
Unveil the Mystery of Critical Software Vulnerabilities
Shengyi Pan

The State Key Laboratory of
Blockchain and Data Security,

Zhejiang University
Hangzhou, Zhejiang, China
shengyi.pan@zju.edu.cn

Lingfeng Bao∗†
The State Key Laboratory of
Blockchain and Data Security,

Zhejiang University
Hangzhou, Zhejiang, China
lingfengbao@zju.edu.cn

Jiayuan Zhou
Waterloo Research Center, Huawei

Waterloo, Ontario, Canada
jiayuan.zhou1@huawei.com

Xing Hu
The State Key Laboratory of
Blockchain and Data Security,

Zhejiang University
Ningbo, Zhejiang, China

xinghu@zju.edu.cn

Xin Xia
Huawei

Hangzhou, Zhejiang, China
xin.xia@acm.org

Shanping Li
The State Key Laboratory of
Blockchain and Data Security,

Zhejiang University
Hangzhou, Zhejiang, China

shan@zju.edu.cn

ABSTRACT
Today’s software industry heavily relies on open source software
(OSS). However, the rapidly increasing number of OSS software
vulnerabilities (SVs) poses huge security risks to the software supply
chain. Managing the SVs in the relied OSS components has become a
critical concern for software vendors. Due to the limited resources in
practice, an essential focus for the vendors is to locate and prioritize
the remediation of critical SVs (CSVs), i.e., those tend to cause huge
losses. Particularly, in the software industry, vendors are obliged
to comply with the security service level agreement (SLA), which
mandates the fix of CSVs within a short time frame (e.g., 15 days).
However, to the best of our knowledge, there is no empirical study
that specifically investigates CSVs. The existing works only target
at general SVs, missing a view of the unique characteristics of CSVs.

In this paper, we investigate the distributions (from temporal,
type, and repository dimension) and the current remediation prac-
tice of CSVs in the OSS ecosystem, especially their differences
compared with non-critical SVs (NCSVs). We adopt the industry
standard to refer SVs with a 9+ Common Vulnerability Scoring
System (CVSS) score as CSVs and others as NCSVs. We collect a
large-scale dataset containing 14,867 SVs and artifacts associated
with their remediation (e.g., issue report, commit) across 4,462
GitHub repositories. Our findings regarding CSV distributions can
help practitioners better locate these hot spots. Regarding the re-
mediation practice, we observe that though CSVs receive higher
priorities, some practices (e.g., complicated review and testing pro-
cess) may unintentionally cause the delay to their fixes. We also

∗Also with Hangzhou High-Tech Zone (Binjiang) Blockchain and Data Security Re-
search Institute
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663835

point out the risks of SV information leakage during remediation
process, which could leave a window-of-opportunity of over 30 days
on median for zero-day attacks. Based on our findings, we provide
implications to improve the current CSV remediation practice.

CCS CONCEPTS
• Security and privacy → Software security engineering; Vul-
nerability management.

KEYWORDS
Empirical Study, Critical Software Vulnerability, CVSS
ACM Reference Format:
Shengyi Pan, Lingfeng Bao, Jiayuan Zhou, XingHu, Xin Xia, and Shanping Li.
2024. Unveil the Mystery of Critical Software Vulnerabilities. In Companion
Proceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering (FSE Companion ’24), July 15–19, 2024, Porto de
Galinhas, Brazil. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3663529.3663835

1 INTRODUCTION
Nowadays, software industry heavily relies on open source soft-
ware (OSS), which serves as the foundation of the majority com-
mercial codebases [3, 45]. Synopsys reported that 96% of scanned
codebases (over 1,700 commercial codebases across 17 industries)
contained open source and 76% of code in codebases was open
source [45]. However, the increasing attacks targeting OSS soft-
ware vulnerabilities (SV) in the software supply chain pose huge
security risks to the software industry and may lead to significant
consequences [44, 68, 76]. For example, Equafix suffered from a data
breach due to a late fix of SV in Apache Structs (CVE-2017-5638 [9]),
compromising the personal information of 143 million consumers
and company loss exceeding $650 million [1]. Managing the SVs in
the relied OSS components has become a critical concern for OSS
users, especially for the commercial companies [2].

An essential focus for software vendors in managing the OSS
SVs is to locate and remediate the critical SVs (CSVs) [4, 17, 36],
i.e., those tend to be exploited and cause huge losses (e.g., the log4j
vulnerability [12]). ISO/IEC 30111 [36], the industrial standard for
SV handling processes, requires vendors to promptly address CSVs.
A large IT company usually relies on hundreds of OSS components

138

https://doi.org/10.1145/3663529.3663835
https://doi.org/10.1145/3663529.3663835
https://doi.org/10.1145/3663529.3663835

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shengyi Pan, Lingfeng Bao, Jiayuan Zhou, Xing Hu, Xin Xia, and Shanping Li

in their codebases and products. Also, there is a rapid increase in
the number of newly disclosed OSS SVs [45]. Facing a large number
of OSS SVs, the vendor has to prioritize the remediation of CSVs
due to the limited resource available and the potential significant
consequences that these hot spots can cause. In practice, a typical
organization only has the capacity to remediate one out of every ten
SVs [35, 40]. Particularly, in the software industry, customers expect
a short time frame on CSVs’ remediation Service Level Agreements
(SLA) [35, 46, 48, 50], which mandate the vendor to mitigate CSVs in
a timely manner. European Cybersecurity Certification Scheme [17]
requires cloud service vendors to handle CSVs within a few hours.

Though OSS SVs have attracted significant recent research atten-
tions [51, 58, 59, 63, 65], the existing works only target at general
SVs, missing a view of the unique characteristics of CSVs, e.g., high-
lighting the differences between CSVs and non-critical SVs (NCSVs).
Considering that CSVs are of the greatest concern and the highest
priority in practice, the goal of this study is to help practitioners
understand the distributions and the current remediation practice
of CSV in open source ecosystem though a comprehensive em-
pirical study. Specifically, we follow the Common Vulnerability
Scoring System (CVSS), the industry open standard for SV assess-
ment [7, 60], to refer SVs with a 9+ CVSS score (under version
3) as CSVs and others as NCSVs in our work. We investigate the
following research questions:
RQ1: What is the the spatio-temporal distribution of critical
software vulnerabilities (CSVs)?

There is a lack of illustration of CSVs, which is essential to pro-
vide practitioners with the exact insights of their targets, and further
help to locate CSVs and devise better remediation strategies. Thus,
we first provide a high-level impression of CSVs by revealing its
distribution from multiple perspectives, particularly, the temporal
distribution, type distribution, and repository distribution. These
perspectives are similar to those investigated in the existing stud-
ies targeting at general SVs [51, 65]. During the analysis, we pay
special interests to unveiling the distribution differences of CSV
against NCSV, which highlight its unique characteristics.

Besides, CVSS has finished evolving from version 2 to 3 with the
new version designed to overcome several known issues of the old
one [14, 39]. However, most of the existing industry practices [35,
46, 48] (e.g., the scope of CSV) and studies [60, 62] (e.g., severity
prediction) are still based on the deprecated CVSSv2 standard. It is
important to unveil the potential changes, especially regarding the
scope of CSV (e.g., proportion, composition), when transition from
CVSSv2 to CVSSv3 for both practitioners and researchers. Thus, we
investigate the differences in severity distribution between v2 and
v3, and how does the evolution of CVSS affect the scope of CSV.
RQ2: How CSVs are remediated in the OSS ecosystem?

Knowing the SV remediation practice in OSS is important for
practitioners to understand the risks in the current practice and
identify areas for improvement. Given the transparency of OSS,
development activities during the remediation process, e.g., issue
report (IR) and commit, are visible to attackers. This brings huge
security risks, as attackers can take advantage of the SV-relevant in-
formation leaked in these mitigation activities to conduct zero-day
attacks. Existing works [51, 58, 63] only investigate the general SV
life span (i.e., the gap between SV being introduced and removed in
the codebase) without a focus on the remediation process, or only

discuss the gap between SV fix and disclosure [59]. We comprehen-
sively review the entire SV remediation process (i.e., from report
to disclosure) and identify the potential risks. Figure 1 shows a
comprehensive timeline on how SVs are typically remediated in the
OSS and the possible windows of delays. Note that there could be
some special cases, e.g., the patch has not been developed when the
SV is disclosed on the National Vulnerability Database (NVD) [37].

Besides, onemight expect practitioners to attach higher priorities
to its remediation over NCSVs, since CSVs are believed to have less
exploitation complexity and larger security impacts [14]. A closer
examination specifically targeting at the remediation practice of
CSVs are needed to investigate 1) if CSVs are treated differently
with the higher priority and shorter delay, 2) to what extent the
aforementioned risks affect CSV. Thus, we further take a closer look
to the CSV remediation practice, and highlight the differences in
the remediation timeliness against NCSVs.

In summary, our paper makes the following contributions:

• Different from prior works that target at general SV, we are
the first to investigate the characteristics of CSV and compare
its differences against NCSV, We aim to provide insights for
CSV characteristics, which are of the greatest concern and the
highest priority in practice. We also investigate the evolution
of the CVSS schema.

• We conduct a deep analysis of the comprehensive timeline of
the current SV remediation practice in the OSS community,
reviewing the possible risks and pointing out suggestions for
both OSS maintainers and users (e.g., software vendors).

• We collect a large-scale dataset that ties the SV metadata with
the extensive software artifacts (e.g., IR, PR, and commit) of
the remediation process. We open this dataset along with the
scripts used in collection to facilitate future researches [49].

2 BACKGROUND
Common Vulnerabilities and Exposure (CVE) provides a stan-
dardized method to identify, define, and catalog publicly disclosed
SVs [5]. Each CVE record has a CVE ID, a brief description, and the
related references.
CommonWeakness Enumeration (CWE) serves as a common
language for discussing and describing weaknesses [8]. Each CWE
entry represents a single SV type, providing detailed information
including the common causes, behaviors, and consequences.
Common Vulnerability Scoring System (CVSS) is the de facto
standard for assessing the severity of SVs [6]. CVSS consists of three
metric groups [14], Base, Temporal, and Environmental. Public
assessments of SV severity (e.g., NVD [37], Synk [47]) typically refer
to Base metrics, which represent the intrinsic properties of SVs that
are constant over time and across specific user environments [14].
We also focus on the Base metrics in our study. The Base metrics
characterize SV from two aspects (i.e., exploitability and impact),
and produce a severity score ranging from 0 to 10, which can be
further mapped into four ratings (see Table 1). CVSS has finished
evolving from v2 to v3 [39]. CVSSv3 addresses several known issues
of v2 and introduces scoring changes that more accurately reflected
the reality of SV encountered in the wild [14]. We adopt the CVSSv3
to determine the scope of CSV and NCSV in this work. We also
discuss the changes when transition from v2 to v3.

139

Unveil the Mystery of Critical Software Vulnerabilities FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Issue Report (IR)

IR Creation First Response IR Close PR Creation

Pull Request (PR)

PR Merge

NVD DisclosureCommit

Commit

Intake-to-Fix Delay Fix-to-Disclosure Delay
Figure 1: A typical remediation timeline of OSS SVs

NVD

OSV

CVE
Records

CVE
Metadata

GitHub
Links

GitHub

Artifact
Data

SV
 In

fo
rm

at
io

n:
SV

-R
el

ev
an

t
Ar

tif
ac

ts
:

Tie with
CVE ID

Iterate util closure

Figure 2: Overview of data collection process

3 DATA COLLECTION METHODOLOGY
In this section, we describe the data collection process and results.
Figure 2 presents the overview of the data collection process. First,
we collect CVE records associated with OSS projects hosted on
GitHub fromNVD. Second, we use the software artifacts listed in the
external references of the CVE record as seeds to retrieve as much
relevant artifacts as possible. Finally, we crawl all valid artifacts and
tie them with the associated SV metadata. The collected dataset,
along with the scripts used in collection are provided at [49].

3.1 Collecting SV Information
We first collect all CVE records associated with OSS projects hosted
on GitHub from NVD (on Sept. 15, 2022). Specifically, we specify six
types of software artifacts (i.e., commit, issue report, pull request,
GitHub security advisory, release tag, and change log), and collect
CVE records with external references containing at least one of the
specified artifact link. We match each external reference with pre-
defined regex expressions. These six types of artifacts are the most
commonly listed references by NVD for CVEs relevant to GitHub
projects according to our observations. For GitHub links apart from
the specified six types, we find they are likely to be out-of-scope (not
the software artifacts related to SV remediation in the vulnerable
GitHub repository), e.g., artifacts from repositories owned by bug
hunters for documenting their discovered SVs (see the reference
of CVE-2021-33823 [10] for an example). Furthermore, we observe
that it is also possible for the six specified types of artifacts to be
out-of-scope. We further filter out invalid links by heuristics refined
according to our observations, e.g., matching the repository name
extracted from the link with the affected software listed by NVD.

Besides, we further complete the relevant GitHub links from
OSV [41], a recently popular SV database targeted for OSS, using
CVE ID as the unified SV identifier. By incorporating OSV as an
additional source, we further retrieve 2,943 GitHub links.

For each valid CVE record (i.e., with at least one of the valid
GitHub link), we further extract relevant information (i.e., CVSS

scores, CWE ID, publish date, and description) from NVD. Note that
OSV provides its own SV metadata (e.g., CVSS, CWE), which can
be different from those provided by NVD. Thus, we only use OSV
as an additional source for GitHub links, while extract all other SV
metadata from NVD to ensure consistency.

Finally, we clean each collected GitHub link with the following
three steps: ❶ remove extra suffixes of the URL link, ❷ update the
URL link to the standard form, e.g., update the outdated repo/owner
name, complete the prefix of commit hash,❸ remove duplicate links,
In total, we collect 18,970 CVEs and 28,106 associated Github links.

3.2 Completing SV-Relevant Artifacts
The RQ2 of our work investigates the detailed timeline of SV reme-
diation in OSS (see Figure 1). We focus on three specific software
artifacts in the remediation process, i.e., issue report (IR), commit,
and pull request (PR). The external references provided by NVD are
not intended to be complete. Also, once the CVE is published, NVD
is unlikely to continue tracking the SV and updating the reference
list unless updates are reported to them. Thus, we attempt to further
complete the associated artifacts using the existing ones as seeds.

Generally, we build custom crawlers and parsers (based on the
GitHub REST API [32] and GraphQL API [19]) for each artifact
type to mine potential linkages to the relevant artifacts. Then, we
clean the retrieved URLs as described in Section 3.1, and repeat this
mining-cleaning process until the closure. We discard the release
tag and change log from the mining process (accounting for 9.3% of
the collected GitHub links), as these two types of artifacts typically
consist of free-form text and it is hard to precisely identify the links
to the SV-relevant artifacts. The brief mining strategies of the other
four artifact types are:

• Issue Report (IR): We crawl the IR timeline, which records
every related GitHub events in a chronological order [33]. We
search for events of selected types to retrieve relevant artifacts
(e.g., event referenced for a commit that references the IR).

• Commit:We apply regex expressions to extract the IR/PR id,
commit hash, and GHSA/CVE id mentioned in the commit mes-
sage. GitHub automatically converts the references to artifacts
into shortened links [18]. We define the regex according to the
autolink formats listed in the GitHub document.

• Pull Request (PR): Similar to commit, we extract the relevant
artifact ids from the PR title and body. Besides, using GitHub
API, we can directly list the commits associated with the PR.

• GitHub Security Advisory (GHSA): Given a GHSA/CVE id,
we retrieve the advisory using GraphQL API [20]. The advisory
is structured, with related links listed in the references field.

140

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shengyi Pan, Lingfeng Bao, Jiayuan Zhou, Xing Hu, Xin Xia, and Shanping Li

1,683

4,151

PR
3,761

Commit
11,649

IR
7,369

Figure 3: Venn plot of the collected dataset
Table 1: Distribution of severity ratings

Severity Ratings CVSS-3 CVSS-2

CRITICAL (9.0-10.0) 2676 (18.0%) 316 (2.1%)∗
HIGH (7.0-8.9) 5437 (36.6%) 2653 (17.8%)∗
MEDIUM (4.0-6.9) 6591 (44.3%) 10164 (68.4%)
LOW (0.1-3.9) 163 (1.1%) 1734 (11.7%)

CVSSv2 does not have the rating CRITICAL. There are 2969 (20.0%) SVs with
HIGH (7.0-10.0) severity.

We valid each retrieved artifact with pre-defined heuristics, e.g.,
ensuring it belongs to the same repository, the relative chronologi-
cal order is logical. After several iterations, we finally retrieve 36,242
relevant GitHub links, which is nearly 30% more than the number
of links listed in the public SV databases (i.e., 28,106), validating the
value of our proposed extensive completing process.

3.3 Crawling Software Artifacts
Based on the GitHub links collected in the last step, we crawl the
information of these SV-relevant software artifacts and further
integrate the artifact data and the SV data (collected in Section 3.1)
to generate the final dataset. We implement custom crawlers for
repository (e.g., stars, last commit date), IR (e.g., creation date, close
date, title), commit (e.g., commit date, diff), and PR (e.g., merge date,
whether from a fork project).

After excluding the broken links (e.g., the repository is deleted),
there are 17,306 CVEs left, each with at least one of the valid GitHub
IR, commit, or PR. We then further remove CVEs (2,439 in total)
with either invalid CVSSv2 or CVSSv3 scores. NVD does not give
CVSSv3 scores for CVEs that were analyzed before Dec. 2015 [38],
and CVSSv2 scores for those after July 2022 [39].

Finally, we collect 14,867 CVE records spanning across 4,462
GitHub repositories, among which 7,369, 11,649, and 3,761 have
associated IRs, commits, and PRs, respectively (see Figure 3). Note
that each RQ has additional requirements (e.g., investigating the
IR-to-PR delay requires the SV to have both associated IRs and
PRs), which would further restrict the dataset. Compared with
the datasets used in the existing empirical studies [51, 58, 59, 63]
(ranging from 550 to 4,377 SVs), our dataset for analysis is much
larger and includes extensive relevant software artifacts to facilitate
researches regarding SV remediation practice.

4 RQ1: SPATIO-TEMPORAL DISTRIBUTION
In this section, we present our findings for RQ1. Specifically, we
investigate the distribution of CSVs from three dimensions, i.e., over
time, across CWEs, and across repositories. Besides, we analyze the
differences in severity distributions between CVSSv2 and CVSSv3
to unveil the potential changes brought by the evolution of CVSS.

(b) Distribution of severity scores over year

���� ���� ���
 ���� ���� ���� ����
�" &

�

��

����

�
��

����

�
�)

$%
"&
 !

#$#
(#"

'

����*	���������
����*	�����
����*������
����*	�������
����*��������
����*�����

���	 ���
 ���� ���� ���� ���� ����
����

�

�

�

	

�

��

��
��
�
��
��

���

�����

�����

(a) Distribution of severity ratings over year

Figure 4: Distribution of severity ratings and scores over years

4.1 Trend over Time
Table 1 presents the severity rating distribution of the 14,867 col-
lected SVs (see Section 3.3) under CVSSv2 and CVSSv3, respectively.
Figure 4 further presents the distribution of severity ratings and
scores over the years. Note that since there are only 1.1% of the SVs
in the RQ1 dataset are of LOW severity under CVSSv3 (see Table 1),
we merge the LOW SVs into the MEDIUM ones in Figure 4(a). We
observe a stable score distribution (so as the proportions of sever-
ity ratings) over years (see Figure 4). The proportion of CSVs (i.e.,
CRITICAL rating under CVSSv3) is roughly 20%.

Compared with CVSSv2,❶CVSSv3 is less biased to theMEDIUM
rating as shown in Figure 4(a), and thus has larger information
entropy [57] (i.e., 1.57 vs. 1.30). ❷ CVSSv3 scores SVs much higher.
As presented in Figure 4(b), the median/bottom-quartile score of
CVSSv3 is above the top-quartile/median score of CVSSv2 in every
year. Moreover, CVSSv3 is more likely to rate SVs with extremely
high scores (i.e., close to 10.0). These changes are also reflected in
severity ratings (see Table 1). The proportion of SVs of CRITICAL
and HIGH SVs increase by 757% and 105%, respectively.

We further quantify the score changes when switching from
CVSSv2 to CVSSv3. 94.4% (14,041 out of 14,867) SVs in the RQ1
dataset increase the severity score. The median and average scores
increase is 2.2 and 1.95, respectively. The three largest types of
rating changes are MEDIUM→HIGH (4,783), HIGH→CRITICAL
(2,110), and LOW→MEDIUM (1,541).

However, although CVSSv3 scores are generally higher than
CVSSv2 scores, we observe that the proportions of the CRITICAL
rating (i.e., 9+ score) under CVSSv3 and HIGH rating (i.e., 7+ score)
under CVSSv2 remain consistently close (roughly 20%) over the
years (see Figure 4(a)).

The severity distributions are stable over years, and the proportion
of CSVs is roughly 20%. Compared with CVSSv2, CVSSv3 scores SVs
with higher severity scores (94.4% SVs observed with an increase
in severity score). The proportions of SVs with 9+ CVSSv3 score
and 7+ CVSSv2 score are close to.

4.2 Distribution across CWE Categories
The entire SVs (14,867 in total) in the RQ1 dataset correspond to
225 CWE categories, and 80% of which fall into the top 33 CWE
categories. The distribution of CSVs is more concentrated towards
specific CWE categories. 2,676 CSVs correspond to 132 CWE cat-
egories and 80% of which are concentrated in the top 22 CWE
categories. Table 2 presents the five most common CWE categories
among the total and CRITICAL SVs, respectively. We observe that
CWEs with more SVs do not necessarily correspond to more CSVs.

141

Unveil the Mystery of Critical Software Vulnerabilities FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

Table 2: Five most common CWEs of total and Critical SVs

Rank Total

CWE ID CWE Name Proportion

1 CWE-79 Cross-site Scripting 15.3%
2 CWE-787 Out-of-bounds Write 6.1%
3 CWE-125 Out-of-bounds Read 6.0%
4 CWE-476 NULL Pointer Dereference 4.3%
5 CWE-89 SQL Injection 3.9%

Critical

1 CWE-89 SQL Injection 12.8%
2 CWE-787 Out-of-bounds Write 8.1%
3 CWE-125 Out-of-bounds Read 7.5%
4 CWE-119 Buffer Overflow 4.8%
5 CWE-78 OS Command Injection 3.8%

CW
E-13

21

CW
E-30

7

CW
E-89

CW
E-84

3

CW
E-61

1

CW
E-77

CW
E-78

CW
E-94

CW
E-88

CW
E-50

2

CW
E-19

1

CW
E-70

6

CW
E-79

8

CW
E-91

5

CW
E-28

7

CW
E-64

0

CW
E-19

3

CW
E-29

0

CW
E-43

4

CW
E-13

4

CW
E-91

8

CW
E-30

6

CW
E-41

5

CW
E-52

2

CW
E-12

0

CW
E-74

CW
E-33

8

CW
E-76

3

CW
E-19

0

CW
E-68

1

CW
E-34

7

CW
E-38

4

CW
E-11

9

CW
E-78

7

CW
E-12

5

CW
E-61

3

CW
E-66

5

CW
E-12

36

CW
E-33

0

CW
E-28

5

CW
E-90

8

CW
E-41

6

CW
E-44

4

CW
E-22

CW
E-25

4

CW
E-82

9

CW
E-91

CWE

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f C
S

V
s

Figure 5: CSV proportion of each CWE category. The red,
yellow, and grey bar represents the CRITICAL, HIGH, and
MEDIUM SVs, respectively. The gray dotted line represents
the average proportion of CSV in the entire dataset.

Since CWE illustrates the nature of SVs (e.g., root cause and
impact) [60], we explore its relation with the severity rating by
comparing the CSV proportion of each CWE category. We remove
CWE categories (113 out of 255) with fewer than 10 SVs, which
correspond to 2% SVs in the RQ1 dataset. We observe that certain
CWE categories have a higher proportion of CSVs. Figure 5 presents
the proportion of different severity ratings for 47 CWE categories
whose CSV proportion is above the average (i.e., 0.18). SVs belong-
ing to CWE-1321 [15] (Prototype Pollution) has the highest CSV
proportion (i.e., 0.69). We further compare the CWE Top 25 Most
Dangerous Software Weakness list [16], a commonly adopted refer-
ence for hot spot SVs in practice, with the top 25 CWEs with the
highest proportion of CSVs. Surprisingly, there are six differences.
For example, CWE-1321, the one with the highest CSV proportion,
is not in the list, possibly due to a relatively small population of the
corresponding SVs since the CWE Top25 list is ranked by consider-
ing both the number and the average severity of the corresponding
SVs [16]. We argue that CWEs with high CSV proportions are also
worth extra attention from practitioners. Since once SVs of these
types are detected, they are likely to be critical.

We further compare the CWE distributions between SVs of CRIT-
ICAL rating (i.e., 9+ score) under CVSSv3 and HIGH rating (i.e.,
7+ score) under CVSSv2. For the top 20 CWEs with the largest
population of each group (corresponding to 77.9% and 75.2% of
SVs of CRITICAL severity under CVSSv3 and HIGH severity un-
der CVSSv2, respectively), except for one different CWE, the two
groups of SVs share the left 19 CWEs. Though CVSSv3 tends to give
higher severity scores, it largely follows the same criterion (e.g.,
proportion, composition) of the most severe SVs from CVSSv2.

CWEs with more SVs do not necessarily correspond to more CSVs.
Certain CWEs have a higher proportion of CSVs, and they worth
more attention from practitioners. SVs of 9+ CVSSv3 score and 7+
CVSSv2 score correspond to similar CWE categories.

4.3 Distribution across Repositories
Similar to the distribution across CWEs, we find that repositories
with more SVs do not necessarily have more CSVs, e.g. there are
seven differences between the top 10 repositories with the most SVs
and CSVs. Besides, the entire SVs in the RQ1 dataset span across
4,462 GitHub repositories, while the CVSs only span across 1,543
repositories, meaning that nearly two third of the repositories do
not have any CSVs. However, among the repositories with at least
one CSV, over half only report CSVs. We further investigate the
details of these two contrasting cases.

First, 2,919 (65.4%) repositories do not have any CSV, which cor-
responds to 5,599 (37.7%) SVs. These repositories generally have
fewer SVs compared to the left ones. We find that the difference
is statistically significant (𝑝 < .0001) by applying Mann-Whitney
U statistical test [67]. Based on manual analysis, we observe rea-
sons including: ❶ the repository is not widely used. 836 (28.6%)
repositories have less than 100 Stars. ❷ the repository has not been
maintained. The date of the last commit of 706 (24.2%) reposito-
ries is one year ago. ❸ topics of the repository are less security
sensitive or the development of the repository follows good secu-
rity practices. For example, tesseract-ocr/tesseract [31] is a
widely-used (48.5k Star) and actively-developed OCR engine, which
is not a critical application and unlikely to touch the sensitive
data. It has only one published SV [11] so far. Besides, there are
still 56 repositories that have more than 10 SVs (within the top 5%
repositories with the most SVs). For these repositories, a possible
explanation for the absence of associated public CSVs is that the
maintainers may intentionally hide CSVs due to certain concerns
(e.g., reputation) [73].

Among the remaining 1,543 (34.6%) repositories that have at
least one CSV, we observe that over half (832) only report CSVs. We
observe a statistically significant difference (𝑝 < .0001) for the num-
ber of stars between repositories with only CSVs and the left ones,
as these repositories generally have fewer stars. We suspect that
small-scale projects tend to favor simplified software management
(i.e., disclosing the documenting only severe SVs) due to the lack of
manpower and security regulations. Thus, these repositories only
disclose CSVs that have higher priorities. However, there are still
208 repositories with only CSVs (i.e., the fourth quartile) that have
more than 1255 Stars. We conduct a manual analysis of such repos-
itories and conclude the following findings: ❶ Some repositories
are no longer maintained. However, due to the widespread use of
these repositories, there are still new SVs being disclosed recently.
Similar to the small-scale projects, they only disclose CVSs due
to limited management resources. Considering that such SVs may
still affect a considerable amount of downstream projects/users,
we suggest that the community should pay more attention to such
popular-yet-unmaintained repositories and take the responsibil-
ity of maintaining the most essential SV management (e.g., patch
development, notifications). ❷ For repositories that under active

142

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shengyi Pan, Lingfeng Bao, Jiayuan Zhou, Xing Hu, Xin Xia, and Shanping Li

development, we find that they have strict standards for determin-
ing SVs, and their security practices are to disclose CSVs only. For
example, facebook/folly [30], a popular (24.5k Stars) and actively-
developed open source C++ library, clearly illustrates in its security
policy [43] that users should privately report security issues via a
specified channel and the reported issue will be further examined
and triaged by the repository security team.

Repositories have varying CSV proportions, relating to the de-
velopment topics, scale and popularity, and disclosure practices.
We observe repositories avoiding disclosing CSVs, as well as those
only disclosing CSVs. For unmaintained-yet-popular projects, there
might still have new CSVs being disclosed.

5 RQ2: SV REMEDIATION TIMELINE
In this section, we present our findings regarding the timeline of SV
remediation. Figure 1 shows a comprehensive timeline on how SVs
are typically remediated in the OSS and the possible windows of
delays. We aim to help practitioners better understand the details
of the SV remediation process and the differences between CSVs
and NCSVs, unveiling the potential risks in the current practice.

5.1 Issue Report Timeline
Issue Report (IR) signals the start of the SV remediation, where
for the first time the project team is informed of the existence of
a potential SV. When a project user discovers a potential SV, it
is common for he/she to report it to the project team using the
GitHub issue tracking system (ITS) [71]. However, the report also
marks the start of the dangerous window of opportunity, since the
attackers can leverage the leaked SV information to conduct zero-
day attacks before disclosure (when the public becomes aware of the
SV and start remediation), by monitoring the public development
activities of OSS (e.g., newly posted IRs in the ITS). Moreover, the
SV details reported in the IR (e.g., SV behaviour, reproduction steps)
provide attackers with advantages in creating a functional exploit
(see IR [21] of CVE-2022-31836 [13] for an example). Specifically,
we observe that at least 41.7% (3,072/7,369) of the SV-reporting
IRs in our dataset contain attack steps. We use a set of keywords
(i.e., “steps to reproduce", “steps to replicate", “proof-of-concept",
“proof of concept"", and “poc") to identify IRs with attack steps
follow Pan et al. [71]. Note that this method provides lower-bound
estimation, since some attack steps can be described in other ways
(e.g., “vulnerability recurrence").
IR Creation→ First Response. We use a cumulative distribution
function (CDF) plot (see Figure 6(a)) to show the time delay of the
first response relative to the IR creation for CSVs and NCSVs, re-
spectively. The delay for 69.1% CSVs and 65.0% NCSVs are within
one day, respectively. As shown in the figure, IRs of CSVs gener-
ally have a quicker response. Also, we find the difference to be
statistically significant (𝑝 < 0.0001).
IR Creation→ IR Close. Figure 6(b) presents the time delay of the
IR close after its creation. There are nearly 20% SVs whose IRs closed
within one day. The median lifespan for IRs of CSVs and NCSVs are
6.3 and 6.9 days, respectively. We find no statistically significant
difference (𝑝 > 0.19) for the creation-to-close gap between CSVs
and NCSVs. However, from the CDF plot, we observe that for IRs
closed with a relatively large delay (e.g., more than one week), CSVs

10−1 100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

103
Days (Log-Scaled)

(a) IR Creation→ First Response

100 101 102 103
Days (Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

(b) IR Creation→ IR Close

Figure 6: CDFs of the delay of the SV IR timeline

10−1 100 101 102
0.0

0.2

0.4

0.6

0.8

1.0 critical
other

CD
F

Days (Log-Scaled)

(a) First Commit→ PR Merge

100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

Days (Log-Scaled)

(b) First Commit→ Last Commit

100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

Days (Log-Scaled)

(c) Last Commit→ PR Merge

100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

Days (Log-Scaled)

(d) PR Creation→ PR Merge

Figure 7: CDFs of the delay of the SV PR timeline

are less likely to face extremely long delays. We are more concerned
with IRs closed with long gaps, since a larger delay brings much
more risks given that the SV may have been exposed to malicious
actors once the IR is publicly reported. For IRs with a creation-to-
close delay larger than one week (corresponding to 48.5% CSVs
and 49.8% NCSVs), we observe a statistically significant difference
(𝑝 < 0.01) between CSVs and NCSVs.

Attackers can leverage the leaked SV information in IR to conduct
exploits. Practitioners attach higher priorities to CSV reports, i.e.,
IRs of CSVs are responded and addressed in a more timely manner.

5.2 Pull Request Timeline
After the project maintainers intake the SV information through
IR, the next critical development activity is patching the SV (see
Figure 1), by either directly pushing the commits into the codebase
or using a PR. PR documents the changes to be pushed to fix the SV
and allows practitioners to discuss, review, and test the fix before it
is merged into the branch.
First Commit→PRMerge The date of the first associated commit
of PR signals the start of the patch development. However, the patch
is not available to project users until the PR is merged, since users
typically update the project by pulling from the base branch (e.g.,
master) or just wait for the next release [59]. We investigate the
delay of patch availability in the base branch (i.e., the time lag

143

Unveil the Mystery of Critical Software Vulnerabilities FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

between the first commit and the PR merge) of CSVs and NCSVs.
As shown in Figure 7(a), the time lag of CSVs is longer than that
of NCSVs. The difference is significant (𝑝 < 0.03), indicating that
CSVs face larger delay compared to NCSVs though they should
have higher priorities. This observation is contrary to the one from
IRs (see Section 5.1), where IRs of CSVs are addressed in a more
timely manner. We further break down the time gap between the
first commit and the PR merge into two pieces, i.e., the development
process of the patch (i.e., the time gap between the first and the last
commit) and the time lag between the last commit and PR merge.
First Commit→ Last Commit For the patch development pro-
cess, the majority (i.e., 81.5% of total SVs) have all commits commit-
ted within one day. Among the left SVs (i.e., whose patches have a
relatively long development process), we observe that patches of
CSVs are developedmore quickly (see Figure 7(b)) and the difference
is significant (𝑝 < 0.03).
Last Commit → PR Merge However, after the patch is ready, we
find that the patches of CSVs require a larger delay to be finally
merged (see Figure 7(c)). The difference in the time lag between the
last commit and the PRmerge of CSVs and NCSVs is significant (𝑝 <

0.01). We conduct a manual analysis to explore the reasons behind
such a delay. We find that CSVs generally lead to more reviews and
discussions. Thus, although the patch of CSV is developed more
quickly given its priority, its availability in the codebase suffers
a larger delay (i.e., 5.4 days on median) due to more complicated
discussions and review processes.
PR Creation→ PR Merge Generally, contributors first develop
the patch in a dev branch or a forked project and later create the
PR when they think the patch is ready or close to. The majority
of PRs (76.0%) in our dataset are created with associated commits.
Once the PR is created, it makes the un-patched SV more obvious to
potential attackers as the PR explicitly shows the intent of SV fixing
and SV-relevant information (e.g., the vulnerable code lines). Thus,
the larger the delay of PR merge after its creation, the higher the
risk of SV being exploited. We observe that severity affects whether
a patch is developed before or after PR creation. PRs of CSVs are
less likely to be created without any commits compared with those
of NCSVs (20.1% vs 24.9%), which is considered to be less dangerous
since having patch developed after PR creation is likely to delay
the merge and the PR also makes the patch development process
more visible. However, for PRs with the associated commits ready
before the creation, we find that CSVs suffer a larger delay to be
merged (considering those with a delay over one day) as shown
in Figure 7(d). The difference is significant (𝑝 < 0.001). This obser-
vation verifies our previous finding that CSV fixes require more
discussions and reviews, which unintentionally (as CSV patches
are developed more quickly) leads to larger merge delays.
Unmerged PRs We also observe that there are 514 (13.7%) SVs
whose associated PRs are unmerged, Among which, 395 are closed.
To investigate the possible reasons behind these closed yet un-
merged PRs, We manually examine 50 randomly sampled PRs and
have the following observations: ❶ The PR is closed due to security
concerns (e.g., switch into a private channel to hide the details).
For example, in PR#2924 of project pjsip/pjproject [28], one of
the team members reviewed the PR and suggested using a private
PR instead. The PR was soon closed to avoid further information
leakage. ❷ The fix is merged into the codebase through another

PR (e.g., a better way to patch the SV). For example, PR#113 of
project actix/actix-net [25] was initially proposed to patch the
SV. However, it was stuck for more than 6 months due to a lengthy
discussion and development to optimize the patch. Finally, one of
the team members suggest proposing to apply a simple patch first
due to the urgency of the SV [26]. ❸ The fixing commits are directly
pushed to the codebase by the team member of the project instead
(e.g., for convenience) [27, 29].

Although CSV patches are developed more quickly given their
priorities, they may not appear in the codebase timely due to the
complicated review and testing processes. Possible reasons behind
unmerged security PRs including, using a private PR instead due
to security concerns, associated changes being directly pushed by
team members, etc.

5.3 Report-to-Fix Delay
We investigate how long the project team starts to patch the SV
after the issue is reported, and whether CSVs are patched with
higher priorities compared with NCSVs.
IR Creation → PR Creation The median time lag between IR
creation and PR creation for CSVs andNCSVs are 3.0 and 7.8 days, re-
spectively. We find CSVs are patched much more quickly compared
with NCSVs. The difference is significant (𝑝 < 0.01), indicating
that developers attach higher priorities to the remediation of CSVs.
Besides, we observe that for 32.1% of SVs in our data, the associated
PRs are created over 30 days after the IR creation. Such long report-
to-fix delays provide malicious actors sufficient time to develop and
conduct functioning exploits.
IR Creation → First Commit We do not retrieve any PRs for
2,468 SVs in our dataset. Some patches are directly pushed into
the codebase by the project maintainers without a corresponding
PR due to security concerns or easy development (see Section 5.2).
We observe that patches pushed without PRs are associated with
more small-scale (i.e., fewer Stars) projects, and the difference is
significant (𝑝 < 0.01). Besides, it is also possible that some PRs are
missed during our data collection (see discussions in Section 7).

For the time lag between IR creation and the first commit, we
do not observe a significant difference (𝑝 > 0.1) between CSVs and
NCSVs. The first commits of 42.9% and 71.3% SVs come within 1
and 7 days after the IR creation, respectively, which is much faster
than those using a PR. However, there is still a considerable amount
(24.9%) of SVs whose fixes are committed over 30 days after the
creation of the associated IR.

Generally, CSVs are patched in a more timely manner compared
with NCSVs. Besides, a considerable amount (over 25%) of SVs
suffer a report-to-fix delay over 30 days, leaving a window wide
open to for potential attackers to conduct exploitations.

5.4 Fix-to-Disclose Delay
IR Creation → NVD Publish Most IRs (98.8%) are created before
the NVD disclosure of the associated SVs, and over half are posted
in public ITS 30 days earlier than the NVD disclosure. This leaves an
exploit window wide open, as we show in Section 5.1 that attackers
can leverage the leaked SV information in these IRs to conduct

144

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shengyi Pan, Lingfeng Bao, Jiayuan Zhou, Xing Hu, Xin Xia, and Shanping Li

zero-day attacks. We further observe that 10.5% SVs are disclosed
on NVD within one day after the creation of the associated IR. One
possible explanation is that the reporters of these SVs irresponsibly
disclose the SV without giving project maintainers sufficient time
or even a chance to take remediation. Such disclosure behaviours
could bother the project maintainers [42]. For SVs with a publishing
delay over one day, we observe that CSVs generally face a larger
delay. The median delay for CSVs and NCSVs are 45.5 and 37.6 days,
respectively. This observation motivates us to further investigate
the time lag between the fix and NVD publish, as we discussed in
Section 5.3 that developers are more urgently to patch CSVs.
Fix → NVD Publish While the patch is available in the codebase,
the majority of OSS users still remain unaware of the patch or even
the SV since they typically rely on public SV databases (e.g., NVD)
for SV-relevant information (e.g., using SCA) [59, 69, 75]. Thus, we
further investigate the delay between patch commit date (or PR
creation date) and the NVD disclosure date for SVs in our dataset.
We observe that 10.6% SVs are disclosed on NVD within one day
after the patch is committed. Disclosing SVs immediately after the
fix will force developers to quickly react as the advisory circulates
the SV information. According to Bilge et al. [52], the exploits of the
SV increase as high as five orders of magnitude at the disclosure.
For the rest SVs, we find the fix-to-disclosure delay of CSVs is
longer (Figure 8(a)), and the difference is significant (𝑝 < 0.01). The
median disclosure delay for CSVs and NCSVs are 40.2 and 29.7 days,
respectively. One possible reason is that project maintainers are
more cautious about the disclosure of CSVs, i.e., leaving more time
to allow the security release to be sufficiently installed by the client
users [34]. However, there is also a risk with the relatively long
disclosure delay, as the security release may unlikely to be widely
installed in the wild before the public disclosure [63], which in turn
provides potential attackers a window wide open for exploitation.

We also observe that 7.7% SVs are disclosed on NVD even before
a fix has been made. Among these SVs (patched after disclosure),
we find the patch to come within 10.8 and 18.8 days (on median)
after the disclosure for CSVs and NCSVs, respectively. 36.2% CSVs
and 43.8% NCSVs have no patch available until 30 days after the
disclosure. One possible explanation is that the discoverer of the SV
(e.g., bug hunter) discloses it without any prior notice to the project
maintainers [59, 63]. Disclosing SVs without an available patch is
extremely dangerous, which directly exposes the unpatched SVs
to attackers and put the practitioners at a great disadvantage as
they have to take mitigation in a hurry. As shown in Figure 8(b),
we find that CSVs are patched more quickly after the disclosure.
The difference is significant (𝑝 < 0.05), indicating that developers
attach much higher priorities to CSVs under such a scenario.

The report-to-disclosure delay for over half of the SVs exceeds 30
days, leaving an exploit window wide open for attackers. CSVs face
a longer fix-to-disclosure delay (40.2 days on median), as project
maintainers may intentionally delay the CSV disclosure to allow
security releases to be sufficiently installed. 7.7% SVs are patched
after disclosure, bringing huge security risks. Among them, 36.2%
CSVs have patch available for more than 30 days.

100 101 102 103

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

Days (Log-Scaled)

(a) SV Fix→ NVD Publish

100 103101 102

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

Days (Log-Scaled)

(b) NVD Publish→ SV Fix

Figure 8: CDFs of delta days between SV disclosure and fix.

100 101 102 103

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

Days (Log-Scaled)

(a) First PR→ Last PR

100 101 102 103

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

critical
other

Days (Log-Scaled)

(b) First Commit→ Last Commit

Figure 9: CDFs of the survive time of problematic patches

5.5 Patch Reliability
End users generally trust in applying the released patch to fix the SV.
However, the patch developed to address an SV is not always reli-
able [63]. We also observe SVs that suffer from problematic patches
in our dataset, i.e., those associated with multiple PRs/commits. For
example, the IR [22] reporting CVE-2017-5617 was first closed on
2017-05-26 as addressed by PR#12 [24]. However, one year later, on
2018-10-15, one of the project’s core developers commented that
the original fix is incomplete and further addressed in PR#33 [23].

We show in the previous Sections that practitioners generally
pay more attention to the remediation of CSVs compared with
NCSVs. Thus, one might expect that patches of CSVs have better
reliability. In this section, we further investigate whether there is a
difference in patch reliability between CSVs and NCSVs.
Multiple PRs. 13.7% CSVs and 19.6% NCSVs in our dataset have
multiple associated PRs. The security fixes for CSVs are less likely
to be problematic compared to NCSVs. We further investigate the
timespan of problematic patches remaining unresolved. The top
quartile of days required to complete the original broken fixes
is 136, suggesting that problematic fixes can remain unresolved
for a considerably long time. We further compare the lifespan of
problematic patches (i.e., the time gap between the creation of
the first and the last PR) between CSVs and NCSVs. We find the
difference to be statistically significant (𝑝 < 0.05), as problematic
patches for CSVs are discovered and fixed in a more timely manner
(see Figure 9(a)). The median time lag for problematic patches to
be resolved for CSVs and NCSVs are 17.5 and 48 days, respectively.
Multiple Commits.We also investigate the SVs associated with
multiple commits to explore the patch reliability. Since develop-
ers may split the patch development into successive commits [63],
we regard fixes with all commits committed within one day (54%
of all fixes with multiple commits) as piece-wise fixes and non-
problematic. Generally, our observations are inline with those to-
wards multiple PRs. 7.0% CSVs and 10.3% NCSVs in our dataset

145

Unveil the Mystery of Critical Software Vulnerabilities FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

have multiple associated commits, suggesting that security fixes for
CSVs are less likely to be problematic. When exploring the lifespan
of problematic patches, we also have the same observations that
problematic patches of CSVs are discovered and addressed more
quickly (see Figure 9(b)) and the difference is significant (𝑝 < 0.001).
The median time lag of problematic patches remain unsolved for
CSVs and NCSVs are 11 days and 111 days, respectively.

Compared with NCSVs, CSVs have better patch reliability and
have problematic patches resolved in a much more urgent manner.
However, even for CSVs, nearly 10% patches are problematic when
first introduced and requires over 11 days on median to be resolved.

6 DISCUSSION
In this section, we discuss the practical implications of our findings
for both OSS maintainers and users (e.g., the software vendor) to
better understand and remediate the CSVs.

Transition fromCVSSv2 to CVSSv3. The transition fromCVSSv2
to CVSSv3 in NVD is completed in July, 2022 [39]. However,
most of the existing industry practices [35, 46] and research stud-
ies [60] (e.g., SV assessment techniques) are based on the deprecated
CVSSv2 standard. It is important to unveil the differences in sever-
ity distributions between CVSSv2 and CVSSv3, which help practi-
tioners transit their existing practices (e.g., the scope of CSV). We
show in Section 4.1 that CVSSv3 generally assigns higher severity
scores/ratings to SVs compared with CVSSv2. The severity scores
of 94.4% of SVs increase from CVSSv2 to CVSSv3 with a median
increase of 2.2. Under CVSSv2, a common practice of security SLA
adopted by the software industry is to fix SVs of 7+ score within a
reasonable time frame [35, 46]. When transitioning to CVSSv3, a
similar goal would be fixing SVs of 9+ score. We have shown that
these two CSV proxies are generally equivalent regarding both the
proportions and the CWE categories (see Section 4.2).

Pay special attention to certain CWEs with high proportions
of CSVs.We show in Section 4.2 that certain CWE categories have
a higher proportion of CSVs (e.g., 69%), and the top 22 categories
(less than 10% of the total categories) cover over 80% of CSVs. The
practitioners should pay special attention to these CWE categories
due to their tight connections with CSVs, e.g., building automatic
techniques dedicated to these SV types. In recent years, automatic
techniques (e.g., SV detection [53, 56, 71, 74], repair [64, 66]) have
been proposed to promote the SV remediation practice. However,
their performance is not yet satisfied in a practical scenario [53, 72].
One of the challenges faced by these data-driven models is the
scattered and insufficient SV knowledge (i.e., the SV data is limited
while spanning across various types) [71]. We argue that it is worth
trying to limit the scope of automatic techniques to certain key SV
types. Moreover, we show that practitioners should not only focus
on common and obvious SV types, as CWE categories with more
SVs are not necessarily those have more CSVs. For example, the
MITRE CWE Top 25 list [16], a commonly adopted reference for
hot spot SVs in practice, misses certain CWE categories with a high
proportion of CSVs (e.g., CWE-1321). We argue that SVs of these
CWE categories are also worth the attention from practitioners
since once these SVs are detected, they are likely to be critical.

Different disclosure practices regarding CSVs among the
repositories. In Section 4.3, we find that a considerable amount
of repositories adopt the practice of only disclosing CSVs. Thus,
practitioners should attach higher priorities to newly disclosed
SVs associated with these repositories, as such SVs are likely to be
critical. Besides, there are also some repositories that intentionally
avoid disclosing any CSVs (e.g., due to reputation concerns [73]).
For these repositories, end users may need to keep an eye on the
new releases of these repositories and update the package in time
(since CSVs may be secretly patched in the new releases).

Better prioritizing CSV remediation in practice. Given the
importance of CSV, it naturally attracts more attention from prac-
titioners. We show in Section 5 that CSVs generally gain higher
priorities than NCSVs (e.g., more timely response). However, the
extra attention also leads to a more complicated discussion, review,
and testing process. This could unintentionally increase security
risks given the transparency of OSS, i.e., delay in remediation ex-
pands the window-of-opportunity as attackers can leverage the SV-
relevant information from the development activities to conduct
zero-day attacks. For example, we discuss in Section 5.2 that al-
though the patches of CSVs are developed in a more timely manner,
the discussions and review processes of the corresponding pull
request (PR) may unintentionally cause the delay to its merge. We
suggest maintainers to balance the remediation quality with speed,
especially for CSVs. A temporary or intermediary mitigation can
be necessary to ensure a quick fix of CSV [36]. Another aspect to
reduce the risk is to hide the relevant development activities from
the public channel (e.g., coordinate with a private PR).

Another observation that raised our attention is that CSVs have a
longer fix-to-disclosure delay compared to NCSVs (see Section 5.4).
One possible reason is that maintainers may intentionally delay
the CSV disclosure to allow more time for security releases to be
sufficiently installed [34]. However, some works suggest that the
security release is unlikely to be widely installed before public dis-
closure since developers typically do not proactively update the
software unless they are aware of a critical change [63]. Thus, de-
laying the disclosure may actually turn out to be risk-increasing, as
it expands the exploit window for attackers. We encourage future
works to explore the best practice for promptly notifying valued
project users of security releases while avoiding direct public dis-
closure of SV details.

Risks in the current remediation practice. Given the public
nature of OSS, development activities related to the remediation
are visible to attackers. This creates a window of opportunity for
attackers, as they may take advantage of the leaked SV informa-
tion to conduct zero-day attacks. We comprehensively review the
possible risks throughout the remediation process in Section 5. We
show that the window of opportunity for attackers (i.e., the risk
of SV information leakage) can start at the very beginning of the
remediation (i.e., IR reporting the SV), and lasts over 30 days for
over half of the SVs. As the remediation process progresses, more
SV information is leaked (e.g., commits tell the exact vulnerable
code lines), which further eases the difficulties for attackers to de-
velop a functional exploit. Our findings suggest a general lack of
awareness regarding risks of SV information leakage during the re-
mediation process in the OSS community. OSS maintainers should

146

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shengyi Pan, Lingfeng Bao, Jiayuan Zhou, Xing Hu, Xin Xia, and Shanping Li

better manage the remediation activities to avoid the leakage of
SV information before public disclosure, e.g., conduct coordination
within a private channel. Besides, our findings also suggest a need
for OSS users, especially the software vendors, to timely sense the
SV information by monitoring the OSS development activities (e.g.,
IR reporting the SV, patch committed to the codebase) instead of
waiting for public disclosure. So that the OSS users can start the
remediation earlier and thus avoid falling into a disadvantage in
the race against potential attackers.

More regulations are required to avoid disclosing SVs without
noticing or leaving time for maintainers to remediate. 7.7% of SVs
are patched after disclosure. Among them, 36.2%CSVs have no patch
available until 30 days later. Besides, we also call for practitioners’
attentions on patch reliability, as even for CSVs, there are nearly
10% of patches are problematic when first introduced and require
over 11 days on median to be resolved (see Section 5.5).

7 THREATS TO VALIDITY
Threats to internal validity relate to the experiment bias and
errors. One threat is the completeness of the dataset collected in our
study. The collected SV-associated development artifacts (e.g., IRs,
PRs, and commits) might be incomplete, since the external refer-
ences listed by NVD are not meant to be complete. To enhance the
completeness, we leverage another popular SV database (i.e., OSV)
to complete GitHub links. We further conduct an extensive crawl-
ing process to complete the SV-associated artifacts by using the
listed GitHub artifacts as seeds and retrieve relevant development
artifacts (see Section 3.2). Another threat is that some collected
development artifacts may not relate to the SV remediation process,
e.g., artifacts from the bug hunter’s own repository for documenting
the discovered SV. We check each retrieved artifacts with several
heuristics (e.g., a blacklist of common repositories specially used to
document the discovered SVs, ensuring the artifact belong to the
same repository with the reported SV) to filter out noises. Therefore,
we believe the quality of our dataset is reliable.
Threats to external validity relate to the generalizability of our
study. The main threat is that we only consider OSS projects hosted
on GitHub. OSS projects hosted on other platforms might have
different workflows for SV remediation (e.g., do not use PR-based
development model in collaboration). So, the analysis approach and
findings in our study might not be applicable to them. However,
since GitHub is the most popular OSS platform and the SV remedi-
ation process analyzed in our study is representative, we believe
our findings can provide useful implications for SV remediation.

8 RELATEDWORK
Empirical Studies on SV. Many empirical studies have analyzed
OSS SVs from different aspects [51, 58, 59, 63, 65]. However, they
typically target at general SVs, missing a view of the unique charac-
teristics of CSVs. Alfadel et al. [51] investigate the distribution and
life span of 550 SVswithin the Python ecosystems. Liu et al. [65] ana-
lyze the SV distribution within five representative OSS projects over
four dimensions (e.g., files, SV types). Li and Paxson [63] analyze
the patch development process and characterize security patches
by comparing with non-security bug fixes using patches of over
3,000 SVs affecting 682 OSS projects. Imtiaz et al. [59] investigate
the practice regarding security release of OSS packages using 4,377

SVs across seven package ecosystems. Iannone et al. [58] analyze
the contributing and fixing commits of 3,663 SVs from 1,096 GitHub
projects to understand how (e.g., commit goal, developer experience
and workloads) SVs are introduced and removed in OSS codebases.
Different from previous works, 1) We are the first to specifically
investigate the characteristics of CSV and highlight its differences
against NCSV. 2) We comprehensively investigate the timeline of
SV remediation (see Figure 1) and identify potential shortcomings.
Existing works [51, 58, 63] only investigate the general SV life span
(i.e., the gap between SV being introduced and removed in the code-
base) without a focus on the remediation process, or only discuss
the gap between SV fix and disclosure [59]. 3) Our collected dataset
(14,867 SVs across 4,462 GitHub projects) is much larger than those
used in the existing studies (ranging from 550 to 4,377 SVs), and
contains more comprehensive relevant artifacts (e.g., IR, PR) to
facilitate researches regarding SV remediation practice.
SV Assessment and Prioritization. Our focus regarding CSV
is closely related to the SV assessment [54, 55, 60], an important
phase in the SV management life cycle. Most of the existing stud-
ies focus on the technical aspect to automate SV assessment and
prioritization by predicting CVSS metrics using data-driven ap-
proaches [60–62, 70]. However, according to the literature review
conducted by Le et al. [60], the performance of these approaches
are not yet satisfying. We take a first step to empirically investigate
CSVs, which provides insights of CSV characteristics and helps to
guide the automation of SV assessment. Besides, while SV assess-
ment focuses on the intrinsic characteristics (e.g., exploitability,
impact) of specific SVs [14], we provide a high-level illustration
of CSVs, i.e., their general distribution and remediation practices,
which is essential for practitioners to devise mitigation strategies.

9 CONCLUSION AND FUTUREWORK
In this work, we take the first look at the distribution and reme-
diation practice of CSVs, and highlight their differences against
NCSVs. We build a dataset containing 14,867 SVs from NVD and
their associated software artifacts (i.e., IR, PR, and commit) across
4,462 GitHub repositories. We find that CSV distribution varies
across CWE categories and GitHub repositories. Regarding the re-
mediation practice, we point out that the leakage of SV information
and delay in disclosure can pose huge risks. Moreover, we find that
though CSVs receive higher remediation priorities (i.e., responded
and patched more quickly), their patches may not appear in the
codebase timely due to complicated review or testing process. Also,
maintainers tend to delay the disclosure of CSVs, which may turn
out to be risk-increasing. Besides, the irresponsible disclosure and
patch reliability are also of serious concerns. In the future, we plan
to leverage the insights from our findings to build more accurate
automatic techniques for locating and patching the CSVs.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-
ments to improve the paper. This research/project is supported by
the National Key Research and Development Program of China
(No. 2021YFB2701102), the National Natural Science Foundation
of China (No.62372398, No.7234202, and U20A20173), the Ningbo
Natural Science Foundation (No. 2023J292), and the Fundamental
Research Funds for the Central Universities (No. 226-2022-00064).

147

Unveil the Mystery of Critical Software Vulnerabilities FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] 2019. Equifax to Pay at Least $650 Million in Largest-Ever Data Breach Settlement.

https://www.nytimes.com/2019/07/22/business/equifax-settlement.html.
[2] 2022. GitHub | Open Source Supply Chain Security. https://github.blog/2022-11-

09-improving-open-source-supply-chain-security/.
[3] 2022. GitHub Octoverse 2022: 10 years of tracking open source. https://github.

blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/.
[4] 2023. BOD 19-02: Vulnerability Remediation Requirements for Internet-

Accessible Systems | CISA. https://www.cisa.gov/news-events/directives/bod-
19-02-vulnerability-remediation-requirements-internet-accessible-systems.

[5] 2023. Common Vulnerabilities and Exposure. https://www.cve.org/.
[6] 2023. Common Vulnerability Scoring System. https://www.first.org/cvss/.
[7] 2023. Common Vulnerability Scoring System - Wikipedia. https://en.wikipedia.

org/wiki/Common_Vulnerability_Scoring_System.
[8] 2023. Common Weakness Enumeration. https://cwe.mitre.org/index.html.
[9] 2023. CVE-2017-5638. https://nvd.nist.gov/vuln/detail/CVE-2017-5638.
[10] 2023. CVE-2021-33823. https://nvd.nist.gov/vuln/detail/CVE-2021-33823.
[11] 2023. CVE-2021-36081. https://nvd.nist.gov/vuln/detail/CVE-2021-36081.
[12] 2023. CVE-2021-442288. https://nvd.nist.gov/vuln/detail/CVE-2021-442288.
[13] 2023. CVE-2022-31836. https://nvd.nist.gov/vuln/detail/CVE-2022-31836.
[14] 2023. CVSS 3.1 Specification Document. https://www.first.org/cvss/v3.1/

specification-document.
[15] 2023. CWE-1321: Improperly Controlled Modification of Object Prototype At-

tributes (Prototype Pollution). https://cwe.mitre.org/data/definitions/1321.html.
[16] 2023. CWE Top 25 Most Dangerous Software Weaknesses. https://cwe.mitre.org/

top25/archive/2022/2022_cwe_top25.html.
[17] 2023. EU Cloud Certification Scheme. https://ec.europa.eu/newsroom/cipr/items/

713799/en.
[18] 2023. GitHub Docs - Autolinked references and URLs. https:

//docs.github.com/en/get-started/writing-on-github/working-with-advanced-
formatting/autolinked-references-and-urls.

[19] 2023. GitHub GraphQL API. https://docs.github.com/en/graphql.
[20] 2023. GitHub GraphQL API - securityadvisory. https://docs.github.com/en/

graphql/reference/objects#securityadvisory.
[21] 2023. GitHub Issue Report: beego/beego issue #4961. https://github.com/beego/

beego/issues/4961.
[22] 2023. GitHub Issue Report: blackears/svgSalamander issue #11. https://github.

com/blackears/svgSalamander/issues/11.
[23] 2023. GitHub Issue Report: blackears/svgSalamander issue #33. https://github.

com/blackears/svgSalamander/pull/33.
[24] 2023. GitHub Issue Report: blackears/svgSalamander pull #12. https://github.

com/blackears/svgSalamander/pull/12.
[25] 2023. GitHub Pull Request: actix/actix-net pull #113. https://github.com/actix/

actix-net/pull/113.
[26] 2023. GitHub Pull Request: actix/actix-net pull #158. https://github.com/actix/

actix-net/pull/158.
[27] 2023. GitHub Pull Request: ckeditor/ckeditor4 pull #49. https://github.com/

ckeditor/ckeditor4/pull/49.
[28] 2023. GitHub Pull Request: libreoffice/core pull #2924. https://github.com/pjsip/

pjproject/pull/2924.
[29] 2023. GitHub Pull Request: OpenRC/openrc pull #462. https://github.com/

OpenRC/openrc/pull/462.
[30] 2023. GitHub Repository: facebook/folly. https://github.com/facebook/folly.
[31] 2023. GitHub Repository: tesseract-ocr/tesseract. https://github.com/tesseract-

ocr/tesseract.
[32] 2023. GitHub RESTAPI. https://docs.github.com/en/rest?apiVersion=2022-11-28.
[33] 2023. GitHub REST API - IR timeline. https://docs.github.com/en/rest/issues/

timeline?apiVersion=2022-11-28.
[34] 2023. Google Project Zero. https://googleprojectzero.blogspot.com/2021/04/

policy-and-disclosure-2021-edition.html.
[35] 2023. Introducing SLAs for Vulnerability Management. https://web.archive.

org/web/20230327180000/https:/www.kennasecurity.com/blog/vulnerability-
management-sla/.

[36] 2023. ISO/IEC 30111:2019 Information technology Security techniques Vulnera-
bility handling processes. https://www.iso.org/standard/69725.html.

[37] 2023. National Vulnerability Database. https://nvd.nist.gov/.
[38] 2023. NVD - CVSS v3.1 Official Support. https://nvd.nist.gov/general/News/CVSS-

v3-1-Official-Support.
[39] 2023. NVD - Retirement of CVSS v2. https://nvd.nist.gov/general/news/retire-

cvss-v2.
[40] 2023. Organizations Fix Only 1 in 10 Vulnerabilities Monthly. https://www.

msspalert.com/news/organizations-fix-only-1-in-10-vulnerabilities-monthly.
[41] 2023. OSV Vulnerability Database. https://osv.dev/.
[42] 2023. Riot/Issue-10753. https://github.com/riot-os/riot/issues/10753.
[43] 2023. Security Policy: facebook/folly. https://github.com/facebook/folly/security/

policy.
[44] 2023. Synk | 2023 Software Supply Chain Attack Report. https://go.snyk.io/2023-

supply-chain-attacks-report.html.

[45] 2023. Synopsys 2023 Open Source Security and Risk Analysis Re-
port. https://www.synopsys.com/software-integrity/resources/analyst-reports/
open-source-security-risk-analysis.html.

[46] 2023. Using SLAs for Better VulnerabilityManagement & Remediation: Improving
Developer’s Workflow - Phoenix Security. https://phoenix.security/using-slas-
for-better-vulnerability-management-remediation-improving-developers-
workflow/.

[47] 2023. Vulnerability DB | Synk. https://security.snyk.io/vuln.
[48] 2023. Vulnerability Management Overview. https://handbook.gitlab.com/

handbook/security/threat-management/vulnerability-management/.
[49] 2024. The Collected Dataset. https://doi.org/10.5281/zenodo.11179523.
[50] 2024. Vulnerability Management SLAs Guide. https://hostedscan.com/blog/

vulnerability-management-slas-guide.
[51] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical analysis

of security vulnerabilities in python packages. In 2021 IEEE international confer-
ence on software analysis, Evolution and Reengineering (SANER). IEEE, 446–457.

[52] Leyla Bilge and Tudor Dumitraş. 2012. Before we knew it: an empirical study of
zero-day attacks in the real world. In Proceedings of the 2012 ACM conference on
Computer and communications security. 833–844.

[53] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (2021).

[54] Nesara Dissanayake, Asangi Jayatilaka, Mansooreh Zahedi, and Muhammad Ali
Babar. 2022. An Empirical Study of Automation in Software Security Patch
Management. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 1–13.

[55] Park Foreman. 2019. Vulnerability management. CRC Press.
[56] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: a transformer-based

line-level vulnerability prediction. In Proceedings of the 19th International Confer-
ence on Mining Software Repositories. 608–620.

[57] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes.
In 2009 IEEE 31st international conference on software engineering. IEEE, 78–88.

[58] Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, and
Fabio Palomba. 2022. The secret life of software vulnerabilities: A large-scale
empirical study. IEEE Transactions on Software Engineering 49, 1 (2022), 44–63.

[59] Nasif Imtiaz, Aniqa Khanom, and Laurie Williams. 2022. Open or Sneaky? Fast or
Slow? Light or Heavy?: Investigating Security Releases of Open Source Packages.
IEEE Transactions on Software Engineering (2022).

[60] Triet HM Le, Huaming Chen, and M Ali Babar. 2022. A survey on data-driven
software vulnerability assessment and prioritization. Comput. Surveys 55, 5 (2022),
1–39.

[61] Triet HuynhMinh Le andMAli Babar. 2022. On the use of fine-grained vulnerable
code statements for software vulnerability assessment models. In Proceedings of
the 19th International Conference on Mining Software Repositories. 621–633.

[62] Triet Huynh Minh Le, David Hin, Roland Croft, and M Ali Babar. 2021. Deep-
cva: Automated commit-level vulnerability assessment with deep multi-task
learning. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 717–729.

[63] Frank Li and Vern Paxson. 2017. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2201–2215.

[64] Yi Li, Shaohua Wang, and Tien N Nguyen. 2022. Dear: A novel deep learning-
based approach for automated program repair. In Proceedings of the 44th Interna-
tional Conference on Software Engineering. 511–523.

[65] Bingchang Liu, Guozhu Meng, Wei Zou, Qi Gong, Feng Li, Min Lin, Dandan Sun,
Wei Huo, and Chao Zhang. 2020. A large-scale empirical study on vulnerability
distribution within projects and the lessons learned. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE, 1547–1559.

[66] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar:
Revisiting template-based automated program repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 31–42.

[67] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[68] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s
knife collection: A review of open source software supply chain attacks. In
Proceedings of the 17th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). Springer, 23–43.

[69] Shengyi Pan, Lingfeng Bao, Xin Xia, David Lo, and Shanping Li. 2023. Fine-
grained commit-level vulnerability type prediction by CWE tree structure. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 957–969.

[70] Shengyi Pan, Lingfeng Bao, Jiayuan Zhou, Xing Hu, Xin Xia, and Shanping
Li. 2024. Towards More Practical Automation of Vulnerability Assessment. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1–13.

[71] Shengyi Pan, Jiayuan Zhou, Filipe Roseiro Cogo, Xin Xia, Lingfeng Bao, Xing Hu,
Shanping Li, and Ahmed E Hassan. 2022. Automated unearthing of dangerous

148

https://www.nytimes.com/2019/07/22/business/equifax-settlement.html
https://github.blog/2022-11-09-improving-open-source-supply-chain-security/
https://github.blog/2022-11-09-improving-open-source-supply-chain-security/
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/
https://www.cisa.gov/news-events/directives/bod-19-02-vulnerability-remediation-requirements-internet-accessible-systems
https://www.cisa.gov/news-events/directives/bod-19-02-vulnerability-remediation-requirements-internet-accessible-systems
https://www.cve.org/
https://www.first.org/cvss/
https://en.wikipedia.org/wiki/Common_Vulnerability_Scoring_System
https://en.wikipedia.org/wiki/Common_Vulnerability_Scoring_System
https://cwe.mitre.org/index.html
https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://nvd.nist.gov/vuln/detail/CVE-2021-33823
https://nvd.nist.gov/vuln/detail/CVE-2021-36081
https://nvd.nist.gov/vuln/detail/CVE-2021-442288
https://nvd.nist.gov/vuln/detail/CVE-2022-31836
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://cwe.mitre.org/data/definitions/1321.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://ec.europa.eu/newsroom/cipr/items/713799/en
https://ec.europa.eu/newsroom/cipr/items/713799/en
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/autolinked-references-and-urls
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/autolinked-references-and-urls
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/autolinked-references-and-urls
https://docs.github.com/en/graphql
https://docs.github.com/en/graphql/reference/objects#securityadvisory
https://docs.github.com/en/graphql/reference/objects#securityadvisory
https://github.com/beego/beego/issues/4961
https://github.com/beego/beego/issues/4961
https://github.com/blackears/svgSalamander/issues/11
https://github.com/blackears/svgSalamander/issues/11
https://github.com/blackears/svgSalamander/pull/33
https://github.com/blackears/svgSalamander/pull/33
https://github.com/blackears/svgSalamander/pull/12
https://github.com/blackears/svgSalamander/pull/12
https://github.com/actix/actix-net/pull/113
https://github.com/actix/actix-net/pull/113
https://github.com/actix/actix-net/pull/158
https://github.com/actix/actix-net/pull/158
https://github.com/ckeditor/ckeditor4/pull/49
https://github.com/ckeditor/ckeditor4/pull/49
https://github.com/pjsip/pjproject/pull/2924
https://github.com/pjsip/pjproject/pull/2924
https://github.com/OpenRC/openrc/pull/462
https://github.com/OpenRC/openrc/pull/462
https://github.com/facebook/folly
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest/issues/timeline?apiVersion=2022-11-28
https://docs.github.com/en/rest/issues/timeline?apiVersion=2022-11-28
https://googleprojectzero.blogspot.com/2021/04/policy-and-disclosure-2021-edition.html
https://googleprojectzero.blogspot.com/2021/04/policy-and-disclosure-2021-edition.html
https://web.archive.org/web/20230327180000/https:/www.kennasecurity.com/blog/vulnerability-management-sla/
https://web.archive.org/web/20230327180000/https:/www.kennasecurity.com/blog/vulnerability-management-sla/
https://web.archive.org/web/20230327180000/https:/www.kennasecurity.com/blog/vulnerability-management-sla/
https://www.iso.org/standard/69725.html
https://nvd.nist.gov/
https://nvd.nist.gov/general/News/CVSS-v3-1-Official-Support
https://nvd.nist.gov/general/News/CVSS-v3-1-Official-Support
https://nvd.nist.gov/general/news/retire-cvss-v2
https://nvd.nist.gov/general/news/retire-cvss-v2
https://www.msspalert.com/news/organizations-fix-only-1-in-10-vulnerabilities-monthly
https://www.msspalert.com/news/organizations-fix-only-1-in-10-vulnerabilities-monthly
https://osv.dev/
https://github.com/riot-os/riot/issues/10753
https://github.com/facebook/folly/security/policy
https://github.com/facebook/folly/security/policy
https://go.snyk.io/2023-supply-chain-attacks-report.html
https://go.snyk.io/2023-supply-chain-attacks-report.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://phoenix.security/using-slas-for-better-vulnerability-management-remediation-improving-developers-workflow/
https://phoenix.security/using-slas-for-better-vulnerability-management-remediation-improving-developers-workflow/
https://phoenix.security/using-slas-for-better-vulnerability-management-remediation-improving-developers-workflow/
https://security.snyk.io/vuln
https://handbook.gitlab.com/handbook/security/threat-management/vulnerability-management/
https://handbook.gitlab.com/handbook/security/threat-management/vulnerability-management/
https://doi.org/10.5281/zenodo.11179523
https://hostedscan.com/blog/vulnerability-management-slas-guide
https://hostedscan.com/blog/vulnerability-management-slas-guide

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shengyi Pan, Lingfeng Bao, Jiayuan Zhou, Xing Hu, Xin Xia, and Shanping Li

issue reports. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 834–846.

[72] Arthur D Sawadogo, Quentin Guimard, Tegawendé F Bissyandé, Abdoul Kader
Kaboré, Jacques Klein, and Naouel Moha. 2021. Early Detection of Security-
Relevant Bug Reports using Machine Learning: How Far Are We? arXiv preprint
arXiv:2112.10123 (2021).

[73] Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. 2019. Detecting" 0-
day" vulnerability: An empirical study of secret security patch in OSS. In 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 485–492.

[74] YuemingWu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin. 2022. Vul-
CNN: an image-inspired scalable vulnerability detection system. In Proceedings

of the 44th International Conference on Software Engineering. 2365–2376.
[75] Jiayuan Zhou, Michael Pacheco, Zhiyuan Wan, Xin Xia, David Lo, Yuan Wang,

and Ahmed E. Hassan. 2021. Finding A Needle in a Haystack: Automated Mining
of Silent Vulnerability Fixes. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 705–716. https://doi.org/10.1109/
ASE51524.2021.9678720

[76] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995–1010.

Received 2024-02-08; accepted 2024-04-18

149

https://doi.org/10.1109/ASE51524.2021.9678720
https://doi.org/10.1109/ASE51524.2021.9678720

	Abstract
	1 Introduction
	2 Background
	3 Data Collection Methodology
	3.1 Collecting SV Information
	3.2 Completing SV-Relevant Artifacts
	3.3 Crawling Software Artifacts

	4 RQ1: Spatio-Temporal Distribution
	4.1 Trend over Time
	4.2 Distribution across CWE Categories
	4.3 Distribution across Repositories

	5 RQ2: SV Remediation Timeline
	5.1 Issue Report Timeline
	5.2 Pull Request Timeline
	5.3 Report-to-Fix Delay
	5.4 Fix-to-Disclose Delay
	5.5 Patch Reliability

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion and Future Work
	References

