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ABSTRACT
Formal specifications are important but often unavailable. Further-
more, writing these specifications is time-consuming and requires
skills from developers. In this work, we present Deep Specification
Miner (DSM), an automated tool that applies deep learning to mine
finite-state automaton (FSA) based specifications. DSM accepts as
input a set of execution traces to train a Recurrent Neural Network
Language Model (RNNLM). From the input traces, DSM creates
a Prefix Tree Acceptor (PTA) and leverages the inferred RNNLM
to extract many features. These features are then forwarded to
clustering algorithms for merging similar automata states in the
PTA for assembling a number of FSAs. Next, our tool performs a
model selection heuristic to approximate F-measure of FSAs, and
outputs the one with the highest estimated F-measure. Noticeably,
our implementation of DSM provides several options that allows
users to optimize quality of resultant FSAs.
Our video demonstration on the performance of DSM is publicly
available at https://goo.gl/Ju4yFS.
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1 INTRODUCTION
Formal specifications play important roles to the reliability and
maintainability of software systems. Manually writing formal spec-
ifications can be very expensive and difficult as developers must
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have requisite skills and experiences. Furthermore, specifications
can be quickly outdated due to rapid evolution of software systems.
Thus, there is a need of automated solutions to infer specifications.

To help developers reduce the cost of manually drafting formal
specifications, many automated approaches have been prosed [1, 4,
7, 8, 10]. One of the popular specification mining algorithms is to
infer finite-state automaton (FSA) based specifications from execu-
tion traces [7, 8]. Nevertheless, the quality of mined specifications
is not perfect yet, and more works need to be done to make specifi-
cation mining better. For example, FSAs inferred using the k-tail
algorithm are usually inaccurate for execution traces containing
methods that frequently co-occur in particular orders, but are not
required to occur exactly in these orders.

In this work, we implement a prototype tool based on our new
specification mining algorithm [9] that performs deep learning on
execution traces. We name the tool DSM, which stands for Deep
Specification Miner. This tool takes as input a set of execution
traces and performs several processing steps that eventually re-
sult in one FSA. First, DSM performs deep learning on the input
execution traces to train a Recurrent Neural Network Language
Model (RNNLM) [13]. Then, DSM constructs a Prefix Tree Acceptor
(PTA) from the execution traces and leverage the learned language
model to extract a number of interesting features from PTA’s nodes.
These features are then input to clustering algorithms for merging
similar states (i.e., PTA’s nodes). The output of an application of a
clustering algorithm is a simpler and more generalized FSA that
reflects the training execution traces. Finally, based on the predicted
values of F-measure of constructed FSAs, DSM selects the one with
highest predicted value of F-measure as output. Our evaluation on
11 target library classes shows that DSM has a good performance,
i.e, an average F-measure of 71.97%.

The remainder of this paper is structured as follows. Section 2
highlights the bird’s-eye view design of DSM. Sections 3 illustrates
how DSM works with specific examples as well as demonstrates
command line options provided by DSM. We presents our evalua-
tion of DSM and discuss related works in Section 4 and Section 5,
respectively. Finally, we conclude and mention future work in Sec-
tion 6.

2 OVERALL DESIGN
Figure 1 shows the design of DSM. Our tool accepts as input a set
of execution traces, which are sequences of methods. The output
of DSM is a finite-state automaton (FSA) that reflects interactions
between program methods in the input sequences. In our design,
there are five processes in DSM: Recurrent Neural Network Based
Language Model (RNNLM) learning, trace sampling, feature engi-
neering, clustering, and model selection.
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Figure 1: Overall Design of DSM
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Figure 2: An Example Prefix Tree Acceptor (PTA)

RNNLM Learning: DSM accepts as input execution traces in the
form of method sequences. Each of these sequences begins and
terminates with two special symbols: <START> and <END>, respec-
tively. These symbols are used for separating two distinct sequences.
DSM provides utilities to select the underlying neural network ar-
chitecture and configure learning parameters for training RNNLMs
from execution traces. DSM supports the following three archi-
tectures: standard Recurrent Neural Network, Long Short-Term
Memory (LSTM) [6, 16], and Gated Recurrent Units (GRU) [3].
Trace Sampling: Since it is expensive to use all sequences in the
training data to construct FSAs, DSM leverages a heuristic to select
a subset of method sequences. The goal here is to create a smaller
subset that is likely to represent the whole set of all traces reason-
ably well. In particular, DSM’s heuristic tries to find a subset of
traces that covers all co-occurrence pairs1 of methods in all training
traces. More detail of DSM’s trace sampling heuristic is available
in our research paper [9].
Feature Extraction: DSM constructs a Prefix Tree Acceptor (PTA)
from method sequences of the sampled execution traces. A PTA is
a tree-like deterministic finite automaton (DFA) created by putting
all the prefixes of sequences as states, and a PTA only accepts the
sequences that it is built from. The final states of our constructed
PTAs are the ones have incoming edges with <END> labels (see the
step of RNNLM learning). Figure 2 shows an example of a Prefix
Tree Acceptor (PTA).

Next, DSM extracts two different types of features based on
PTA. The goal of this step is to provide sufficient information for
clustering algorithms in the subsequent process to better merge
PTA nodes. The following are the two feature types:
(1) Type I: This type of features captures information of previously

invoked methods before the state S is reached. The values of
type I features for state S is the occurrences of methods on
the path between the starting state (i.e., the root of the PTA)
and S . For example, according to Figure 2, the values of Type I
features corresponding to node S3 are: F<START> = F<init> =
FinitVerify = 1 and Fupdate = Fverify = F<END> = 0.

1(m1,m2) is a co-occurrence pair ifm1 andm2 appear together in at least one trace.

(2) Type II: This type of features captures the likely methods to
be immediately called after a state is reached. Values of these
features are computed by the inferred RNNLM in the deep
learning step. For example, at node S3 in Figure 2, close and
<END> have higher probabilities than the other methods to be
called afterward. Examples of type II features and their values
for node S3 output by a RNNLM are as follows: PinitVerify =
P<END> = 0.4 and P<START> = P<init> = Pverify = Pupdate =
0.15.

Clustering: DSM executes k-means [11] and hierarchical cluster-
ing [15] algorithms on the PTA’s states with their extracted features.
The goal of this step is to create a simpler and more generalized au-
tomaton that captures specifications of a target library class. Since
both k-means and hierarchical clustering require the predefined in-
putC for number of clusters, DSM tries with many values ofC from
2 to MAX_CLUSTER2 to search for the best FSA. Overall, the execution
of clustering algorithms results in 2 × (MAX_CLUSTER − 1) FSAs.
Model Selection: DSM employs a heuristic to select the best FSA
among the ones output by the clustering algorithms using the input
execution traces. It estimates Precision by first constructing a set
PI containing all pairs (m1,m2), wherem1 andm2 appear consec-
utively (i.e., m1 is called right before m2) in the input execution
traces. Then, DSM constructs another set PM containing all pairs
(m1,m2) that appear consecutively in a trace generated by an au-
tomatonM outputted by the clustering algorithms. The estimated

Precision is:
PI

PI ∪ PM
. Next, DSM estimates the values of Recall

by computing the percentage of all execution traces accepted by a
given automaton M . Once all precision and recall of FSA models
are estimated, DSM computes the expected value of F-measure (i.e.,
harmonic mean of precision and recall) for each of the automata.
Finally, DSM returns the FSA with highest expected F-measure.
More details of DSM’s model selection heuristic are is available in
our research paper [9].

3 USAGE SCENARIOS
In this section, we illustrate how DSM operates via several usage
scenarios. Furthermore, we describe a number of DSM’s key options
to tune the accuracy of output FSA.

3.1 Scenario I – Simple Command
DSM is implemented in Python 3.5 with Tensorflow 0.12.0 and
scikit-learn 0.19.1. We choose Python due to its simplicity and

2By default, MAX_CLUSTER=20.
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Figure 4: Resultant FSA for java.util.StringTokenizer.

convenience when deploying machine learning libraries. In a nut-
shell, DSM is a command-line application that allows users to input
the path of data folder (i.e., “--data_dir”) where execution traces
are stored in “input.txt” file in the folder. DSM accepts traces
that contains sequences of methods; for example, input traces of
java.security.Signature is available at https://goo.gl/kaHQHd.
These sequences can be collected from execution of software sys-
tems that are known to utilize the target API libraries or APIs.
Additionally, test case generation tools (e.g., Randoop [14], etc.) can
also be used to generate a richer set of test cases that capture many
behaviors of the target libraries/APIs.

Users can run the following simple command to mine FSAs:
python3 DSM.py --data_dir [data folder]

After this command is executed, DSM performs several processing
steps including learning a Recurrent Neural Network Language
Model (RNNL), using its default parameters. Depending on learning
configuration of RNNLM (e.g., number of hidden layers, size of
each RNN layer, etc.), DSM might takes longer than 5 minutes
to output a FSA. The resultant model mined by DSM is shown
in two formats: text and image. Note that Graphviz3 (i.e., Graph
Visualization Software) must be installed to enable DSM to produce
DOT files. Figure 3 shows one simple FSA mined by DSM.

In our implementation, “DSM.py” is the program main point
that contains code portions calling five major modules of DSM
(see Section 2). Advanced users who are interested in adapting our
tool can investigate DSM’s source code starting from “DSM.py”. The
latest version of DSM is developed and tested on Linux platform.We
believe DSM can be employed on other platforms such as Windows
and Mac OS as long as dependency libraries, especially Tensorflow,
are properly installed. Details of DSM’s installation instructions
can be found at https://goo.gl/k3w8Hd.

3.2 Scenario II – Tuning DSM’s Parameters
Assuming we are interested to infer a FSA for an input execu-
tion traces of java.util.StringTokenizer, which is available at
https://goo.gl/myQLXo. Since it is possible that execution time and
accuracy of resultant FSAs are not as expectation of users, DSM pro-
vides several parameters to tune its performance. Table 1 highlights
a number of key parameters of DSM. In order to adjust the learn-
ing of RNNLM, users can change the configuration of the learned
RNNLM such as number of hidden layers (i.e., “--num_layers”),

3https://www.graphviz.org/

Table 1: DSM’s key parameters

Parameter Description
--rnn_size Number of RNN states in each hidden layer
--num_layers Number of hidden layers
--model RNN type (i.e., RNN, LSTM, GRU)
--batch_size Minibatch size
--seq_length RNN sequence length
--num_epochs Number of epochs
--min_cluster Minimum number of clustering settings
--max_cluster Maximum number of clustering settings
--max_cpu Maximum number of CPUs can be used

Table 2: Target Library Classes. “#M” represents the num-
ber of class methods that are analyzed, “#Generated Test
Cases” is the number of test cases generated by Ran-
doop, “#Recorded Method Calls” is the number of recorded
method calls in the execution traces, “NFST” stands for
NumberFormatStringTokenizer.

Target Library #M #Generated #Recorded
Class Test Cases Method Calls
ArrayList 18 42,865 22,996
HashMap 11 53,396 67,942
Hashtable 8 79,403 89,811
HashSet 8 23,181 257,428
LinkedList 7 13,731 4,847
NFST 5 15,8998 95,149
Signature 5 79,096 205,386
Socket 21 80,035 130,876
StringTokenizer 5 148,649 336,924
StackAr 7 549,648 13,2826
ZipOutputStream 5 162,971 43,626

number of states in each hidden layer (i.e., “--rnn_size”) or type
of RNN architecture (i.e., “--model”).

In DSM’s implementationm, we leverage the multi-cores of a
CPU to speed up tasks that can execute in parallel such as feature
engineering and clustering processes. To maximize the degree of
parallelism in DSM, users can change the values of “--max_cpu” to
indicate the number of processes that can be used byDSM. Themore
CPUs are assigned to DSM, the faster the specification mining pro-
cess is. DSM also provides “--min_cluster” and “--max_cluster”
options to optimize the clustering process (see Section 2). These
options regulate the number of clusters considered by the cluster-
ing algorithms. By default the range is [2, 20]. The following is an
example command that executes DSM with custom setting:
python3 DSM.py --data_dir [data folder] \\

--num_layers 2 --rnn_size 32 --model lstm\\

--min_cluster 3 --max_cluster 10\\

--max_cpu 4
Figure 4 shows the resultant FSA inferred by DSM for
java.util.StringTokenizer’s input traces (available at: https:
//goo.gl/myQLXo) using the above setting.

4 EVALUATION
In our experiments, we select 11 target library classes as the
benchmark to evaluate the effectiveness of our proposed approach.

https://goo.gl/kaHQHd
https://goo.gl/k3w8Hd
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Table 3: Effectiveness of DSM. “F” is F-measure.
Class F (%) Class F (%)
ArrayList 22.21 Signature 100.00
HashMap 86.71 Socket 54.24
HashSet 76.84 StackAr 74.38
Hashtable 79.92 StringTokenizer 100.00
LinkedList 30.98 ZipOutputStream 88.82
NFST 77.52% Average 71.97

These library classes were also investigated by previous research
works [7, 8]. Table 2 shows further details of the selected library
classes including information of collected execution traces. Among
these library classes, 9 out of 11 are from Java Development Kit
(JDK); the other two library classes are DataStructure.StackAr
(from Daikon project) and NumberFormatStringTokenizer (from
Apache Xalan). Table 3 shows the F-measure of DSM for the eleven
target library classes. From the table, our approach achieves an av-
erage F-measure of 71.97%. Noticeably, for StringTokenizer and
Signature, DSM infers models that exactly match ground truth
models (i.e., F-measure of 100%). There are other 6 out of the 11
library classes where our approach achieves F-measure of 70% or
higher.

5 RELATEDWORK
k-tails is a classic algorithm proposed by Biermann and Feldman [2]
to infer a FSA from execution traces. The algorithm takes as input a
set of execution traces and a parameter k . k-tails first builds a prefix
tree acceptor (PTA) , and then merges every two states of the PTA
that have identical sequences of the next k method invocations (i.e.,
k-tails). The effectiveness of k-tails depends the choice of k and the
quality of its input traces.

Krka et al. propose a number of specification miners that are
capable of inferring a FSA from execution traces and likely in-
variants [7]. These miners are CONTRACTOR++, state-enhanced
k-tails (SEKT), and trace-enhanced MTS inference (TEMI). Among
the above three approaches, CONTRACTOR++ only utilizes value-
based program invariants inferred by Daikon [5] to construct
FSAs. On the other hand, state-enhanced k-tails (SEKT) and trace-
enhancedMTS (Modal Transition System) inference (TEMI) analyze
both execution traces and Daikon’s likely invariants to infer FSA
based specifications.

SpecForge is built on the top of Krka et al’s proposed miners [7]
and k-tails [2]. There are two important processes in SpecForge:
model fission and model fusion. SpecForge employs model fission to
extract many temporal rules from input FSAs, and select a number
of interesting rules that frequently appear in input FSAs. Then,
model fusion is utilized to construct a new automata that satisfies
that selected temporal rules.

Additionally, Lo et al. propose SMArTIC that mines a FSA from
a set of execution traces [4] using a variant of k-tails to construct a
probabilistic FSA. Walkinshaw and Bogdanov propose an approach
that allows users to input temporal properties to support a specifica-
tion miner to construct a FSA from execution traces [17]. Mariani et
al. propose k-behavior [12] that creates an automaton by inspecting
one single trace at a time. Synoptic infers three kinds of tempo-
ral invariants from execution traces and uses them to generate a
concise FSA [1].

Different from DSM, none of the above-mentioned studies lever-
age deep learning to mine specifications from execution traces. We
have also shown in our research paper [9] that DSM substantially
outperforms a number of baselines in terms of quality of mined
specifications and ability to detect malicious behaviors of Android
apps.

6 CONCLUSION
In this work, we present DSM which is an automated tool that
applies deep learning to mine finite-state automaton (FSA) based
specifications from execution traces. In particular, we describe the
design, usage scenarios, and performance of DSM. DSM is open-
source and can be run from command line with simple options.
Our dataset, DSM’s implementation, and a technical report that
includes additional results are publicly available at: https://github.
com/lebuitienduy/DSM.
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