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Abstract—Current state-of-the-art automatic software repair
(ASR) techniques rely heavily on incomplete specifications, or
test suites, to generate repairs. This, however, may cause ASR
tools to generate repairs that are incorrect and hard to generalize.
To assess patch correctness, researchers have been following two
methods separately: (1) Automated annotation, wherein patches
are automatically labeled by an independent test suite (ITS) –
a patch passing the ITS is regarded as correct or generalizable,
and incorrect otherwise, (2) Author annotation, wherein authors
of ASR techniques manually annotate the correctness labels of
patches generated by their and competing tools. While automated
annotation cannot ascertain that a patch is actually correct,
author annotation is prone to subjectivity. This concern has
caused an on-going debate on the appropriate ways to assess
the effectiveness of numerous ASR techniques proposed recently.

In this work, we propose to assess reliability of author and
automated annotations on patch correctness assessment. We do
this by first constructing a gold set of correctness labels for
189 randomly selected patches generated by 8 state-of-the-art
ASR techniques through a user study involving 35 professional
developers as independent annotators. By measuring inter-rater
agreement as a proxy for annotation quality – as commonly done
in the literature – we demonstrate that our constructed gold set is
on par with other high-quality gold sets. We then compare labels
generated by author and automated annotations with this gold
set to assess reliability of the patch assessment methodologies. We
subsequently report several findings and highlight implications
for future studies.

I. INTRODUCTION

Bug fixing is notoriously difficult, time-consuming, and

costly [1], [2]. Hence, effective automatic software repair

(ASR) techniques that can help reduce the onerous burden

of this task, would be of tremendous value. Interest in ASR

has intensified in recent years as demonstrated by substantial

work devoted to the area [3]–[14], bringing the futuristic idea

of ASR closer to reality. ASR can be divided into two main

families: heuristics- vs. semantics-based approaches, based on

the way they generate and traverse the search space for repairs.

Ideally, complete specifications should be used for assessing

correctness of patches generated by ASR. It is, however, very

hard to obtain complete specifications in practice. ASR tech-

niques thus typically resort to using test cases as the primary

criteria for correctness judgment of machine-generated patches

– a patch is considered correct if it passes all the tests used for

repair [9]. This assessment methodology, however, has been

shown to be ineffective. There could be multiple patches that

pass all the tests but are still incorrect [15], [16], causing the

so-called patch overfitting [17], [18]. This happens because the

search space is often very large and contains many plausible

repairs, which unduly pass all tests but fail to generalize. This

thus motivates the need of new methodologies to assess patch

correctness. The new methodologies need to rely on additional

criteria instead of using the test suite used for generating repair

candidates (aka. repair test suite) alone.

To address this concern, recent works have been following

two methods for patch correctness assessment separately:

• Automated annotation by independent test suite. In-

dependent test suites obtained via an automatic test case

generation tool are used to determine correctness label of a

patch – see for example [17], [19]. Following this method,

a patch is deemed as correct or generalizable if it passes

both the repair and independent test suites, and incorrect
otherwise.

• Author annotation. Authors of ASR techniques manually

check correctness labels of patches generated by their own

and competing tools – see for example [20], [21]. Following

this method, a patch is deemed as correct if authors perceive

a semantic equivalence between the generated patches and

the original developer patches.

While the former is incomplete, in the sense that it fails

to prove that a patch is actually correct, the latter is prone

to author bias. In fact, these inherent disadvantages of the

methods have caused an on-going debate in the program

repair community as to which method is better for assessing

the effectiveness of various ASR techniques being proposed

recently. Unfortunately, there has been no extensive study that

objectively assesses the two patch validation methods and pro-

vides insights into how the evaluation of ASR’s effectiveness

should be conducted in the future.

In this work, we conduct a study that addresses this gap in

research. We start by creating a gold set of correctness labels

for a collection of ASR generated patches, and subsequently

use it to assess reliability of labels created through author

and automated annotations. We study a total of 189 patches

generated by 8 popular ASR techniques (ACS [20], Kali [15],

GenProg [20], Nopol [8], S3 [22], Angelix [4], and Enumera-
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tive and CVC4 embedded in JFix [13]). These patches are for

buggy versions of 13 real-world projects, of which six projects

are from Defects4J [23] (Math, Lang, Chart, Closure, Mockito,

and Time) and seven projects are from S3’s dataset [22] (JFlex,

Fyodor, Natty, Molgenis, RTree, SimpleFlatMapper, Graph-

Hoper). To determine correctness of each patch, we follow

best practice by involving multiple independent annotators in a

user study. Our user study involves 35 professional developers;

each ASR-generated patch is labeled by five developers by

comparing the patch with its corresponding ground truth patch

created by the original developer(s) who fixed the bug. We then

analyze the reliability of created gold set and compare it with

labels generated by three groups of ASR tool authors [21],

[22], [24] and two automatic test case generation tools such

as DIFFTGEN that has been used in prior study [25] and

RANDOOP [26] that we use in this study. We answer three

research questions:

RQ1 Can independent annotators agree on patch correctness?
RQ2 How reliable are patch correctness labels generated by

author annotation?
RQ3 How reliable are patch correctness labels inferred

through automatically generated independent test suite?

In RQ1, by measuring inter-rater agreement as a proxy of

annotation quality – as commonly done in the literature [27],

[28] – we demonstrate that our gold set has substantial inter-

rater scores and thus is on par with other high-quality gold

sets. In the subsequent two RQs, we investigate the strengths

and deficiencies of author and automated patch correctness

annotation.

We summarize our contributions below:

• We are the first to investigate the reliability of author

and automated annotation for assessing patch correctness.

To perform such assessment, we have created a gold set

of labelled patches created by a user study involving 35

professional developers. By means of this gold set, we

highlight strengths and deficiencies in popular assessment

methods employed by existing ASR studies.

• Based on the implications of our findings, we provide

several recommendations for future ASR studies to better

deal with patch correctness validation. Specifically, we find

that automated annotation, despite being less effective as

compared to author annotation, can be used to augment

author annotation and reduce the cost of manual patch

correctness assessment.

The rest of the paper is organized as follows. Section II

describes background for this work. Section III describes how

we collect gold set of patch correctness labels. We answer RQs

to assess the quality of our gold set, author annotation, and

automated annotation in Section IV, V, and VI respectively.

Section VII discusses our findings, post-study survey, threats

to validity, and future extensions. Section IX concludes.

II. BACKGROUND

In this section, we describe automated software repair

(ASR) techniques used in our experiments. We subsequently

describe popular patch validation methods used in ASR re-

search. Finally, we discuss best practices in building gold sets.

ASR techniques: GenProg [9] is one of the first techniques

that sparked interests in ASR. Given a buggy program and

a set of test cases, at least one of which is failing, GenProg

uses a number of mutation operators, such as statement delete,

insert, and append, to create a large pool of repair candidates.

It then uses genetic programming to apply the mutations

and evolve the buggy program until a candidate passing

all the tests is found. Kali [15] is a naive ASR technique,

which just blindly deletes any statements that are identified as

potentially buggy. Despite being very simple, Kali has been

shown to be as effective and efficient as GenProg. Nopol [8]

is a recently developed ASR technique that focuses on only

repairing defective if-conditions. Nopol attempts to synthesize

an if-condition expression that renders all the tests to pass

by using program synthesis. In a similar vein, ACS [20] also

focuses on synthesizing repairs for buggy if-conditions. Like

Nopol, ACS also uses program synthesis to create repairs.

Unlike Nopol, ACS attempts to rank the repair candidates

using various ranking functions. Angelix [4], S3 [22], and

JFix [13] use symbolic execution and constraint solving to

infer specifications and various program synthesis techniques

to synthesize repairs conforming to the inferred specifications.

Angelix uses component-based synthesis [29], while S3 and

JFix use syntax-guided synthesis [30].

Evaluation of ASR Generated Patches: Initially in ASR

research, test cases were used as the sole criteria for judging

correctness of machine-generated patches. By relying on the

assumption that a patch that passes the repair test suite is re-

garded as correct, early repair techniques such as GenProg [9],

AE [31], and RSRepair [32] reported to produce many such

correct patches. However, it has been shown in recent studies

that this assumption does not hold true in practice since

such patches that pass the repair test suite are actually still

incorrect [15], [16]. This shows that using a repair test suite

alone is a weak proxy for assessing patch correctness.

Motivated by the above serious concern, researchers have

employed new methods to assess patch correctness: (1) Author

annotation, in which authors of repair techniques manually

check the correctness of patches generated by their and

competing tools by themselves – see for example [20], [22];

(2) Automated annotation by independent test suite (ITS)

generated by automatic test case generation tool – see for

example [17], [19]. Both methods assume that a reference

(correct) implementation of the buggy program, which is used

as a basis for comparison, is available. Since most ASR

techniques try to fix buggy versions of real programs, the

reference implementations can be found in the version control

systems of the corresponding projects.

Early work that uses annotation by automatically-generated
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ITS, e.g., [17], uses general-purpose automatic test generation

tools such as KLEE [33] to generate an ITS that maximizes

the coverage of the reference implementation written in the C

programming language. Test cases generated on the reference

(correct) implementation are then used to assess correctness

of machine-generated patches, i.e., a machine-generated patch

is regarded as incorrect if there exists a test case exposing

behavioral differences in correct and machine-patched code.

Recently, Xin et al. proposed DIFFTGEN, a test genera-

tion tool for Java programs specifically designed to generate

tests that can identify incorrect patches generated by ASR

tools [25]. DIFFTGEN attempts to generate test cases that

cover the syntactic and semantic differences between the

machine-patched and human-patched programs. If there are

any such test cases that expose the differences in outputs

of the programs, the machine-generated patch is deemed as

incorrect since it results in a different output as compared

to the corresponding ground truth human-patched program.

DIFFTGEN has been shown to be able to identify incorrect

patches produced by various state-of-the-art ASR tools such

as GenProg [9], Kali [15], Nopol [8], and HDRepair [34].

Best practices in building gold sets: To build gold sets ob-

jectively, a common approach is to employ many independent

annotators and measure inter-rater agreement as proxy for

annotation quality [27], [35]. The information retrieval (IR)

community, especially through the Text REtrieval Conference

(TREC)1, has employed many annotators through a large

scale collaborative effort to annotate many document corpora

for various retrieval tasks. Many past software engineering

studies have also involved independent annotators to construct

gold sets. Based on the nature of various tasks, annotators

include non-authors who could be undergraduate/graduate

students [36]–[40] or professional developers [36], [41], [42].

III. USER STUDY

We conducted a user study with 35 professional developers

to collect correctness labels of patches. In this study, every

developer is required to complete several tasks by judging

whether patches generated by ASR tools are semantically

equivalent to ground truth human patches.

Patch Dataset. Since the eventual goal of our study is to

assess the reliability of author and automated annotations, we

need a set of patches that have been labeled before by ASR

tool authors and can be used as input to automated test case

generation tools designed for program repair. We find the sets

of patches recently released by Xiong et al. [21], Martinez

et al. [24], and Le et al. [22] to be suitable. Xiong et al. and

Martinez et al. labelled a set of 210 patches generated by ASR

tools designed by their research groups (i.e., ACS [20], and

Nopol [8]) and their competitors (i.e., GenProg [9], Kali [15]).

Le et al. labelled a set of 79 patches generated by their ASR

tool (i.e., S3 [22]) and its competitors (i.e., Angelix [4], and

Enumerative and CVC4 embedded in JFix [13]). The authors

1http://trec.nist.gov/

TABLE I
SELECTED PATCHES AND THEIR AUTHOR LABELS

GenProg Kali Nopol ACS S3 Angelix Enum CVC4
Incorrect 14 14 84 4 0 7 6 6
Correct 4 1 6 14 10 2 4 4
Unknown 2 2 5 0 0 0 0 0
Total 20 17 95 18 10 9 10 10

labelled these patches by manually comparing them with

ground truth patches obtained from version control systems

of the corresponding buggy subject programs. These patches

can be used as input to DIFFTGEN, which is a state-of-the-

art test generation tool specifically designed to evaluate patch

correctness [25], and RANDOOP – a popular general purpose

test case generation tool [26].

Due to resource constraints – only 35 professional develop-

ers agreed to spend an hour of their time in this user study –

we cut down the dataset to 189 patches by randomly selecting

these patches from the original datasets. Details of the dataset

of 189 patches are shown in Table I.

Task Design. At the start of the experiment, every participant

was required to read a tutorial that briefly explains automated

program repair and what they need to do to complete the tasks.

Afterwards, they can complete the tasks one-by-one through

a web interface.

Figure 1 shows a sample task that we give to our user

study participants via our web interface. For each task, we

provide a ground truth patch taken from the version control

system of the corresponding buggy subject program, along

with a patch that is generated by an automated program repair

tool. We also provide additional resources including full source

code files that are repaired by the patch, link to the GITHUB

repository of the project, outputs when executing failing test

cases, and source code of the failing test cases. Based on this

information, participants are asked to evaluate the correctness

of the patch by answering the question: Is the generated patch
semantically equivalent to the correct patch? To answer this

question, participants can choose one of the following options:

“Yes”, “No” or “I don’t know”. Finally, if they wish to, they

can provide some reasons that explain their decision. Our web

interface will record participants’ answers and the amount of

time they need to complete each task.

Participants and Task Assignment. To recruit participants,

we sent emails to our industrial contacts about this user study.

Our contacts then advertised the study and provided us emails

of 35 developers who are willing to participate. Thirty three

of the 35 professional developers participating in this study

work for two large software development companies (named

Company C1 and C2), while another two work as engineers

for an educational institution. Company C1 currently has more

than 500 employees and Company C2 has more than 2000

employees. Both companies have a large number of active

projects that expose developers to various business knowledge

and software engineering techniques. All the 35 developers

work for projects that use Java as the main programming

language.

526

Authorized licensed use limited to: Zhejiang University. Downloaded on December 19,2023 at 11:26:20 UTC from IEEE Xplore.  Restrictions apply. 



The average number of years of work experience that

these participants have is 3.5. The two developers from the

educational institution are senior and have worked for 5.5

and 10 years, respectively. The most experienced developer

from industry has worked for seven years, while some has

only worked for one year. Participants are classified into

two groups, junior and senior, according to their years of

experience following the company’s internal classification.

Companies that our participants work for consider developers

with less than 3 years of experience as juniors and those with

more than 3 years of experience as seniors. There are 20 junior
developers and 15 senior developers.

We divided the 35 participants into seven groups. The ratio

of junior and senior developers for each group was kept

approximately the same. Each patch generated by program

repair tools is labeled by five participants. Participants in the

same group receive the same set of patches to label.

Correct Patch: Abstract…Render.java 3 Generated Patch: Abstract…Render.java
4

source/org/…/Abstract…Render.java source/org/…/Abstract…Render.java

@@ -1797,7 + 1797,7 @@

1797 - if(dataset == null) {

1797 + if(dataset != null) {
return result;

}

@@ -1797,7 + 1797,7 @@

1797 - if(dataset == null) {
1798 - return result;
1799 - }

1 2

Project:     Failing Test Case Output & Other Infor:                                   Failing Test Source

JFreeChart
5

Root cause in triggering tests:
- org.jfree.chart.renderer…Tests::test2947660

junit.framework.AssertionFailedError: expected   
<1> but was <0>

……. 6

7

Abstract…Test.java

Is generated patch semantically equivalent to the correct patch?
Yes        No         I don’t know

If possible provide reason here … Next8

Fig. 1. A sample task on our web interface. (1) and (2) show developer- and
machine-generated patches; (3) and (4) show links to patched source files;
(5) shows GitHub repository; (6) and (7) show output of failed test cases and
their source files; (8) is the question we asked a participant.

IV. ASSESSING INDEPENDENT ANNOTATORS’ LABELS

The user study presented in Section III was conducted to

build a set of gold standard labels for machine-generated

patches, which can reliably be used to assess reliability of

author and automated annotations. Before using the labels

produced by our user study, we need to first ascertain their

quality. Agreement among annotators is often used as a

measure of quality [27], [28], [43]. Thus, in this section, we

investigate the degree to which the annotators agree with one

another. This answers RQ1: Can independent annotators agree
on patch correctness?

Methodology. To answer RQ1, we first compute some simple

statistics highlighting the number of agreements and disagree-

ments among annotators. We then calculate several well-

accepted measures of inter-rater reliability. Finally, we perform

some sanity checks to substantiate whether or not annotators

are arbitrary in making their decisions.

TABLE II
RESULTS OF PARTICIPANT ANNOTATIONS

All Agree All Agree - Unk Majority Agree
Incorrect 95 132 152
Correct 23 23 35

Total 118 155 187

Results. To recap, our annotators are 35 professional develop-

ers who are tasked to annotate 189 machine-generated patches.

Each patch is annotated by five professional developers; each

provides either one of the following labels: incorrect, correct,

or unknown. Table II summarizes the number of agreements

and disagreements among annotators. In the first column

(All Agree), the number of patches in which all developers

agree on each patch’s label is 118 (62.4% of all patches); of

which 95 patches are labeled as incorrect and 23 patches are

labeled as correct. In the second column (All Agree - Unk),

ignoring unknown labels, the number of patches for which the

remaining annotators fully agree on their labels is 155 (82.0%

of all patches). Out of these, the numbers of patches that are

labeled as incorrect and correct are 132 and 23, respectively. In

the last column (Majority Agree), for 187 out of 189 patches

(98.9% of all patches), there is a majority decision (i.e., most

annotators agree on one label). Out of these, 152 and 35

patches are identified as incorrect and correct, respectively.

We also compute several inter-rater reliability scores: mean

pairwise Cohen’s kappa [27], [44] and Krippendorff’s al-

pha [45]. Using the earlier test we consider three different

ratings (i.e., correct, incorrect, and unknown), while the latter

test, which allows different number of ratings for each data

point, enables us to ignore unknown ratings. Inter-rater relia-

bility scores measure how much homogeneity, or consensus,

there is between raters / labelers. The importance of rater reli-

ability hinges on the fact that it represents the extent to which

the data collected in the study are correct representations of the

variables being measured. A low inter-rater reliability suggests

that either the rating scale used in the study is defective or

raters need to be retrained for the rating task or the task is

highly subjective. The higher the inter-rater reliability the more

reliable the data is.

Reliability score values by Landis and Koch [46] suggest

that moderate, substantial, and almost perfect agreements are

associated with values in ranges [0.41,0.60], [0.61,0.80], and

[0.81,1.00] respectively. Scores below 0.41 indicate fair, slight,

or poor agreements. It is worth noting that there is another

interpretation of kappa value by Manning et al. [27], which in-

dicates that a kappa value falling between 0.67 and 0.8 demon-

strates a fair agreement between raters – the second highest

level of agreement by their interpretation. It has been shown

that this fair level of inter-rater agreement normally happens in

popular datasets such as those used for: (1) evaluations on Text

REtrieval Conference (TREC), which is championed by US

National Institute of Standards and Technology (NIST) since

1992 and provides benchmark datasets for various text retrieval

tasks – see http://trec.nist.gov/data.html, and (2) medical infor-

mation retrieval collections [27]. Based on this interpretation,
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Fig. 2. Time taken by annotators to decide whether a patch’s label is either
known (confirmed as correct or incorrect) or unknown.

we have the following findings on the gold set annotated by

independent developers:

The computed mean pairwise Cohen’s kappa and

Krippendorff’s alpha for our independent annota-

tors’ labels are 0.691 and 0.734 respectively. These

scores indicate a substantial agreement among par-

ticipants, which satisfies the standard normally met

by quality benchmark datasets.

We further perform two sanity checks to substantiate

whether or not annotators are arbitrary in their decisions.

First, we expect conscientious annotators to spend more time

inspecting patches that are eventually labeled as unknown than

other patches. Annotators who label patches as unknown with-

out thinking much would be likely making arbitrary decisions.

Figure 2 depicts a box plot showing the time participants took

on patches that are labeled as known (correct or incorrect)

or unknown. It can be seen that participants took more time

on the later set of patches. Wilcoxon signed-rank test returns

a p-value that is less than 0.005, indicating a statistically

significant difference. Moreover, the Cliff’s delta, which is a

non-parametric effect size measure, is 0.469 (medium).

Second, we expect conscientious annotators to spend more

time inspecting difficult patches than easy ones. We consider

disagreement among annotators as a proxy for patch difficulty.

We compare the time taken by participants in identifying

patches for which there is complete agreement to those for

which disagreement exists. Figure 3 shows a box plot which

shows that participants spend more time on disagreement

cases. Wilcoxon signed-rank test returns a p-value that is

less than 0.05, indicating statistically significant difference.

Moreover, the Cliff’s delta is 0.178 (small).

The above results substantiate the quality of our dataset. In

the subsequent sections, which answer RQ2 and RQ3, we use

two versions of our dataset, ALL-AGREE (see “All Agree”

column in Table II) and MAJORITY-AGREE (see “Majority

Agree” column in Table II), to assess the reliability of author

and automated annotations.

V. ASSESSING AUTHOR ANNOTATION

A number of studies proposing automated repair approaches

evaluate them through manual annotation performed by au-
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Fig. 3. Time taken by annotators to decide a patch’s label for full-agreement
and disagreement cases.

TABLE III
INDEPENDENT (INDEP) ANNOTATOR VS. AUTHOR LABELS

Indep Annotators-Authors ALL-AGREE MAJORITY-AGREE

Same Incorrect-Incorrect 82 133
Correct-Correct 23 33

Different
Incorrect-Correct 6 10
Correct-Incorrect 0 2
Incorrect-Unknown 7 9
Correct-Unknown 0 0

Total 118 187

thors, e.g, [20], [34]. Author subjectivity may cause bias which

can be a threat to the internal validity of the study. Author bias

has been actively discussed especially in the medical domain,

e.g., [48]. Unfortunately so far, there has been no study that

investigates presence or absence of bias in author annotation

and its impact to the validity of the labels in automated repair.

This section describes our effort to fill this need by answering

RQ2: How reliable is author annotation?

Methodology. Recall that our user study makes use of patches

released by three research groups, including Xiong et al. [21],

Martinez et al. [24], and Le et al. [22] who created program

repair tools namely ACS, Nopol, and S3 respectively. Authors

of each tool manually labeled the patches generated by their

tool and competing approaches by themselves. To answer

RQ2, we compare labels produced by the three research groups

with those produced by our independent annotators whose

quality we have validated in Section IV. We consider the

ALL-AGREE and MAJORITY-AGREE datasets mentioned in

Section IV.

Results. Table III shows the detailed results on the compar-

isons between independent annotators’ and authors’ labels. We

found that for ALL-AGREE dataset, authors’ labels match

with independent annotators’ labels (Same) for 105 out of

118 patches (89.0%). There are 13 patches for which authors’

labels mismatch those by independent annotators (Different).
Among these patches, 6 are identified by independent annota-

tors as incorrect, but identified by authors as correct (Incorrect-

Correct). For the other 7 patches, authors’ labels are unknown

while independent annotators’ labels are incorrect (Incorrect-

Unknown). For the MAJORITY-AGREE dataset, 88.8% of

the labels match. There are 21 mismatches; 10 belong to

Incorrect-Correct cases, 2 to Correct-Incorrect cases, and 9

to Incorrect-Unknown cases. Figure 4 shows an example
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1 @@ -115,9 +115,7 @@ public class StopWatch {
2 public void stop() {
3 if(this.runningState != STATE_RUNNING && this.

runningState != STATE_SUSPENDED) {
4 throw new IllegalStateException("...");
5 }
6 + if(this.runningState == STATE_RUNNING)// Developer

patch
7 + if(-1 == stopTime)// Generated patch
8 stopTime = System.currentTimeMillis();
9 this.runningState = STATE_STOPPED;
10 }

Fig. 4. An example of a patch that has mismatched labels. Xiong et al.
identified the patch (shown at line 7) as correct, while independent annotators
identified this patch as incorrect. The ground truth (developer) patch is shown
at line 6.

patch generated by Nopol [8] that has mismatched labels.

It is labeled as correct by Martinez et al. and incorrect by

independent annotators.

We also compute inter-rater reliability of authors’ labels

and labels in ALL-AGREE and MAJORITY-AGREE datasets.

The Cohen’s kappa values are 0.719 and 0.697 considering

the ALL-AGREE and MAJORITY-AGREE datasets respec-

tively. The Krippendorf’s alpha values are 0.717 and 0.695.

Comparing these scores with Landis and Koch’s interpretation

described in Section IV, there is substantial agreement.

A majority (88.8-89.0%) of patch correctness labels

produced by author annotation match those pro-

duced by independent annotators. Inter-rater reliabil-

ity scores indicate a substantial agreement between

author and independent annotator labels.

To characterize cases where author and independent anno-

tator labels match (Same) and those where they do not match

(Different), we investigate the time that participants of our

user study took to label the two sets of patches. Since the

number of mismatches is smaller in the ALL-AGREE dataset,

we focus on comparing labels in MAJORITY-AGREE dataset.

Figure 5 depicts a box plot showing the distribution of comple-

tion time corresponding to the two sets of patches. The figure

shows that patches with matching labels took participants a

shorter period of time to label comparing to those whose

labels mismatched. Wilcoxon signed-rank test returns a p-

value that is less than 0.05, indicating statistically significant

difference. The Cliff’s delta is equal to 0.278 (small). Since

task completion time can be used as a proxy for measuring

task difficulty or lack thereof [49], we consider participants

completion time as a proxy of difficulty in assessing patch

correctness. The result suggests that disagreements between

authors and independent annotators happen for difficult cases.

VI. ASSESSING AUTOMATED ANNOTATION

We also investigate the reliability of the use of automatically

generated independent test suite (ITS) in annotating patch

labels. ITS has been used as an objective proxy to measure

patch correctness – a patch is deemed as incorrect if it does not

pass the ITS, and as correct or generalizable otherwise [17],

[19]. It is unequivocal that incorrect patches determined by ITS
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Fig. 5. Participant completion time for patches for which author and
independent annotator labels match (Same) and mismatch (Different)

are indeed incorrect. However, it is unclear if ITS can detect

a large proportion of incorrect patches. Moreover, the extent

to whether correct (generalizable) patches determined by ITS

are indeed correct remains questionable. Thus, to assess the

usefulness of ITS, we investigate the answer to RQ3: How
reliable is automatically generated ITS in determining patch
correctness?

Methodology: We employ the recently proposed test case

generation tool DIFFTGEN by Xin et al. [25] and RAN-

DOOP [26] to generate ITS. To generate ITS using DIFFTGEN

and RANDOOP, the human-patched program is used as ground

truth. For DIFFTGEN, we run using its best configuration

reported in [25], allowing it to invoke EVOSUITE [50] in 30

trials with the search time of each trial limited to 60 seconds.

A machine-generated patch is identified as incorrect if there

is a test in the DIFFTGEN-generated ITS that witnesses the

output differences between the machine and human patches.

For RANDOOP, we run it on the ground truth program with 30

different seeds with each run limited to 5 minutes. A machine-

generated patch is identified as incorrect if there is at least one

test case in the RANDOOP-generated ITS that exhibits different

test results in machine-patched and human-patched (ground

truth) programs, e.g., it fails on the machine-patched program

but passes on the ground truth program, or vice versa. By this

way, we allow both tools to generate multiple test suites. It

is, however, worth noting that DIFFTGEN and RANDOOP are

incomplete in the sense that they do not guarantee to always

generate the test cases that witness incorrect patches.

We use test cases generated by the tools to automatically

annotate the 189 patches and compare the generated labels

to those in ALL-AGREE and MAJORITY-AGREE datasets

which are created by our user study.

Results: Out of the 189 patches in our study, DIFFTGEN

generates test cases that witness 27 incorrect (overfitting)

patches. Details of these patches are shown in Table V.

The ALL-AGREE ground truth identifies 17 of these 27

patches as incorrect (the other 10 patches lie outside of the

ALL-AGREE dataset), while the MAJORITY-AGREE dataset

identifies all of them as incorrect. Unfortunately, most of the

patches labelled as incorrect in ALL-AGREE (65 patches)

and MAJORITY-AGREE (121 patches) datasets failed to be

detected as such by ITS generated by DIFFTGEN. RANDOOP

performs similarly as compared to DIFFTGEN. It identifies
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TABLE IV
KAPPA AND ALPHA VALUES WHEN USING DIFFTGEN, RANDOOP, AND

THEIR COMBINATION TO LABEL PATCHES

ALL-AGREE MAJORITY-AGREE
DIFFT RAND COMB DIFFT RAND COMB

Cohen’s Kappa 0.078 0.073 0.158 0.075 0.072 0.146
Kripp’s Alpha -0.32 -0.3 -0.057 -0.336 -0.313 -0.097

31 patches as incorrect, all of which are also identified

as incorrect in the MAJORITY-AGREE dataset. Note that,

DIFFTGEN and RANDOOP when combined can identify totally

51 unique patches as incorrect. For each of the total 189

patches, DIFFTGEN and RANDOOP generated from 1186 to

3619 unit test cases per method. There are a few patches that

the tools cannot generate test cases for.

In their studies, Smith et al. [17] and Le et al. [17] assume a

patch is incorrect if it does not pass an ITS, and correct or gen-

eralizable otherwise. Using the same assumption to generate

correctness labels, we can compute inter-rater reliability be-

tween labels automatically annotated by running ITS generated

by DIFFTGEN and RANDOOP and labels in ALL-AGREE and

MAJORITY-AGREE datasets. As readers may have expected,

the Cohen’s kappa values are very low as shown in Table IV,

e.g., kappa values when using DIFFTGEN-generated ITS for

ALL-AGREE and MAJORITY-AGREE are 0.078 and 0.075

respectively. The corresponding Krippendorff’s alpha values

are -0.32 and -0.336.

We now compare author labels discussed in Section V with

ITS labels. Table V shows the author labels of the 27 and 31

patches identified as incorrect by DIFFTGEN and RANDOOP,

respectively. For these patches, the majority of the labels

by authors and DIFFTGEN match. However, interestingly,

there are four special patches in which labels generated by

automated- and author-annotations are mismatched. These

cases are highlighted in gray in Table V. Particularly, three

patches are identified as incorrect by DIFFTGEN, including

Math 80 generated by Kali, Chart 3 generated by GenProg,

and Math 80 2015 generated by Nopol, while author labels

are “Unknown”. One patch identified as incorrect by RAN-

DOOP (Math 73 generated by GenProg), is labelled as correct

by authors. Based on results above, we conclude:

Independent test suites generated by DIFFTGEN

and RANDOOP can only label fewer than a fifth

of incorrect patches as such in ALL-AGREE and

MAJORITY-AGREE datasets. However, generated

test suites can be used as a complement for author

annotation to increase accuracy.

Finally, we want to investigate the difficulty of judging

correctness of patches that are labelled as incorrect by ITSs

generated by DIFFTGEN and RANDOOP. To do so, we com-

pare participant completion time for the set of 51 unique

patches and another set containing the other patches. We find

that they are more or less the same. Wilcoxon signed-rank

test confirms that the difference is not statistically significant.

Thus, patches that ITS successfully labels as incorrect are

TABLE V
LABELS BY INDEPENDENT ANNOTATORS (“ANNOT” COLUMN) AND

AUTHORS (“AUTHORS” COLUMN) OF PATCHES IDENTIFIED BY

INDEPENDENT TEST SUITE (ITS) GENERATED BY DIFFTG
EN OR

RANDOOP AS INCORRECT .

DIFFTGEN RANDOOP Annot Authors

Kali

Time 4 Incorrect Incorrect Incorrect Incorrect
Math 32 Incorrect Incorrect Incorrect
Math 2 Incorrect Incorrect Incorrect
Math 80 Incorrect Incorrect UnknownMath 95 Incorrect Incorrect Incorrect Incorrect
Math 40 Incorrect Incorrect Incorrect
Chart 13 Incorrect Incorrect Incorrect
Chart 26 Incorrect Incorrect Incorrect
Chart 15 Incorrect Incorrect Incorrect Incorrect
Chart 5 Incorrect Incorrect Incorrect Incorrect

GenProg

Math 2 Incorrect Incorrect Incorrect
Math 8 Incorrect Incorrect Incorrect
Math 80 Incorrect Incorrect Incorrect
Math 81 Incorrect Incorrect Incorrect
Math 95 Incorrect Incorrect Incorrect Incorrect
Math 40 Incorrect Incorrect Incorrect
Math 73 Incorrect Incorrect CorrectChart 1 Incorrect Incorrect Incorrect
Chart 3 Incorrect Incorrect UnknownChart 5 Incorrect Incorrect Incorrect Incorrect
Chart 15 Incorrect Incorrect Incorrect Incorrect

Nopol

Math 33 Incorrect Incorrect Incorrect
Math 73 2017 Incorrect Incorrect Incorrect
Math 80 2017 Incorrect Incorrect Incorrect
Math 80 2015 Incorrect Incorrect UnknownMath 97 Incorrect Incorrect Incorrect
Math 105 Incorrect Incorrect Incorrect
Time 16 Incorrect Incorrect Incorrect
Time 18 Incorrect Incorrect Incorrect
Chart 13 2017 Incorrect Incorrect Incorrect
Chart 13 2015 Incorrect Incorrect Incorrect
Chart 21 2017 Incorrect Incorrect Incorrect
Chart 21 2015 Incorrect Incorrect Incorrect
Closure 7 Incorrect Incorrect Incorrect
Closure 12 Incorrect Incorrect Incorrect
Closure 14 Incorrect Incorrect Incorrect
Closure 20 Incorrect Incorrect Incorrect
Closure 30 Incorrect Incorrect Incorrect
Closure 33 Incorrect Incorrect Incorrect
Closure 76 Incorrect Incorrect Incorrect
Closure 111 Incorrect Incorrect Incorrect
Closure 115 Incorrect Incorrect Incorrect
Closure 116 Incorrect Incorrect Incorrect
Closure 120 Incorrect Incorrect Incorrect
Closure 124 Incorrect Incorrect Incorrect
Closure 130 Incorrect Incorrect Incorrect
Closure 121 Incorrect Incorrect Incorrect
Mockito 38 Incorrect Incorrect Incorrect

Angelix Lang 30 Incorrect Incorrect Incorrect

CVC4 Lang 30 Incorrect Incorrect Incorrect

Enum Lang 30 Incorrect Incorrect Incorrect

not necessarily the ones that participants require more time

to manually label.

VII. DISCUSSION

In this section, we first provide implications of our findings.

We then discuss our post-study survey, in which we asked

a number of independent annotators for rationales behind

their patch correctness judgements. Future work and possible

challenges inspired by our study are described next. At the

end of this section, we discuss some threats to validity.

A. Implications

To recap, we have gained insights into the reliability of

patch correctness assessment by authors and by automatically

generated independent test suite (ITS); each of them has their

own advantages and disadvantages. Based on these insights,

we provide several implications as follows:

Authors’ evaluation of patch correctness should be

made publicly available to the community.

Xiong et al., Martinez et al., and Le et al. released their

patch correctness labels publicly [21], [22], [24], which we are
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grateful for. We believe that considerable effort has been made

by authors to ensure the quality of the labels. Still, we noticed

that for slightly more than 10% of the patches, authors’ labels

are different from the ones produced by multiple independent

annotators. Thus, we encourage future ASR paper authors

to release their datasets for public inspection. The public

(including independent annotators) can then provide inputs on

the labels and possibly update labels that may have been in-

correctly assigned. Our findings here (e.g., author annotations

are fairly reliable) may not generalize to patches labelled by

authors which have not been released publicly. It is possible

that the quality of correctness labels for those patches (which

are not made publicly available) to be lower. Also, as criticized

by Monperrus et al. [51], the conclusiveness of the evaluation

of techniques that keep patches and their correctness labels

private is questionable.

Collaborative effort is needed to distribute the ex-

pensive cost of ASR evaluation.

In this study, we have evaluated correctness of 189 automat-

ically generated patches by involving independent annotators.

We have shown that the quality of the resultant labels (mea-

sured using inter-rater reliability) are on par with high-quality

text retrieval benchmarks [27]. Unfortunately, evaluation using

independent annotators is expensive. To evaluate 189 patches,

we needed to get 35 professional developers; each agreed to

spend up to an hour of their time. This process may not be

scalable especially considering the large number of new ASR

techniques that are released in the literature year by year.

Thus, there is a need for more collaborative effort to distribute

the cost of ASR evaluation. One possibility is to organize a

competition involving impartial industrial data owners (e.g.,

software development houses willing to share some of their

closed bugs) who are willing to judge correctness of generated

patches. Similar competitions with industrial data owners have

been held to advance various fields such as forecasting2 and

fraud detection3.

Independent test suite (ITS) alone should not be

used to evaluate the effectiveness of ASR.

Independent test suites (ITSs) generated by DIFFTGEN [25]

and RANDOOP [26] have been shown to be ineffective in

annotating correctness labels for patches (see Section VI).

Only fewer than a fifth of the incorrect patches are identified

as such by ITSs generated by DIFFTGEN and RANDOOP.

Based on effectiveness of state-of-the-art test generation tool

for automatic repair that we assessed in this study, we believe

that ITS alone should not be used for fully automated patch

labeling. The subject of ITS generation for program repair is

new though and we encourage future studies to improve the

quality of automatic test generation tools so that more incorrect

2http://www.cikm2017.org/CIKM AnalytiCup task1.html
3http://research.larc.smu.edu.sg/fdma2012/

double r = correlationMatrix.getEntry(i, j);3
} else {2

+               out[i][j] = 2 * tDistribution.cumulativeProbability(-t);5
- out[i][j] = 2 * (1 - tDistribution.cumulativeProbability(t));

}7

@@ -168,7 +168,7 @@ public class PearsonsCorrelation {1

double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r)));4

6

double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));3
for (int j = 0; j < i; j++) {2

+             if(1 - nVars < -1)5
outMatrix.setEntry(j, i, corr);

}7

@@ -190,6 +190,7 @@1

outMatrix.setEntry(i, j, corr);4

6

(a) Human Patch

(b) Generated Patch

Fig. 6. A machine-generated patch labeled by ITS as incorrect but labeled
by author annotation as unknown.

patches can be detected. That being said, automated patch

annotation may not be a silver bullet; the general problem

of patch correctness assessment (judging the equivalence of

developer patch and automatically generated patch) is a variant

of program equivalence problem which has been proven to be

undecidable with no algorithmic solution [52].

Independent test suite, despite being less effective,

can be used to augment author annotation.

It has been shown in Section VI that ITS generated by

DIFFTGEN and RANDOOP identified four patches as incor-

rect whereas the labels generated by author annotation were

unknown or correct. An example of such a patch is shown

in Figure 6. From the figure, we can notice that it is hard to

manually determine whether the patch is correct or not. From

this finding, we believe that ITS, despite being less effective

than author annotation in identifying correct patches, can be

used to augment author annotation by helping to resolve at

least some of the ambiguous cases. Authors can possibly run

DIFFTGEN and RANDOOP to identify clear cases of incorrect

patches; the remaining cases can then be manually judged.

The use of both author and automated annotation via ITS

generation can more closely approximate multiple independent

annotators’ labels while requiring less cost.

B. Post-Study Survey

We conducted a post-study survey to investigate why a de-

veloper chooses a different answer from the majority. Among

the 189 patches, there are several patches where the majority,

but not all participants, agree on patch correctness. Among

participants annotating these patches, we selected 11 who

answered differently from the majority and emailed them to

get deeper insights into their judgments. In our email, we

provided a link to the same web interface used in our user

study to allow participants to revisit their decision for the patch

in question. Notice that we did not inform the participants that

their answers were different from the majority. We received

replies from 8 out of the 11 participants (72.7% response rate).
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We found that 5 out of 8 developers changed their correct-

ness labels after they looked into the patch again; their revised

labels thus became consistent with the labels that the majority

agree. The remaining three kept their correctness labels; two

judged two different patches as incorrect (while the majority

labels are correct) while another judged a patch as correct

(while the majority label is incorrect). These participants kept

their decision for different reasons; one was unsure of a

complex expression involved in the patch, another highlighted

a minor difference that may be considered ignorable by others,

and the other participant viewed the generated and ground

truth patch to have similar intentions.

C. Future Extensions

Beyond program repair. The contribution of this work is an

empirical investigation on the reliability of popular evaluation

methods followed in past studies on program repair.

We believe that this kind of meta-study that assesses

reliability of evaluation methods should also be performed

beyond program repair, in areas such as software mining, fault

localization, defect prediction, static analysis, and others, that

require a validation of results. Often past studies involve per-

formance assessment made by authors done by, e.g., manually

or semi-automatically labelling the results [53]–[55] or based

on historical data that are dirty [56], [57]. Effort should be

made for a more rigorous assessment (which may be more

costly) to see if biases exists (with the cheaper and existing

evaluation alternatives) and if biases exist, the extent to which

they exist. We believe that our work can provide valuable

insights in the design of these future studies.

There have been already efforts done in this area – studies

that investigate bias in software engineering [56]–[59]. Our

work is unique compared to these existing studies in terms of

the target task investigated (i.e., ASR) and the methodology

employed (e.g., the use of multiple independent professionals

as annotators). These studies are a good start but much more

work is needed to ensure that current assessment methods

employed to evaluate performance of many existing research

solutions correctly reflect the quality of underlying tools being

assessed.

Usage of specifications. In this work, we used labels by

independent annotators as ground truth to assess reliability

of author- and automated-annotations. Independent annotators

are, however, still humans and can admittedly make mis-

takes even with a substantial amount of time devoted to the

annotation task. To avoid this threat, complete and correct

specifications can be used in conjunction with a sound static

verifier to serve as a reliable patch validation method, e.g., a

patch passing the verification is definitely a correct one [60].

This could be achieved by creating a benchmark of programs

equipped with complete and correct specifications and a set

of test cases. Test cases can then be used by program repair

techniques to generate patches and those machine-generated

patches can then be validated against specifications using a

sound verifier. We plan to investigate this direction by using

the OpenJML verifier [61] on programs accompanied by JML

annotations [62]. Although complete and correct specifications

are hard to obtain in practice, a study with such specifications

would be worth exploring since by doing so the extent to which

a program repair technique overfits to test suite used for repair

can be unequivocally determined. To make this possible, we

plan to tradeoff the scale of studied systems for a higher degree

of soundness in patch assessment.

D. Threats to Validity

Threats to internal validity. These threats relate to potential

errors and biases in our study. We discuss them below:

To reduce the threat of potential errors in our code, we

conducted a pilot study with a few graduate students and

thoroughly checked our code.

We do not use all patches in the original dataset by Xiong

et al. [21], Martinez et al. [24], and Le et al. [22] due to con-

strained resources (we only have 35 professional developers

agreeing to devote an hour of their time; the number is similar

to those of past studies [59], [59]). The results may differ if

the whole dataset is used. To mitigate this threat, we randomly

selected patches included in this study while keeping the ratios

of patches generated by ASR tools approximately the same.

The professional developers that we employed are not

the original developers of the buggy code and ground truth

patches. Unfortunately, since the original developer patches

included in Xiong et al.’s study were committed many years

ago (the earliest being 2006), it is hard to contact those

developers. Even if we can involve them, they may have

forgotten the detail of the patches. However, since the patches

are small, professional developers participated in our study

should be able to assess patch correctness. Indeed, in our

study, respondents were able to provide definite labels to

a majority of patches (i.e., only 5.9% are unknown, while

the rest are either incorrect or correct). Additionally, we

asked not only one professional developer but five of them

to label each patch. Section IV highlights that there is a

substantial agreement among participants, which is on par

with high-quality benchmark datasets. Moreover, participants

are provided with multiple resources, e.g., source code files,

failed test cases, GITHUB link of the project, etc, for the

annotation task. A large number of past software engineering

studies e.g., [37], [38], [41], [63]–[65] has also involved third-

party labelers (who are not content creators) to assign labels

for data. And the same annotation setup was also followed in

other related areas, e.g., information retrieval [28], [66]. Last

but not least, we also make the 189 patches and participants’

responses publicly available for public inspection [67].

Threats to external validity. These threats relate to the

generalizability of our results. We discuss them below:

We included 189 patches generated by 8 ASR tools to fix

buggy code from 13 software projects. We believe this is

a substantial number of patches generated by a substantial

number of state-of-the-art ASR tools. Past empirical studies on

ASR, e.g., [15], include five tools and 55 patches from 105

bugs. Still, we acknowledge that results may differ if more

patches, projects and ASR tools are considered.
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We have included 35 professional developers in our user

study. This number is larger or similar to those considered

in many prior work, e.g., [68]–[70]. The results may differ

for other groups of developers. To reduce this threat, we have

selected a mix of junior and senior developers from two large

IT companies and a large educational institution.

Threats to construct validity. These threats relate to the

suitability of our evaluation metrics. In this study, we use

average pairwise Cohen’s kappa and Krippendorff’s alpha to

evaluate the reliability of the patch labels from independent

annotators. We also use the two to measure agreement between

independent annotators’ labels and those produced by author

and automated annotations. These metrics are widely used

in many research areas, e.g., information retrieval [71]–[73],

software engineering [74], [75], etc. Thus, we believe there is

little threat to construct validity.

VIII. RELATED WORK

Program repair. There are several ASR techniques beyond

those investigated in our study: RSRepair [76] and AE [31]

are random search techniques. PAR [10] uses templates to

repair. Prophet [7] and HDRepair [34] use historical bug fix

data to guide the repair process. SemFix [77], DirectFix [3],

and SPR [6] use symbolic execution and angelix debugging.

Qlose [78] use program traces to rank repairs in the order of

likelihood of being correct. Elixir [79] uses machine learning

to generate repairs. Jaid [80] builds rich abstraction state for

repair. We refer interested readers to Gazzola et al.’s survey

paper [81] for a more comprehensive review.

Patch correctness assessment. Qi et al. [15] empirically

studied patches generated by GenProg [9], RSRepair [32],

and AE [31]. They manually investigated the patches, wrote

additional test cases, and reported the results on running the

patches against additional test cases. Authors of PAR [10]

performed a user study on the acceptability of patches gen-

erated by their tool. They employed 89 students and 164

developers to confirm that patches generated by PAR are more

acceptable than GenProg. Monperrus et al. [51] discuss the

main evaluation criteria of automatic software repair including

understandability, correctness and completeness. They suggest

that repair techniques having their generated patches along

with correctness labels kept private, such as PAR, are question-

able. To avoid potential bias of manual human investigation,

Smith et al. use automatic test case generation tool KLEE [82]

to generate independent test suites (ITS) that maximize cov-

erage of ground-truth program to assess machine-generated

patches [17]. Using ITS, they evaluate the effectiveness of

GenProg, RSRepair (aka. TrpAutoRepair), and AE on the

IntroClass dataset [83]. Recently, Xin et al. [25] and Xiong et

al. [21] proposed an automated approach to identify incorrect

machine-generated patches via execution traces. They leverage

automatic test generation to generate additional test cases, and

use execution traces when executing test cases to determine

whether a machine-generated patch is correct or incorrect.

Unlike previous works which compare and evaluate ef-

fectiveness of ASR solutions, the main goal of our study

is to assess whether methodologies that are often used for

effectiveness evaluation of ASR are fair or reliable. We do

this by assessing reliability of author annotation and automated

annotation by using a gold set of labels collectively built by

professional developers following standard best practice. .

Empirical studies on biases and reliability. Bird et al.
highlighted that only a fraction of bug fixes are labelled in

version control systems and this causes a systematic bias

in the evaluation of defect prediction tools [56]. Herzig et
al. manually examined 7,000 reports from issue tracking

systems of open source projects and reported that 33.8% of

all bug reports to be misclassified [84]. They showed that the

misclassification introduces bias to defect prediction studies

since a substantial number of files is wrongly marked as

defective. The goal of our study is similar to the goals above

– we want to highlight and reduce bias in the evaluation of

automated software engineering tools.

IX. CONCLUSION AND FUTURE WORK

We assessed the reliability of existing patch correctness

assessment methods via a user study. The study involved 35

professional developers and resulted in a high-quality gold set

of correctness labels for 189 patches generated by different

ASR techniques. Using the gold set, we assess reliability

of author annotation (i.e., Xiong et al. [21], Martinez et

al. [24], and Le et al. [22]) and automated annotation (i.e.

DIFFTGEN [25] and RANDOOP [26]). We find that: (1) A

majority (88.8-89.0%) of labels produced by authors match

those produced by independent annotators, (2) Only fewer than

a fifth of incorrect patches can be labelled by DIFFTGEN and

RANDOOP as such. DIFFTGEN and RANDOOP can, however,

uncover multiple incorrect patches labeled as “unknown” or

“correct” by authors. Based on our findings, we recommend

that ASR authors publicly release their labels, and that more

collaborative effort to distribute the expensive cost of ASR

evaluation. We also stressed that although ITS alone should not

be used to fully judge patch correctness labels, it can be used

in conjunction with author annotation to increase accuracy.

We plan to explore the extensions described in Sec-

tion VII-C, and expand our gold set by recruiting more

professional developers and collecting more ASR-generated

patches. Organizing competitions with industrial data owners

(e.g., with our two industrial partners whose developers have

participated in this study) is also interesting to explore.
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