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Abstract—Auto-scaling is crucial for achieving elasticity in
cloud databases as well as other cloud systems. Predictive
auto-scaling, which leverages forecasting techniques to adjust
resources based on predicted workload, has been widely adopted.
However, the inherent inaccuracy of forecasting presents a signif-
icant challenge, potentially causing resource under-provisioning.

To address this challenge, we propose robust predictive auto-
scaling that considers the uncertainty in forecasts. Unlike previ-
ous predictive approaches that rely on single-valued forecasts, we
leverage probabilistic forecasting techniques to generate quan-
tile forecasts, providing a more comprehensive understanding
of the potential future workloads. By formulating the auto-
scaling problem as a robust optimization problem, we enable the
implementation of auto-scaling strategies with customizable levels
of robustness, which can be determined by considering various
quantile levels of forecasts. Moreover, we enhance the adaptability
of our strategy by incorporating different quantile levels through-
out the entire decision horizon, allowing for dynamic adjustments
in the conservatism of our auto-scaling decisions. This enables
us to strike a balance between resource efficiency and system
robustness. Through extensive experiments, we demonstrate the
effectiveness of our approach in achieving robust auto-scaling in
cloud databases, while maintaining reasonable resource efficiency.

Index Terms—Resource Scaling, Workload Forecasting, Cloud
Databases

I. INTRODUCTION

Cloud databases have become increasingly popular due to

their scalability, availability, and cost-effectiveness [1]–[4].

Auto-scaling is a crucial technique for achieving elasticity

in cloud databases, enabling them to dynamically adjust their

computing resources in response to changing workloads [5],

[5]–[12]. Predictive auto-scaling, which leverages forecasting

techniques to adjust resources based on predicted workloads,

has been widely adopted in practice [8]–[15].

Motivations. Accurate forecasting is crucial in predictive auto-

scaling to ensure adequate resource allocation for handling

future workloads and cost optimization. Existing methods

generate point forecasts for future workloads, which provide

the central tendency or the most probable outcome of the

forecast [11], [15]–[17], and then the allocation of database

resources can be adjusted accordingly. However, this approach

fails to consider the uncertainty in forecasts, which stems

Jianling Sun is the corresponding author.

Fig. 1. Robustness issue in predictive auto-scaling - The red arrow signifies
the extent of workload underestimation relative to the actual workload. The
blue arrow represents the resource allocation gap between the allocated
resources and the actual resource demand for workloads.

from their inherent lack of complete accuracy or precision,

consequently leading to suboptimal decision-making.

Figure 1 serves as an example that highlights the robustness

issue that emerges when relying solely on point forecasts.

More specifically, the future workload is forecasted using

point estimates, and resource capacity planning is carried

out accordingly. However, if the future workload is under-

estimated, relying solely on the point forecast can lead to

inadequate resource provisioning. Consequently, it may lead

to performance degradation and reduced service quality. While

over-provisioning by allocating resources based on a higher

value than the actual forecasted value can mitigate the risk

of under-provisioning, it lacks a theoretical framework or

uncertainty measure to guide the extent of over-provisioning.

Consequently, suboptimal levels of redundancy may occur,

resulting in inefficient utilization of resources.

Challenges. The example effectively illustrates the primary

challenges in current predictive auto-scaling problems. �
How to estimate the uncertainty in workload forecasts. (C1).

To comprehend the extent of underestimation is crucial for

identifying potential risks of resource scarcity and enabling

proactive mitigation strategies. Having a comprehensive range

of potential future workloads helps in understanding the pos-

sibilities of underestimation and the potential risks involved in

relying on those predictions. � How to incorporate forecast
uncertainty into resource scaling to enhance the robustness
of strategies. (C2). For instance, allocating additional re-

sources proportionally to the estimated underestimation mit-

igates under-provisioning, thus reducing the risk of service

disruptions. Hence, a more robust predictive auto-scaling ap-
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proach is required to offer a comprehensive perspective on

forecasts, without assuming the existence of a single accurate

prediction value, and to appropriately scale resources.

Our Approach. To address these challenges mentioned above,

there is a research gap in developing comprehensive ap-

proaches that not only quantify the inherent uncertainty in

workload forecasting but also explicitly account for uncer-

tainty in the resource scaling process. We propose a novel ap-

proach called robust predictive auto-scaling. To tackle the C1
concern, we utilize probabilistic forecasting models to generate

quantile forecasts. Unlike prior approaches that rely on point

forecasts, quantile forecasts offer a spectrum of potential future

outcomes along with their associated probabilities, thereby

facilitating uncertainty quantification. Subsequently, to address

the C2 concern, we reformulate the auto-scaling problem as

a robust optimization problem. This formulation explicitly

incorporates the uncertainty of forecasts by utilizing quantile

forecasts generated by the probabilistic models. Moreover, we

extend our robust auto-scaling strategy to enable adjustment

of policy conservatism based on varying conditions, without

compromising robustness. This adaptability facilitates addi-

tional enhancements in resource utilization while maintaining

the same level of robustness.

Contributions. In our study, we concentrate on the issue

of horizontal scaling, known as scale-out, in disaggregated

cloud databases. Within disaggregated architectures, horizontal

scaling offers the benefit of uninterrupted service during scal-

ing operations and involves minimal scaling overhead. These

advantages enable us to prioritize workload forecasting and

the associated scaling operations. To summarize, we make the

following contributions:

• In the domain of workload forecasting, we introduce

probabilistic forecasting techniques to predict quantiles,

broadening the scope of existing studies on database

workload forecasting.

• We seamlessly integrate probabilistic workload forecast-

ing into the realm of cloud database auto-scaling. Our

work addresses the challenge through a robust formu-

lation, introducing predictive auto-scaling strategies that

explicitly consider forecast uncertainty. This integration

not only mitigates the risks of under-provisioning but also

optimizes resource utilization efficiency.

• We empirically verify the effectiveness and superiority

of our proposed methods using real-world workload

data. The results from two distinct datasets showcase

significant improvements in terms of both robustness and

resource utilization efficiency.

II. BACKGROUND

A. Auto-scaling in Cloud Databases

Auto-scaling has undergone extensive study within dis-

tributed and cloud databases, as well as in other cloud-based

systems [13]–[15], [18]–[20].

Reactive & Proactive. When considering the timing of scaling

operations, auto-scaling can be broadly classified into two

primary types: proactive scaling and reactive scaling. The

reactive one entails resource adjustment based on current

demand, potentially resulting in delayed responses to changes

in demand [5], [21]. In contrast, proactive scaling takes a

forward-looking approach by adjusting resources in antic-

ipation of potential workload changes [8]–[11], [13]–[15].

Typically, it relies on forecasting techniques to predict future

workloads and allocate resources accordingly.

Disaggregated Database Systems. In the era of cloud com-

puting, disaggregated architectures, characterized by resource

disaggregation and pooling, have become the standard im-

plementation for deploying cloud databases [1], [2]. These

architectures provide independent scaling of various resources,

such as compute and memory. This design philosophy fosters

extreme elasticity, prompting a reevaluation of auto-scaling.

For instance, in the case of scaling out a distributed database

with a shared-nothing architecture, the overhead of data mi-

gration can be significant [9]. However, in cloud databases

with disaggregated storage, the cost of scaling out with new

computing nodes is primarily associated with loading in-

memory components. This process typically takes a very short

amount of time, often just a matter of seconds.

As a result, our primary focus on scaling out in cloud

databases allows us to prioritize demand forecasting and the

corresponding scaling operations without the need to consider

service interruptions or the scheduling of scaling activities.

B. Probabilistic Forecasting

Time series forecasting has become increasingly prevalent in

recent years, particularly in large-scale industrial applications.

For example, workload forecasting is a critical step towards

an autonomous database system [16], [22]. Typically, in these

applications of time series forecasting, the forecast is a single

value that represents the most likely outcome.

In contrast to point forecasting, probabilistic forecasting is a

powerful technique that facilitates the estimation of probability

distributions for future outcomes, offering a comprehensive

understanding of future prediction [23]. Specifically, proba-

bilistic forecasting can represent the probability distribution

using various mathematical functions, including the probabil-

ity density function (PDF), cumulative density function (CDF),

and quantile function [24].

Probabilistic forecasting has demonstrated superior per-

formance to point forecasting in numerous domains [25],

primarily due to its ability to improve decision-making by con-

sidering the uncertainties associated with different outcomes.

This advantage is particularly evident in risk management-

driven fields like finance [26], highlighting its potential to

significantly enhance prediction-based optimization tasks in

the context of database management systems.

III. ROBUST PREDICTIVE AUTO-SCALING

A. Overview

Workflow. Our proposed robust predictive auto-scaling is a

framework designed to address the issue of resource elasticity

in cloud databases by offering automated scaling capabilities.
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As illustrated in Figure 2, the workflow is comprised of two

phases, � Probabilistic Workload Forecaster and � Robust
Auto-Scaling Manager. To begin, historical workload traces

are used to train the workload forecaster. The forecaster

employs probabilistic forecasting models to provide quantile

forecasts, which offer a range of potential outcomes, capturing

different levels of risk. The quantile forecasts generated by the

forecaster are then fed into the Robust Auto-Scaling Manager,

which formulates auto-scaling as a robust optimization prob-

lem, thus offering a robust resource scaling solution.

Probabilistic Workload Forecaster. One critical aspect of

our framework is its ability to predict the workload using time

series forecasting techniques. It relies on probabilistic forecast-

ing models to generate quantile forecasts, which capture the

uncertainty in the forecast. This research explores two distinct

methodological categories of probabilistic forecasting models,

which differ in their model output, i.e., parametric distribution

and specified quantile levels. By utilizing a learned distribution

or quantile levels, desired quantile forecasts can be generated.

Robust Auto-Scaling Manager. Our proposed Robust Auto-

Scaling Manager is responsible for automating the scaling of

the cloud database based on the quantile forecasts generated

by the Probabilistic Workload Forecaster. Its main objective

is to ensure robustness in resource scaling by incorporating

quantile forecasts into the decision-making process. This is

achieved by formulating auto-scaling as a robust optimization

problem, where the aim is to minimize resource costs while

avoiding resource under-provisioning within the range of po-

tential workloads. Furthermore, we bolster the adaptability of

our strategy by integrating various quantile levels across the

entire decision horizon, enabling dynamic adjustments in the

conservatism of our auto-scaling decisions.

B. Probabilistic Workload Forecaster

1) Predicting Quantiles instead of Single Values: Database

workload forecasting is the process of predicting the future

workload of a database system. A database workload can be

characterized by various aspects, such as the arrival rate of

queries (i.e., the number of submitted queries) and resource

utilization (e.g., CPU usage), based on downstream tasks.

From the perspective of resource scaling for cloud databases,

resource utilization is a crucial factor and the most frequently

employed metric for scaling, both in academic research and

industrial applications [5], [11], [27]. Here, We provide a

general definition of the workload forecasting task which does

not specify the metric for characterizing the workload.

Definition 1 (Workload Forecasting). Given a historical work-
load time series w = {w1, . . . , wT } where wt is the workload
at time t and T is the context length (i.e., the number of time
steps used as input), workload forecasting is to predict the
future workload time series {ŵT+1, . . . , ŵT+H}, where H is
the forecast horizon (i.e., the number of future time steps for
which a forecast is generated).

In previous studies, the workload forecasting definition

provided earlier defines the predicted workload time series

{ŵT+1, . . . , ŵT+H} as a sequence of individual workload

values at each time step, thereby reflecting a point forecast.

However, in practical scenarios, workload data frequently

exhibits notable variations and outliers, which can result in

inaccuracies within point forecasts.
Building upon the limitations of traditional point forecasting

methods, we introduce the concept of quantile workload fore-

casting which is presented in Definition 2. Quantile workload

forecasting provides a more comprehensive approach by incor-

porating the uncertainty associated with workload predictions.

By estimating different quantiles of the workload distribution,

such as the 10th, 50th (median), and 90th percentiles, quantile

workload forecasting offers a range of potential future out-

comes and their associated probabilities.

Definition 2 (Quantile Workload Forecasting). Given a histor-
ical workload time series w = {w1, . . . , wT }, the objective is
to forecast the future workload at a prespecified quantile level
(or quantile levels) τ , denoted by

{
ŵτ

T+1, . . . , ŵ
τ
T+H

}
.

Quantile workload forecasting addresses the shortcomings

of point forecasts by capturing the complexity and variability

inherent in workload dynamics. Unlike single-valued predic-

tions, quantile forecasts provide decision-makers with a more

nuanced understanding of the potential workload scenarios

and the corresponding likelihoods. This allows for a better

assessment of workload variations, outliers, and unexpected

events, enabling informed decisions regarding resource allo-

cation, capacity planning, and performance optimization.
2) Predicting Quantiles using Probabilistic Forecasting:

For the implementation of quantile workload forecasting,

advanced modeling techniques such as quantile regression

can be utilized [28]. In our approach, we utilize learning-

based probabilistic forecasting models rather than traditional

statistical models. By harnessing the capabilities of deep

neural networks to capture intricate patterns and dependen-

cies in workload data, neural time series forecasters have

demonstrated superiority over traditional statistical models in

workload forecasting, as supported by prior studies [16], [17].
In this section, we explore two primary methodologies

of probabilistic forecasting, categorized based on the model

output and corresponding loss functions.

Learn parametric distributions. One of the most frequently

used methods for representing probability distributions in

forecasting is through the probability density function (Fig-
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(a) Parametric distribution (b) Pre-specified grid of quantiles

Fig. 3. Two primary methodologies of probabilistic forecasting categorized
based on the model output.

ure 3(a)). This approach assumes that the distribution of pos-

sible values conforms to a particular parametric distribution,

such as the Gaussian distribution. The model subsequently pro-

duces distribution parameters, such as the mean and variance,

which can be used to reconstruct the distribution.

As an illustration, consider a simple feed forward neural

network. Its output layer can generate the mean (μt) and

variance (σt) of a Gaussian distribution. A softplus function

is commonly used to map the corresponding parameter and

ensure that σt is non-negative. The negative log-likelihood

(NLL) is a suitable choice for the loss function, as it enables

direct computation of the likelihood of a given point under a

probability density function. However, for different types of

forecasting problems, various differentiable parametric distri-

butions can be used in addition to the Gaussian likelihood. For

instance, the Student-t distribution is one such distribution that

is commonly used. In our implementation of a parameterized

distribution-based forecaster, we chose the Student-t distribu-

tion because it has longer tails and a larger variance, allowing

it to better handle outliers and noise.

With a parameterized distribution, we can now generate

possible forecasts at a desired quantile level, using sampling

methods. The accuracy of the estimation using sampling

methods depends on the sample size, with larger sample sizes

leading to more precise estimates. For certain distributions,

specialized sampling techniques may be required to obtain

accurate estimates.

Learn Pre-specified Grid of Quantiles. This technique di-

rectly outputs the values of specific quantiles, which can be of

practical interest for directly providing desired lower or upper

bounds of workload forecasting (Figure 3(b)).

To train the model, the quantile loss function is utilized

to penalize the difference between the predicted quantile y
and the actual values ŷ. The quantile loss (QL) function is

expressed as:

ρτ (y, ŷ) = (τ − I(y < ŷ)) · (ŷ − y), (1)

where I(y < ŷ) is the indicator function that equals 1 if y < ŷ
and 0 otherwise. This indicator function ensures that the loss is

calculated differently for underestimation and overestimation

cases, based on the given quantile level τ . When τ = 0.5, it

is equivalent to the Mean Absolute Error, and its minimizer is

the median of the predictive distribution.

For multi-horizon, multivariate forecasting, the model is

trained to minimize the total loss, which is a sum of losses

over all forecast horizons and time series being predicted. The

total loss of a prespecified quantile τ is defined as:

QLτ =
H∑

h=1

n∑
i=1

ρτ (yt+h,i − ŷt+h,i), (2)

where n is the number of time series being forecasted, H is

the forecast horizon. The quantile loss function ρτ is defined

as in the single-step, single-variable case, but is now applied

over all-time series and forecast horizons. Depending on the

problem, different weights can be assigned to components of

the sum to or discount different quantiles and horizons.

Pros, Cons & Selection Criteria. Although both methods

are capable of generating quantile forecasts, each has its own

strengths and limitations. Learning parametric distributions

directly yields a probability distribution without explicitly pre-

dicting quantiles. By sampling from the learned distribution,

it allows for greater flexibility in selecting the desired quantile

levels. Consequently, it enables more adaptable conservatism

adjustment when applied to downstream tasks. However, it

is essential to note that this method is sensitive to the correct

specification of the parametric form, which can be challenging

when data patterns are complex or non-standard.

In contrast, learning a pre-specified grid of quantiles in-

volves selecting a set of quantiles of interest in advance so

that it allows for a targeted estimation of the desired quantiles

without making assumptions about the distribution. Therefore,

it generally achieves higher accuracy in quantile forecasts

within the same model. Nevertheless, since the quantile levels

are pre-determined, retraining the model becomes necessary

when different quantile levels are desired.

In summary, when choosing between these methods, careful

consideration of the data characteristics and the desired level

of flexibility in quantile forecasts is crucial.

Note that our paper does not extensively explore the suit-

ability of models for various workload patterns, such as

long-term versus short-term forecasting or handling specific

cyclic and spike patterns. The appropriateness of models for

these scenarios is typically determined by the architectural

choices, including options like Multilayer Perceptron (MLP)

or Recurrent Neural Network (RNN). However, given the

primary focus and scope of our research, which revolves

around the integration of quantile workload forecasting, we

do not undertake an extensive analysis of model limitations

and architectural aspects. Instead, our paper places a stronger

emphasis on discussions related to the model’s ability to

provide quantile forecasts, including its sensitivity to the

correct specification of the parametric form.

Concerning the models and their corresponding architec-

tures we leverage, our paper aligns with the methodologies

outlined above. We employ and evaluate two representative

standard models for each approach: DeepAR which learns

parametric distributions [29], and Temporal Fusion Trans-

former which learns a pre-specified grid of quantiles [30],

as elaborated in Section IV-A. These neural models offer

the flexibility to generate diverse model outputs and optimize

various loss functions. For instance, an MLP can be trained
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to output distribution parameters or predict specific quantiles.

To ensure an objective evaluation of the model’s performance,

the choice to either learn parametric distributions or a pre-

specified grid of quantiles is in accordance with the initial

design of each respective method.

C. Robust Auto-Scaling Manager

1) Primer on Robust Auto-Scaling: In this paper, our pri-

mary focus centers on the challenge of horizontal scaling

within cloud databases that adopt disaggregated architectures,

such as storage disaggregation [1] and memory disaggrega-

tion [2]. In contrast to traditional distributed shared-nothing

architectures, disaggregated architectures facilitate resource

pooling, thereby supporting extreme elasticity, as exemplified

in Figure 4. Furthermore, as opposed to vertical scaling, which

necessitates considerations regarding downtime duration and

the scheduling of scale operations at suitable intervals, the

scale-out approach allows us to place a stronger emphasis on

demand forecasting and the associated resource provisioning.

Specifically, the horizontal scaling problem in cloud

databases with disaggregated architectures can be formulated

as an optimization problem that configures the number of

compute nodes for each time as follows:

Definition 3 (Auto-Scaling Optimization). For a predicted
workload time series w = {w1, . . . , wH} where wt is the
workload at time t, an auto-scaling strategy involves allocating
a certain number of compute nodes to guarantee that the
average workload of these nodes remains below a predefined
threshold at each time t all while minimizing the total number
of compute nodes required, i.e.,

min
H∑
t=1

ct, s.t.
wt

ct
≤ θt, (3)

where ct is the number of compute nodes allocated at time t
and θt are predefined thresholds according to the metric for
scaling (e.g., Percentage CPU).

In our problem formulation, we intentionally omit consider-

ation of scaling overhead for several reasons. In disaggregated

architectures, scaling overhead is less prominent due to the

independent scaling of resources. As illustrated in Figure 5,

scale-out operations typically have short warm-up periods

lasting only a few seconds1. In practice, scale-out operations

1Data for Figure 5 is provided by Alibaba Cloud Database Service.

Fig. 5. Scale-out Overhead - It only takes a few seconds to scale out, i.e.,
to build in-memory components from the checkpoints.

are infrequent and typically have intervals of several tens of

minutes to even several hours, rendering the warm-up time,

which is on the order of seconds, negligible.

Secondly, our research primarily concentrates on optimizing

resource utilization, specifically ensuring that average resource

usage remains within predefined thresholds. The cost of

scaling, including aspects like warm-up time, cannot be di-

rectly integrated into our optimization objective. Additionally,

These costs are closely tied to system design and operational

considerations, which can substantially differ across various

implementations and environments. Therefore, attempting to

model scaling costs would introduce unnecessary complexity

and hinder the development of a generalized framework.

Furthermore, in scenarios with frequent scale-out opera-

tions, occurring perhaps every few minutes, we can tackle

this by introducing constraints which restrict the frequency

and timing of scale-out actions into our problem formulation,

effectively managing the impact of scaling overhead. The

content directly related to this issue and the corresponding

solutions is elaborated upon in Section V-A.

In light of the probabilistic workload forecaster introduced

in Section III-B, which provides a set of potential workloads,

we now propose the definition of the robust auto-scaling

optimization problem.

Definition 4 (Robust Auto-Scaling Optimization). Given the
predicted workloads with uncertainty at time t represented
by Ŵt, encompassing a range of potential values, a robust
auto-scaling scheme aims to minimize the total number of
compute nodes allocated while ensuring that, for each time t,
the average workload of each node remains below a specific
threshold, even in the presence of uncertainty:

min

H∑
t=1

ct, s.t. ∀wt ∈ Ŵt,
wt

ct
≤ θt. (4)

The comparison between Definition 3 and Definition 4

reveals that the primary differentiation between a robust auto-

scaling strategy and a non-robust one hinges on the consid-

eration of forecast uncertainty. Through the incorporation of

the uncertainty Wt that outlines possible workload values, the

robust approach ensures sufficient resources are allocated to

handle future workloads, even with imprecise forecasts.

To solve Equation 4, we can reformulate it by its robust

4020

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:56:18 UTC from IEEE Xplore.  Restrictions apply. 



counterpart as follows:

min
H∑
t=1

ct, s.t.
supwt∈Ŵt

wt

ct
≤ θt. (5)

In the above equation, the supremum operator (sup) rep-

resents the maximum value taken overall possible workload

scenarios within the uncertainty set Ŵt. It denotes the worst-

case scenario where the workload takes on its maximum value

within the uncertainty range. By considering this worst-case

scenario, the strategy ensures that the allocated resources can

handle the workload under any possible condition within the

uncertainty set, thus preventing resource under-provisioning.

The probabilistic workload forecaster introduced in Sec-

tion III-B enables us to obtain a set of specified quantiles of

interest. Utilizing these quantile forecasts, we can determine an

upper bound on the workload by selecting a specific quantile

forecast at a chosen level. For instance, we can consider the 0.9

quantile forecast as a reference point for resource allocation.

To achieve the desired level of conservatism, we can replace

the supremum operator with a specific quantile, leading to the

following formulation:

min

H∑
t=1

ct, s.t.
ŵτ

t

ct
≤ θt, (6)

where ŵτ
t denotes the τ quantile forecast provided by the

probabilistic forecaster for time period t, e.g., 0.9 quantile.

The resulting optimization problem is deterministic and

can be solved using standard linear programming solvers.

The quantile τ adopted in Equation 6 controls the level of

conservatism an auto-scaling strategy realizes. In practice, it

is common to select quantile forecasts with a quantile level

greater than 0.5 to ensure robust resource scaling. By choosing

a higher quantile level, we increase the conservativeness of

the forecasts, making the optimization problem more robust

against resource under-provisioning. Conversely, selecting a

lower quantile level introduces a more aggressive approach,

reducing under-utilization compared to the conservative ones.

2) Adaptive Extension: In the basic robust auto-scaling

strategy mentioned above, a single quantile forecast is applied

uniformly across the entire decision horizon. For example, the

strategy scales resources based on the 0.9 quantiles for each

time step. However, in practical scenarios, it is common prac-

tice to generate predictions for multiple future time steps and

formulate corresponding strategies. Using a fixed quantile for

the entire auto-scaling strategy across all prediction horizons

is inadequate for several reasons.

Firstly, relying on a fixed quantile does not ensure the

desired balance between resource under-provisioning and re-

source under-utilization at every time interval. Allocating

resources based on a conservative quantile may effectively pre-

vent under-provisioning during certain periods when workload

demands are higher than expected, but it can lead to substantial

overestimation during others.

Secondly, such an auto-scaling strategy fails to fully exploit

the valuable information provided by probabilistic forecasting.

The forecasted distribution or quantiles not only provide in-

sights into the range of possible values and their likelihood but

also implicitly convey the level of confidence or uncertainty

associated with the forecast. For instance, a wider distribution

or higher quantiles in a probabilistic forecast indicate greater

uncertainty and lower confidence in the predictions.

To overcome this limitation, we propose a robust auto-
scaling strategy with adaptive robustness that allows for the

adjustment of the level of conservatism based on varying

quantiles for different time periods. We formally define this

strategy as follows:

Definition 5 (Auto-Scaling Optimization with Adaptive Ro-

bustness). Auto-scaling with adaptive robustness is an op-
timization scheme that dynamically adjusts the allocation
of compute nodes based on varying quantiles of predicted
workloads across different time intervals:

min
H∑
t=1

ct, s.t.
ŵτt

t

ct
≤ θt, (7)

where τt indicates the quantile level considered at each time
t, specifically.

The adaptive robust auto-scaling strategy, defined in Defini-

tion 5, incorporates the ability to choose varying quantile levels

for resource scaling at each time step, differentiating it from

the basic approach. This additional flexibility empowers the

strategy with enhanced adaptability, facilitating a more refined

equilibrium between robustness and resource utilization.

Nevertheless, a significant challenge persists in deciding

when to employ a conservative strategy versus an aggressive
one. To tackle this challenge, we introduce an uncertainty-
aware adaptive scaling that tactically adjusts the level of

conservatism based on the uncertainty of quantile forecasts.

As mentioned before, the forecasted distribution or quantiles

provide valuable insights into the possible value range and

probabilities, while implicitly indicating the level of con-

fidence or uncertainty in the forecast. In this context, we

introduce a metric to quantify uncertainty, which measures the

extent of deviation of the forecasted values from the central

tendency, such as the mean or median.

When dealing with probabilistic forecasting models that di-

rectly provide distribution parameters, the variance or standard

deviation of the predicted distribution can be used as a direct

measure of uncertainty. Alternatively, for models that estimate

predetermined quantiles, we propose a metric to quantify

it. More specifically, considering a single step of workload

forecast at time i, comprising n quantile levels {τ1, . . . , τn}
along with the mean forecast (i.e., 0.5quantile), we define the

level of uncertainty using the following expression:

U =

n∑
i=1

(τi − I(wτi < w0.5)) · (w0.5 − wτi), (8)

with I(wτi < w0.5) being the indicator function that yields 1

when the workload forecast at the quantile level τi is lower

than the mean forecast, and 0 otherwise.
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(a) U & MSE (b) U & mean wQuantileLoss

Fig. 6. The correlation between the level of uncertainty indicated by quantile
forecasts and forecasting accuracy.

The proposed metric, denoted as U , shares similarities with

quantile loss in terms of calculation. However, the crucial

difference is that it compares the forecast at each quantile level

with the median forecast rather than the target value, thereby

capturing the relative uncertainty of the forecasted results

across all specified quantile levels. A higher value of the

computed metric U signifies an elevated level of uncertainty

linked to the forecasted results.

The correlation between the level of uncertainty in the

forecasted results and their accuracy is further explored. To

visually depict this relationship, Figure 6 showcases the metric

U associated with quantile forecasts at each time period t
within the sampled forecasting horizons. The Mean Square

Error (MSE) of the mean forecast and the Mean Weighted

Quantile Loss (mean wQuantileLoss, an evaluation metric for

quantile forecasts, detailed in Section IV) for all quantiles

are also included in the visualization. The findings reveal a

consistent trend between forecast uncertainty and accuracy

within the sampled forecasting horizons. Higher levels of

uncertainty at each time step are generally indicative of less

accurate predictions, regardless of whether they are quantile

forecasts or mean forecasts.

Uncertainty-aware Adaptive Scaling. Building upon the

aforementioned observations, we now detail the uncertainty-

aware adaptive approach that dynamically adjusts the level of

conservatism in auto-scaling strategies based on the indicated

uncertainty level in the forecasts. Algorithm 1 exemplifies our

uncertainty-aware approach, featuring two optional quantile

levels for adjustment. At each time step, the uncertainty

level of the quantile forecasts is calculated using Equation 8.

When the uncertainty level surpasses or equals the predefined

threshold ρτ , compute nodes are allocated based on the more

cautious quantile level’s forecast. Conversely, if the uncertainty

level falls below the threshold, compute nodes are allocated

based on the more optimistic quantile level’s forecast.

The uncertainty threshold ρτ plays a critical role in deter-

mining the conservatism of the scaling plan based on whether

the uncertainty level exceeds or is below the threshold. In prac-

tical usage, it is advisable to select an appropriate uncertainty

threshold based on the predictive model’s performance. This

selection process entails considering the relationship between

the uncertainty level and the forecasting performance, which

can be derived from historical data. Through this analysis, a

suitable uncertainty threshold can be determined, striking a

Algorithm 1 Uncertainty-aware Adaptive Scaling

Input: {τ1, τ2}: two optional quantile levels where τ1 < τ2;

θ: workload threshold for resource scaling; ρτ : uncertainty

threshold for adjusting quantile levels; {ŵ1, . . . , ŵn}:

quantile workload forecasts for n steps

Output: {c1, . . . , cn}: an allocation of compute nodes for n
steps;

1: for i = 1 to n do
2: Calculate Ui for quantile forecasts at step i
3: if Ui < ρτ then
4: ci = argminci

{
ŵ

τ1
i

ci
:
ŵ

τ1
i

ci
< θ

}

5: else
6: ci = argminci

{
ŵ

τ2
i

ci
:
ŵ

τ2
i

ci
< θ

}

7: end if
8: end for
9: Return {c1, . . . , cn}

desired balance between accuracy and conservatism.

Furthermore, our adaptive approach extends beyond just two

optional quantile levels. It offers the flexibility to include a

staircase-like range of options, enabling more precise control

over the auto-scaling strategy. This expanded range allows us

to finely adjust resource allocation in accordance with specific

requirements, resulting in a more customizable solution.

IV. EXPERIMENTAL EVALUATION

A. Experimental Settings

1) Datasets and Workloads: We construct datasets for our

experimental evaluation using two real-world datasets. For

both datasets, we aggregate the data at 10-minute intervals.

− Alibaba Cluster Trace2. We construct a resource usage

trace (including CPU, memory, and disk) by sampling a

subset of machines and aggregating the resource usage.

− Google Cluster Trace3 [31]. We construct a resource

usage trace (including CPU and memory) by sampling

a subset of tasks and aggregating the resource usage.

2) Compared Methods: In this study, we evaluate (1) work-

load forecasters and (2) auto-scaling strategies.

Workload Forecasters. For workload forecasting, we inves-

tigate several probabilistic forecasting models, ranging from

statistic models to transformer-based methods. We implement

all these compared methods using GluonTS, a Python package

for probabilistic time series modeling [32] and determine their

hyperparameters using Optuna, an automatic hyperparameter

optimization software framework [33]. To ensure that the

models are not overly sensitive to their hyperparameters, we

fix the hyperparameters to be the same across the different

prediction horizons for each type of model. Moreover, we set

the learning rate to 1e−3 for all models.

Of particular interest are the DeepAR and TFT models,

as they represent two main approaches for quantile workload

2https://github.com/alibaba/clusterdata
3https://github.com/google/cluster-data
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forecasting mentioned before, learning parametric distributions

and learning pre-specified grid of quantiles, respectively.

− Autoregressive Integrated Moving Average (ARIMA) [34].

A classic statistical time series model which combines

autoregressive (AR) and moving average (MA). Quantile

forecasts can be enabled by incorporating residuals to

capture the uncertainty of the forecasts.

− Multilayer Perceptron (MLP) [35]. A simple feedforward

neural network that generates probabilistic forecasts by

outputting the parameters of a selected distribution.

− DeepAR [29]. A probabilistic forecasting model that

learns a parametric distribution using autoregressive re-

current networks. It enables the computation of prediction

quantiles by sampling in the predicted distribution.

− Temporal Fusion Transformer (TFT) [30]. An attention-

based architecture that generates quantile outputs. It is

trained by jointly minimizing the quantile loss, summed

across all quantile outputs.

Resource Scalers. Regarding auto-scaling strategies, we com-

pare our solution with reactive methods and predictive meth-

ods based on point forecasting. Reactive scalers, such as

Google Autopilot [36] and Kubernetes default horizon pod

auto-scaler (HPA) [21], are widely used in existing cloud

systems. They employ a moving window approach to gather

resource usage statistics over a recent period, which in turn

informs the scaling of resources. In our experiments, we

implement two reactive scalers that are conceptually similar

to Google Autopilot.

− Reactive-Max. This scaler scales resources based on the

maximum workload value within the window.

− Reactive-Avg. This scaler applies exponentially-decaying

weights to the workload and performs scaling based on

the weighted average. We set the half-life (decay factor)

to 6, indicating that the weights decrease by half every 6

time intervals.

In the context of scalers based on point forecasting, we

employ the following two models as workload forecasters.

− QueryBot 5000 (QB5000). A hybrid forecasterthat com-

bines linear regression, long short-term memory network,

and kernel regression [16].

− TFT-point. We repurpose TFT, initially used as our

quantile workload forecaster, as an independent model

for point forecasting. More precisely, we train TFT to

exclusively output the 0.5 quantile, effectively serving as

a point forecasting model.

In the case of scalers based on point forecasting, we have

also implemented an enhancement method described in [18]

for comparison. This enhancement involves adding a small ad-

ditional value to future predictions based on past underestima-

tion errors. We refer to the combinations of this enhancement

with the two point forecasting methods mentioned above as

QB5000-padding and TFT-point-padding, respectively.

B. Evaluation of Forecasting Models
1) Forecasting Accuracy Evaluation: In this study, we

compare the performance of various probability prediction

models. The context length and prediction length are set to 12

hours, equivalent to 72 time steps. To evaluate the performance

of probabilistic forecasting models in predicting quantiles, we

utilize the following metrics:

− Weighted Quantile Loss (wQL). It measures the accuracy

of a model at a specified quantile. Given the quantile loss

QLτ at a specified quantile defined in Equation 2, we can

derive the Weighted Quantile Loss (wQL) at a quantile

level τ as follows:

wQL[τ ] =
2 ·QLτ∑H

h=1

∑n
i=1 yt+h,i

,

where yt+h,i is the target value for the i-th time series at

time t+ h.

− Coverage. Another important metric we use for evaluat-

ing the predicted values at a quantile level. A coverage

Coverage[τ ] measures the fraction of time series in

the dataset for which the τ -percentile of the predictive

distribution is larger than the true target. For a perfectly

calibrated prediction, it holds that Coverage[τ ] = τ .

− Mean Weighted Quantile Loss (mean wQL). a global

metric that measures the overall performance of the

model in predicting the entire probability distribution

which can be defined as:

mean wQL =
1

A
∑
τ∈A

wQL[τ ],

where A is a set of prespecified quantile levels.

In this experiment, we test with A = {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9}. Given the necessity to employ quantile

forecasts as upper bounds for guiding our robust auto-scaling

strategy, special emphasis is placed on evaluating the perfor-

mance of quantile predictions at specific levels, namely, the

0.7, 0.8, and 0.9 quantiles. Quantile loss and coverage are

computed at their respective levels.

The results are presented in Table I. Based on these metrics,

it is observed that both DeepAR and TFT outperformed

the baseline methods, demonstrating their effectiveness in

quantile forecasting. Particularly, TFT exhibited the highest

performance among all the evaluated models.

While our primary focus is on quantile forecasting and

evaluating the associated metrics, we also assess the perfor-

mance of the quantile forecasters in point forecasting using

the Mean Squared Error (MSE) metric. To accomplish this,

we derive the mean value from the forecast obtained at the

predefined quantiles and utilize it as the point prediction. This

supplementary analysis allows us to evaluate the accuracy of

the models in predicting specific time points, complementing

the overall assessment of their forecasting capabilities.

In addition, we visually present the prediction results of

all models within a sampled forecasting horizon in Figure 7.

DeepAR and TFT demonstrate superior performance com-

pared to MLP in forecasting the possible range, as observed

from the visualization of prediction intervals. DeepAR and

TFT consistently maintain excellent coverage within narrow

prediction intervals. The outstanding performance of DeepAR
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT MODELS WITH A CONTEXT LENGTH OF 72 STEPS AND PREDICTION LENGTH OF 72 STEPS. THE RESULTS

ARE AVERAGED OVER 3 TRAINING RUNS.

Dataset Model
Evaluation Metrics

mean wQL wQL[0.7] wQL[0.8] wQL[0.9] Coverage[0.7] Coverage[0.8] Coverage[0.9] MSE

Alibaba Trace

ARIMA 0.0320 0.0471 0.0314 0.0123 0.849 0.923 0.970 411.1
MLP 0.0655 0.0777 0.0661 0.0457 0.676 0.765 0.857 869.1

DeepAR 0.0153 0.0179 0.0153 0.0107 0.507 0.610 0.729 47.0
TFT 0.0041 0.0045 0.0037 0.0023 0.647 0.779 0.908 3.1

Google Trace

ARIMA 0.4332 0.5358 0.4736 0.3487 0.737 0.810 0.884 5983.8
MLP 0.3741 0.4708 0.4267 0.3257 0.620 0.705 0.806 5473.5

DeepAR 0.0541 0.0599 0.0513 0.0380 0.6723 0.742 0.819 1068.7
TFT 0.0163 0.0193 0.0171 0.0128 0.740 0.829 0.929 124.4

(a) MLP (b) DeepAR (c) TFT

Fig. 7. Prediction Results - A prediction interval is an estimate of the range within which a future observation is expected to fall. For instance, a 80%
interval represents the range between the 0.1 quantile and the 0.9 quantile.

(a) Alibaba Trace

(b) Google Trace

Fig. 8. Forecasting Horzions Evaluation - Evaluation of forecasting models
over different prediction horizons.

and TFT in forecasting narrow prediction intervals highlights

their potential for more accurate and precise resource scal-

ing. This capability is crucial in effectively addressing both

under-provisioning and over-provisioning scenarios, as will be

further substantiated through experimental analysis.

To summarize, the experimental results demonstrate that the

proposed methods for quantile workload forecasting, DeepAR,

and TFT, outperformed the traditional approaches (ARIMA

and MLP) across multiple evaluation metrics. Notably, TFT

exhibited exceptional performance in capturing the complete

probabilistic distribution and predicting specific quantiles.

Additionally, both DeepAR and TFT displayed competitive

results in point forecasting, as evidenced by the MSE metric.

These findings emphasize the potential of DeepAR and TFT

in the realm of quantile workload forecasting.

2) Forecasting Horizons Evaluation: The performance of

different models is experimentally evaluated across various

prediction horizons. Specifically, with a fixed context length of

12 hours, the models’ performance is assessed for prediction

lengths of 10 minutes, 1 hour, 2 hours, 6 hours, and 12

hours, which correspond to 1, 6, 12, 36, and 72 time steps,

respectively. As demonstrated in Figure 8, the DeepAR and

TFT models consistently outperformed the baseline methods

across all prediction horizons.

Additionally, we observe that the TFT model exhibits com-

paratively lower performance in short-term forecasting, such

as one-step forecasting. This can be attributed to the fact that

the model’s hyperparameters were optimized for long-term

prediction and applied to all prediction horizons, thereby not

favoring short-term forecasting. Furthermore, DeepAR itself is

designed as a one-step forecasting model that achieves multi-

step forecasting iteratively. As a result, it demonstrates higher

accuracy in short-term prediction due to the iterative approach,

while its performance deteriorates as the prediction horizon

increases due to the accumulation of iterative errors.

By analyzing the results, valuable insights can be gained

regarding the patterns and trends in the models’ performance

across different prediction lengths. It aids in selecting the most

suitable models for specific forecasting horizons.

C. Evaluation of Auto-Scaling Strategies

In this subsection, we evaluate the performance of robust

auto-scaling strategies based on probabilistic forecasting mod-

els through experimental analysis. We choose CPU utilization

as the metric for scaling and make decisions for the future

72 time steps, i.e., 12 hours. Building upon the performance

evaluation of probabilistic forecasting models discussed ear-

lier, we select the DeepAR and TFT models as our quantile

workload forecasters for further evaluation. Given our focus on

the robustness of auto-scaling strategies in avoiding resource

under-provisioning, we predominantly consider the forecasted

values corresponding to quantile levels greater than 0.5 as

the basis for our auto-scaling policies. Therefore, for models

that learn pre-specific quantiles, we train them with forecasted

quantile levels A = {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}.

To evaluate the robustness in avoiding resource under-

provisioning, we consider the following metric:
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(a) Alibaba Trace

(b) Google Trace

Fig. 9. Under-Provisioning Rate Evaluation - The number following
the hyphen “-” in the model names indicates the quantile level used for
auto-scaling guidance. TFT-point represents a TFT model trained for point
forecasting, specifically targeting the 0.5 quantile.

(a) DeepAR - Alibaba (b) TFT - Alibaba

(c) DeepAR - Google (d) TFT - Google

Fig. 10. Analysis across Different Quantile Levels - Evaluation of under-
provisioning and over-provisioning rates when scaling resources based on
forecasts at different quantile levels.

− Under-Provisioning Rate. It measures the percentage of

periods in which the allocated resources exceed the actual

workload demands.

Due to the conservative estimation of future workload and

the robust resource scaling strategies employed to avoid under-

provisioning, there is a possibility of under-utilization caused

by overestimating the workload. To evaluate these scenarios,

we consider the following metric:

− Over-Provisioning Rate. It measures the percentage of

time periods in which the allocated resources exceed

the minimum amount required, reflecting the extent of

resource under-utilization.

These metrics provide insights into the trade-off between

avoiding resource under-provisioning and potential resource

(a) Alibaba Trace - DeepAR

(b) Alibaba Trace - TFT

Fig. 11. Evaluation of Adaptive Approach - These heatmaps illustrate the
rates of under-provisioning and over-provisioning for various combinations of
two optional quantile levels when coupled with the DeepAR and TFT model.
The diagonal entries in the heatmap correspond to the basic method, which
utilizes a fixed quantile level for the entire decision horizon.

under-utilization due to conservative workload estimation. By

evaluating both metrics, we can assess the balance achieved

by the auto-scaling strategies in effectively utilizing resources

while avoiding under-provisioning.

1) Comparision with Existing Solutions: We compare our

appproach with reactive ones and those utilizing point fore-

casts in addressing the challenge of under-provisioning. In

our implementation, the reactive approach evaluated scales

resources based on the average workload during the most

recent n time steps, where n is set to 6.

The experimental results are presented in Figure 9. In the

context of the TFT model, the label TFT-point refers to auto-

scaling strategies based on point forecasting models trained

using the TFT model. DeepAR-τ denotes the auto-scaling

strategy that utilizes the forecasts based on the quantile level

τ provided by the DeepAR-based quantile forecaster. For

example, DeepAR-0.6 indicates the resource scaling strategy

based on the 0.6 quantile forecasts generated by DeepAR. The

same applies to TFT-τ .

The results depicted in Figure 9 highlights the consistent

superiority of predictive auto-scaling strategies over reactive

scalers. Even the reactive-max strategy, which scales resources

based on the maximum observed value from the past, exhibits

severe under-provisioning issues. This can be attributed to the

inherent lag in reactive scaling.

We also investigate the benefits of incorporating quantile

forecasts as opposed to relying exclusively on point forecasts.

In our approach, when training a forecasting model like TFT,

we develop both a point forecaster and a quantile forecaster.

Our results demonstrate that auto-scaling strategies based on

quantile forecasts, even when derived from models with lower

long-term prediction accuracy like DeepAR, outperform those

relying solely on point forecasts from more accurate models
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like TFT. This underscores the significance of integrating

quantile forecasts into the auto-scaling process.

Additionally, our approach outperforms predictive scalers

based on padding enhancements. In our experiments, we

observe that the likelihood and severity of underestimation in

point forecasts for a specific time interval are not significantly

correlated with past underestimation errors over a certain

period. This is one of the reasons why scalers based on

point forecasts with padding enhancements, while showing

improvements compared to those exclusively based on point

forecasts, still do not perform as well as our method.

Moreover, for the selected quantile levels, , our observations

indicate that choosing more conservative quantile levels, such

as higher quantiles, enhances the system’s robustness against

under-provisioning. By considering a wider range of potential

workload variations, robust strategies based on more conser-

vative quantile levels ensure that sufficient resource allocation.

There is typically a trade-off between conservative quantile

levels and the occurrence of underover-provisioning. To gain a

deeper understanding of the impact of different quantile levels,

we conducted experiments to evaluate the performance of a

robust scaler using various quantiles as presented in Figure 10.

The analysis depicted in Figure 10 allows us to identify an

optimal quantile level that strikes a balance between under-

provisioning and over-provisioning. By evaluating a spectrum

of quantile levels, we can determine the point where under-

provisioning is effectively mitigated without incurring signif-

icant over-provisioning.

2) Evaluation of Adaptive Robust Approach: The afore-

mentioned experiments indicate that it is crucial to se-

lect an appropriate quantile level where under-provisioning

is effectively mitigated without incurring significant over-

provisioning. In the case of multi-horizon decisions, we fur-

ther perform a comparative evaluation between our adaptive

method and the approach with a fixed quantile level.

Consistent with Algorithm 1, we set an uncertainty threshold

and evaluated the performance for different combinations of

quantile levels. Specifically, for the adaptive extension, we pre-

select two quantile levels, and the conservatism of strategy

within different time intervals depends on which of the two

is chosen. By employing two optional quantile levels, we can

demonstrate the adaptivity of our approach and enable clear

and intuitive visualization of our experimental results. We

evaluate different combinations of these two optional quantile

levels. The results are depicted in Figure 11.

These heatmaps illustrate the rates of underover-

provisioning for different combinations of two optional

quantile levels. Our adaptive approach, which dynamically

adjusts the quantile levels between the two pre-selected

values, achieves a reduction in over-provisioning without

increasing under-provisioning compared to the method with

a fixed quantile level. This improvement in reducing over-

provisioning leads to an enhancement in resource utilization

efficiency while maintaining the robustness of auto-scaling.

Moreover, we perform a sensitivity analysis on the uncer-

tainty threshold to investigate its impact on the performance of

(a) Under-Provisioning (DeepAR) (b) Over-Provisioning (DeepAR)

(c) Under-Provisioning (TFT) (d) Over-Provisioning (TFT)

Fig. 12. Sensitivity Analysis of Uncertainty Threshold - Examining the
sensitivity of under-provisioning and over-provisioning rates to variations in
the uncertainty threshold on Google Trace.

our adaptive approach. The results are presented in Figure 12.

By varying the uncertainty threshold, we evaluate the result-

ing rates of under-provisioning and over-provisioning across

selected quantile-level combinations.

The sensitivity analysis demonstrates that the choice of

uncertainty threshold plays a crucial role in balancing the

trade-off between underover-provisioning. By appropriately

adjusting the uncertainty threshold, we can achieve the desired

level of resource utilization efficiency while maintaining the

robustness of the auto-scaling strategy. In addition, as the

uncertainty threshold varies, the underover-provisioning rates

exhibit distinct step-like changes, indicating that certain ranges

of uncertainty thresholds yield similar effects. This observation

facilitates the identification and selection of suitable uncer-

tainty thresholds, as different values within a specific segment

can lead to comparable outcomes.

D. Computation Overhead

We present the experimental setup and results that show-

case the computation overhead of different approaches. The

execution time consists of two key components: workload

forecasting, i.e., the inference speed of forecasting models,

and auto-scaling optimization, i.e., the overhead of solving

auto-scaling optimization problems using solvers.

We first compare the execution time of different methods

and find as listed in Table II and observe that the computational

overhead of nearly all the methods is within the millisecond

range, indicating that the differences were practically negli-

gible. Furthermore, we perform a detailed cost breakdown

analysis specific to our proposed method. As presented in

Table III, The DeepAR model exhibited higher inference

overhead compared to the TFT model due to the need for

sampling from parametric distributions. In contrast, the TFT

model directly provided quantile forecasts, resulting in faster

inference. The computation overhead of auto-scaling optimiza-

tion demonstrates minimal differences. This observation is

attributed to the fact that the computational time required for

calculating the uncertainty level is negligible in comparison.

4026

Authorized licensed use limited to: Zhejiang University. Downloaded on September 16,2024 at 05:56:18 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
COMPUTATION OVERHEAD COMPARISON

Methods Execution Time
Reactive-Max 6.22 ms

Reactive-Average 9.66 ms
Hybrid(QB5000) 160.76 ms

DeepAR 912.61 ms
TFT 40.38 ms

TABLE III
COMPUTATION OVERHEAD BREAKDOWN

Workload Forecasting Auto-Scaling Optimization
DeepAR TFT Basic Adaptive

915.94 ms 30.13 ms 7.38 ms 7.89 ms

V. DISCUSSION

A. Handling Thrashing
In our auto-scaling problem formulation, the primary ob-

jective is to minimize the number of compute nodes re-

quired to satisfy the workload threshold, without considering

scaling overhead. This is mainly attributed to the relatively

low overhead associated with scaling compute instances in

disaggregated databases. However, without such consideration,

frequent fluctuating in the number of compute nodes may

occur, which is sometimes referred to as thrashing, or flapping.
A common approach to address this concern is to impose

restrictions on the number of compute nodes that can be added

or removed in each step, thereby promoting a smoother auto-

scaling process. Several methods have been discussed in other

research papers that focus on controlling the scaling operations

to achieve a more gradual adjustment of resources [21], [37].

However, due to the specific focus of this paper, a detailed

exploration of these methods is beyond the scope of this work.

B. Quality of Service Optimization
In our experiments, we manually set a workload threshold

for scaling and evaluate the fulfillment of resource usage

requirements. However, for the following reasons, we choose

not to delve into the configuration of this threshold or the

analysis of other quality of service (QoS) metrics.
The determination of optimal thresholds is contingent upon

specific requests and distinct Service Level Objectives (SLOs).

For instance, the optimization of average query latency neces-

sitates different thresholds from that of the 99th percentile

query latency. Additionally, QoS is influenced by factors be-

yond the workload metrics considered for scaling and does not

directly reflect the effectiveness of resource scaling strategies.
Worth mentioning, performance modeling is a promising

approach to tackle the challenges of threshold configuration

and QoS metric analysis [38]–[41]. It enables exploration of

the relationship between workload metrics, thresholds, and

system performance in a controlled and reproducible manner.

However, our focus lies in evaluating the ability of auto-scaling

strategies to meet resource usage demands, and performance

modeling necessitates further investigation in future research.

VI. RELATED WORK

In Section II-A, we provide a brief overview of the auto-

scaling taxonomy and the necessity for its reevaluation due

to the emergence of disaggregated cloud databases. Thanks to

resource disaggregation, unlike scaling out in shared-nothing

databases, which necessitates selective state migration and the

scheduling of scaling activities [9], our problem formulation

allows us to focus squarely on resource demand forecasting

and capacity allocation.

In the realm of predictive auto-scaling, prior research

has explored the utilization of time series forecasting tech-

niques [8]–[11], [13]–[15]. Some of these works have delved

into how to quantify uncertainty in workload forecasting,

including leveraging stochastic process models to capture

stochasticity [20] or directly predicting the possible distribu-

tion using probabilistic forecasting models [42]. However, our

work differs from theirs in the following aspects.

Firstly, we extend the scope of workload forecasting by

introducing the concept of quantile forecasting and expanding

the range of existing approaches through an exploration of two

categories of learning-based probabilistic models. Secondly,

we address the gap in investigating how predicted uncertainty

can inform auto-scaling tasks. Some existing probabilistic

workload forecasting methods have not explored the integra-

tion of probabilistic forecasts in downstream tasks [42]. We

bridge this gap in our work. More importantly, our auto-scaling

approach goes beyond considering the potential workload

range and enables a more refined control over the conservatism

level of auto-scaling decisions.

In terms of addressing the issues, [18] aligns with our

work, aiming to mitigate underestimation errors in predictions.

They use a padding approach, augmenting predicted resource

demand with a small value based on under-estimation errors

of historical forecasts. In contrast to their approach, which

serves as a complement to point forecasting models, we

directly utilize probabilistic forecasting models to enhance

robustness through various quantile levels. This enables us to

provide a more nuanced and adaptable approach to handling

underestimation errors and uncertainty in our predictions.

VII. CONCLUSION AND FUTURE WORK

In this paper, we address the issue of robustness in under-

provisioning within the context of predictive auto-scaling.

Our significant contributions lie in proposing a robust pre-

dictive auto-scaling approach that considers forecast uncer-

tainty, enhancing the reliability and efficiency of resource

scaling. Through the utilization of probabilistic forecasting

techniques and customizable quantile levels, we achieve a

balance between resource efficiency and robustness. Extensive

experiments confirm the effectiveness of our approach in

achieving robust auto-scaling while maintaining reasonable

resource efficiency.
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