance on Tencent and open-source projects are statistically

0%25%50% 25% 50% 75% 100%
Percentage of Interviewee Responses

Senior reviewers can help gain knowledge and improve ability

Reviewers familiar with code can help gain knowledge and improve ability

Inner-source practice increases burden of code review

Inner-source projects face more business pressures

Giving recommending reasons can help make better decisions

As a reviewer, I can get positive feedback performing code reviews

As a reviewer, I often feel the code review burden is heavy

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 3: Statement agreements of the CRR impact.

significant, with a p-value close to zero. These replication experi-
ments substantiate the selected existing approaches cannot perform
well on proprietary projects. The inner-source brings the needs of
code reviewing in touch with different unfamiliar developers. Even
though the inner-source environment is similar to open-source,
inner-source projects still have a business burden compared to
open-source projects. Through offline experiments, we find that
the metrics are not as high as those on open-source projects. It
reveals the need of applying CRR approaches. Furthermore, the
code reviewer recommendations can improve the scalability of
the projects. Specifically, when the team is small or contributor-
reviewer relationships are relatively stable, the algorithm does not
seem to be necessary. However, the previous tools cannot support
the complicated code reviewing environment when the number of
team members grows. For example, TIE can learn the newly added
reviewers dynamically to improve the scalability.
Evaluation limitation of retrospective analysis. When eval-
uating a CRR approach, to gain oracle conveniently, researchers
follow an (often implicit) assumption that those who participated in
the code review were the best developer to review the change, and
those who were not invited were not appropriate reviewers [2]. We
find the assumption can be valid when the purpose of code review
is to pass the CR as soon as possible for subsequent tasks (e.g., merg-
ing or testing). However, when the purpose is gaining knowledge
or improving code in a high-level by code review, it is hard to say
the assumption can meet the needs. As for metrics, MRR cannot
reflect practice well because developers are intended to add more
candidates when they are not sure about the reviewers (as discussed
in “notification issue”). However, when applying CRR approaches, it
can be a good indicator to determine the recommendation number
(instead of invite as much developer as possible).

6 THREATS TO VALIDITY
A threat to validity is that this paper only performs analysis in one
company. However, Tencent is an international IT company with
more than 80 thousand employees and covers many essential areas.
Our samples cover different businesses, including games, instant
communication, cloud, and so on. Such variety leads to different
patterns of software development and code review environment.We
believe such variety can guarantee the analysis can cover scenarios
and the generality of our implications.

Another threat to validity is that our interviewees may not fully
understand code reviewer recommendations or our questions well
as developers are familiar with the role of “contributor” or “re-
viewer”. The recommendation system is in the backend and works

ICSE 2022, 15 - 19 May, 2022, Pittsburgh, PA, USA Chen et al.

as a black box for them. Their responses may introduce noise to
the interview results. To reduce this threat, we briefly describe the
recommendation scenarios and introduce the standard recommen-
dation algorithm before a formal interview to ensure interviewees
can appropriately understand the whole interview topic. Hence, a
more comprehensive oracle of code reviewer recommendation is
required to address the shortcomings of existing evaluation.

7 CONCLUSION AND FUTUREWORK
In recent years, code reviewer recommendation has been a popular
research topic, helping modern code reviews better match code
contributors and code reviewers. This paper performs an empirical
analysis of existing CRR approaches in the international giant IT
company Tencent. Based on the retrospective results, we further
conducted interviews with practitioners about the expectations of
CRR in practical environment. We show the findings, present impli-
cations, and discuss future direction of applying CRR approaches
in practice.

In future, we plan to address the algorithm challenges discussed
in the retrospective analysis. We also plan to deploy a recommen-
dation system incorporating the implications and suggestions pro-
vided by the practitioners.

8 ACKNOWLEDGEMENT
The authors showed their sincere appreciation for all Tencent de-
velopers who interviewed with us as well as their precious opinions
on the code reviewer recommendation practice.

REFERENCES
[1] Wisam Haitham Abbood Al-Zubaidi, Patanamon Thongtanunam, Hoa Khanh

Dam, Chakkrit Tantithamthavorn, and Aditya Ghose. 2020. Workload-aware
reviewer recommendation using a multi-objective search-based approach. In
Proceedings of the 16th ACM International Conference on Predictive Models and
Data Analytics in Software Engineering. ACM, Virtual USA, 21–30.

[2] Sumit Asthana, Rahul Kumar, Ranjita Bhagwan, Christian Bird, Chetan Bansal,
Chandra Maddila, SonuMehta, and B. Ashok. 2019. WhoDo: automating reviewer
suggestions at scale. In Proceedings of the 2019 27th ACM JointMeeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, Tallinn Estonia, 937–945.

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, San Francisco, CA, USA, 712–721.

[4] Ricardo Baeza-Yates and Berthier A. Ribeiro-Neto. 2011. Modern Information
Retrieval - the concepts and technology behind search, Second edition. Pearson
Education Ltd., Harlow, England. http://www.mir2ed.org/

[5] JesúS Bobadilla, Fernando Ortega, Antonio Hernando, and Jesús Bernal. 2012.
A collaborative filtering approach to mitigate the new user cold start problem.
Knowledge-based systems 26 (2012), 225–238.

[6] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101. Publisher: Taylor & Francis.

[7] M. E. Fagan. 1999. Design and code inspections to reduce errors in program
development. IBM Systems Journal 38, 2.3 (1999), 258–287. Conference Name:
IBM Systems Journal.

[8] Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin 76, 5 (1971), 378.

[9] Yuanzhe Hu, Junjie Wang, Jie Hou, Shoubin Li, and Qing Wang. 2020. Is There A
"Golden" Rule for Code Reviewer Recommendation? : —An Experimental Evalu-
ation. In 2020 IEEE 20th International Conference on Software Quality, Reliability
and Security (QRS). IEEE, Macau, China, 497–508.

[10] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. 2017. Who should
comment on this pull request? analyzing attributes for more accurate commenter
recommendation in pull-based development. Information and Software Technology
84 (2017), 48–62. Publisher: Elsevier.

[11] Huzefa Kagdi, Maen Hammad, and Jonathan I. Maletic. 2008. Who can help me
with this source code change?. In 2008 IEEE International Conference on Software
Maintenance. IEEE, Beijing, China, 157–166.

[12] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Al-
berto Bacchelli. 2018. Does reviewer recommendation help developers? IEEE
Transactions on Software Engineering 46, 7 (2018), 710–731. Publisher: IEEE.

[13] Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc Duong. 2008. Addressing
cold-start problem in recommendation systems. In Proceedings of the 2nd inter-
national conference on Ubiquitous information management and communication.
208–211.

[14] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental
models: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering. 492–501.

[15] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and
Jacek Czerwonka. 2017. Code reviewing in the trenches: Challenges and best
practices. IEEE Software 35, 4 (2017), 34–42.

[16] Henry B. Mann and Donald R. Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60. Publisher: JSTOR.

[17] Ehsan Mirsaeedi and Peter C. Rigby. 2020. Mitigating turnover with code review
recommendation: balancing expertise, workload, and knowledge distribution. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing. ACM, Seoul South Korea, 1183–1195.

[18] Mohammad Masudur Rahman, Chanchal K. Roy, and Jason A. Collins. 2016.
CORRECT: Code Reviewer Recommendation in GitHub Based on Cross-Project
and Technology Experience. Proceedings of the 38th International Conference on
Software Engineering Companion (2016), 222–231.

[19] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice. ACM, Gothenburg Sweden, 181–190.

[20] CACM Staff. 2019. CodeFlow: improving the code review process at Microsoft.
Commun. ACM 62, 2 (2019), 36–44.

[21] Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman. 2020.
Using a context-aware approach to recommend code reviewers: findings from an
industrial case study. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: Software Engineering in Practice. ACM, Seoul South Korea,
1–10.

[22] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz,
Norihiro Yoshida, and Hajimu Iida. 2014. Improving code review effectiveness
through reviewer recommendations. In Proceedings of the 7th International Work-
shop on Cooperative and Human Aspects of Software Engineering. ACM, Hyderabad
India, 119–122.

[23] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. 2015. Who should
review my code? A file location-based code-reviewer recommendation approach
for Modern Code Review. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, Montreal, QC, Canada,
141–150.

[24] Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy. 2019. How does machine
learning change software development practices? IEEE Transactions on Software
Engineering (2019). Publisher: IEEE.

[25] Yaqing Wang and Quanming Yao. 2019. Few-shot learning: A survey. (2019).
[26] Jian Wei, Jianhua He, Kai Chen, Yi Zhou, and Zuoyin Tang. 2017. Collaborative

filtering and deep learning based recommendation system for cold start items.
Expert Systems with Applications 69 (2017), 29–39. Publisher: Elsevier.

[27] Elaine Welsh. 2002. Dealing with data: Using NVivo in the qualitative data
analysis process. In Forum qualitative sozialforschung/Forum: qualitative social
research, Vol. 3. Issue: 2.

[28] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. 2015. Who should review
this change?: Putting text and file location analyses together for more accurate
recommendations. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, Bremen, Germany, 261–270.

[29] Haochao Ying, Liang Chen, Tingting Liang, and JianWu. 2016. EARec: leveraging
expertise and authority for pull-request reviewer recommendation in GitHub.
In Proceedings of the 3rd International Workshop on CrowdSourcing in Software
Engineering - CSI-SE ’16. ACM Press, Austin, Texas, 29–35.

[30] Yue Yu, Huaimin Wang, Gang Yin, and Charles X. Ling. 2014. Reviewer Rec-
ommender of Pull-Requests in GitHub. In 2014 IEEE International Conference on
Software Maintenance and Evolution. IEEE, Victoria, BC, Canada, 609–612.

[31] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-
tion for pull-requests in GitHub: What can we learn from code review and bug
assignment? Information and Software Technology 74 (2016), 204–218.

[32] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automat-
ically Recommending Peer Reviewers in Modern Code Review. IEEE Transac-
tions on Software Engineering 42, 6 (2016), 530–543. http://ieeexplore.ieee.org/
document/7328331/

[33] H. Alperen Çetin, Emre Doğan, and Eray Tüzün. 2021. A review of code reviewer
recommendation studies: Challenges and future directions. Science of Computer
Programming 208 (2021), 102652.

http://www.mir2ed.org/
http://ieeexplore.ieee.org/document/7328331/
http://ieeexplore.ieee.org/document/7328331/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Code Review Workflow in Tencent
	2.2 Code Reviewer Recommendation in Practice

	3 Research Methodology
	3.1 Overview
	3.2 Experiment Methodology
	3.3 Interview Methodology

	4 Results
	4.1 RQ1: Effectiveness of CRR Approaches on Proprietary Projects in Tencent
	4.2 RQ2: Interview with Practitioners on Code Reviewer Recommendation

	5 Discussion
	6 Threats to validity
	7 Conclusion and Future Work
	8 Acknowledgement
	References

