DSM: A Specification Mining Tool using Recurrent Neural Network Based Language Model

Tien-Duy B. Le
Singapore Management University
Singapore

Lingfeng Bao
Zhejiang University City College
China

David Lo
Singapore Management University
Singapore

ABSTRACT

Formal specifications are important but often unavailable. Furthermore, writing these specifications is time-consuming and requires skills from developers. In this work, we present Deep Specification Miner (DSM), an automated tool that applies deep learning to mine finite-state automaton (FSA) based specifications. DSM accepts as input a set of execution traces to train a Recurrent Neural Network Language Model (RNNLM). From the input traces, DSM creates a Prefix Tree Acceptor (PTA) and leverages the inferred RNNLM to extract many features. These features are then forwarded to clustering algorithms for merging similar automata states in the PTA for assembling a number of FSAs. Next, our tool performs a model selection heuristic to approximate F-measure of FSAs, and outputs the one with the highest estimated F-measure. Noticeably, our implementation of DSM provides several options that allows users to optimize quality of resultant FSAs.

Our video demonstration on the performance of DSM is publicly available at https://goo.gl/Jul4yFS.

CCS CONCEPTS

• Software and its engineering → Dynamic analysis;

KEYWORDS

Specification Mining, Deep Learning

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:

1 INTRODUCTION

Formal specifications play important roles to the reliability and maintainability of software systems. Manually writing formal specifications can be very expensive and difficult as developers must have requisite skills and experiences. Furthermore, specifications can be quickly outdated due to rapid evolution of software systems. Thus, there is a need of automated solutions to infer specifications.

To help developers reduce the cost of manually drafting formal specifications, many automated approaches have been prosed [1, 4, 7, 8, 10]. One of the popular specification mining algorithms is to infer finite-state automaton (FSA) based specifications from execution traces [7, 8]. Nevertheless, the quality of mined specifications is not perfect yet, and more works need to be done to make specification mining better. For example, FSAs inferred using the k-tail algorithm are usually inaccurate for execution traces containing methods that frequently co-occur in particular orders, but are not required to occur exactly in these orders.

In this work, we implement a prototype tool based on our new specification mining algorithm [9] that performs deep learning on execution traces. We name the tool DSM, which stands for Deep Specification Miner. This tool takes as input a set of execution traces and performs several processing steps that eventually result in one FSA. First, DSM performs deep learning on the input execution traces to train a Recurrent Neural Network Language Model (RNNLM) [13]. Then, DSM constructs a Prefix Tree Acceptor (PTA) from the execution traces and leverage the learned language model to extract a number of interesting features from PTA’s nodes. These features are then input to clustering algorithms for merging similar states (i.e., PTA’s nodes). The output of an application of a clustering algorithm is a simpler and more generalized FSA that reflects the training execution traces. Finally, based on the predicted values of F-measure of constructed FSAs, DSM selects the one with highest predicted value of F-measure as output. Our evaluation on 11 target library classes shows that DSM has a good performance, i.e., an average F-measure of 71.97%.

The remainder of this paper is structured as follows. Section 2 highlights the bird’s-eye view design of DSM. Sections 3 illustrates how DSM works with specific examples as well as demonstrates command line options provided by DSM. We presents our evaluation of DSM and discuss related works in Section 4 and Section 5, respectively. Finally, we conclude and mention future work in Section 6.

2 OVERALL DESIGN

Figure 1 shows the design of DSM. Our tool accepts as input a set of execution traces, which are sequences of methods. The output of DSM is a finite-state automaton (FSA) that reflects interactions between program methods in the input sequences. In our design, there are five processes in DSM: Recurrent Neural Network Based Language Model (RNNLM) learning, trace sampling, feature engineering, clustering, and model selection.
Figure 1: Overall Design of DSM

Figure 2: An Example Prefix Tree Acceptor (PTA)

RNNLM Learning: DSM accepts as input execution traces in the form of method sequences. Each of these sequences begins and terminates with two special symbols: <START> and <END>, respectively. These symbols are used for separating two distinct sequences. DSM provides utilities to select the underlying neural network architecture and configure learning parameters for training RNNLMS from execution traces. DSM supports the following three architectures: standard Recurrent Neural Network, Long Short-Term Memory (LSTM) [6, 16], and Gated Recurrent Units (GRU) [3].

Trace Sampling: Since it is expensive to use all sequences in the training data to construct FSAs, DSM leverages a heuristic to select a subset of method sequences. The goal here is to create a smaller subset that is likely to represent the whole set of all traces reasonably well. In particular, DSM’s heuristic tries to find a subset of traces that covers all co-occurrence pairs\(^1\) of methods in all training traces. More detail of DSM’s trace sampling heuristic is available in our research paper [9].

Feature Extraction: DSM constructs a Prefix Tree Acceptor (PTA) from method sequences of the sampled execution traces. A PTA is a tree-like deterministic finite automaton (DFA) created by putting all the prefixes of sequences as states, and a PTA only accepts the sequences that it is built from. The final states of our constructed PTAs are the ones have incoming edges with <END> labels (see the step of RNNLM learning). Figure 2 shows an example of a Prefix Tree Acceptor (PTA).

Next, DSM extracts two different types of features based on PTA. The goal of this step is to provide sufficient information for clustering algorithms in the subsequent process to better merge PTA nodes. The following are the two feature types:

1. **Type I**: This type of features captures information of previously invoked methods before the state \(S\) is reached. The values of type I features for state \(S\) is the occurrences of methods on the path between the starting state (i.e., the root of the PTA) and \(S\). For example, according to Figure 2, the values of Type I features corresponding to node \(S_3\) are: \(F_{\text{<START>}} = F_{\text{<init>}} = F_{\text{initVerify}} = 1\) and \(F_{\text{update}} = F_{\text{verify}} = F_{\text{<END>}} = 0\).

2. **Type II**: This type of features captures the likely methods to be immediately called after a state is reached. Values of these features are computed by the inferred RNNLM in the deep learning step. For example, at node \(S_5\) in Figure 2, close and <END> have higher probabilities than the other methods to be called afterward. Examples of Type II features and their values for node \(S_5\) output by a RNNLM are as follows: \(P_{\text{initVerify}} = P_{\text{<END>}} = 0.4\) and \(P_{\text{<START>}} = P_{\text{<init>}} = P_{\text{verify}} = P_{\text{update}} = 0.15\).

Clustering: DSM executes k-means [11] and hierarchical clustering [15] algorithms on the PTA’s states with their extracted features. The goal of this step is to create a simpler and more generalized automaton that captures specifications of a target library class. Since both k-means and hierarchical clustering require the predefined input \(C\) for number of clusters, DSM tries with many values of \(C\) from 2 to MAX_CLUSTER\(^2\) to search for the best FSA. Overall, the execution of clustering algorithms results in \(2 \times (\text{MAX_CLUSTER} - 1)\) FSAs.

Model Selection: DSM employs a heuristic to select the best FSA among the ones output by the clustering algorithms using the input execution traces. It estimates Precision by first constructing a set \(P_I\) containing all pairs \((m_1, m_2)\), where \(m_1\) and \(m_2\) appear consecutively (i.e., \(m_1\) is called right before \(m_2\)) in the input execution traces. Then, DSM constructs another set \(P_M\) containing all pairs \((m_1, m_2)\) that appear consecutively in a trace generated by an automaton \(M\) outputted by the clustering algorithms. The estimated Precision is: \(\frac{P_I}{P_I \cup P_M}\). Next, DSM estimates the values of Recall by computing the percentage of all execution traces accepted by a given automaton \(M\). Once all precision and recall of FSA models are estimated, DSM computes the expected value of F-measure (i.e., harmonic mean of precision and recall) for each of the automata. Finally, DSM returns the FSA with highest expected F-measure. More details of DSM’s model selection heuristic are available in our research paper [9].

3 USAGE SCENARIOS

In this section, we illustrate how DSM operates via several usage scenarios. Furthermore, we describe a number of DSM’s key options to tune the accuracy of output FSA.

3.1 Scenario I – Simple Command

DSM is implemented in Python 3.5 with Tensorflow 0.12.0 and scikit-learn 0.19.1. We choose Python due to its simplicity and

\(^1\)(\(m_1, m_2\)) is a co-occurrence pair if \(m_1\) and \(m_2\) appear together in at least one trace.

\(^2\)By default, MAX_CLUSTER\(=20\).
3.2 Scenario II – Tuning DSM’s Parameters

Assuming we are interested to infer a FSA for an input execution traces of `java.util.StringTokenizer`, which is available at https://goo.gl/myQLXo. Since it is possible that execution time and accuracy of resultant FSAs are not as expectation of users, DSM provides several parameters to tune its performance. Table 1 highlights a number of key parameters of DSM. In order to adjust the learning of RNNLM, users can change the configuration of the learned RNNLM such as number of hidden layers (i.e., "--num_layers"), number of RNN states in each hidden layer (i.e., "--rnn_size"), RNN type (i.e., RNN, LSTM, GRU) (i.e., "--model"), etc.)

In DSM’s implementation, we leverage the multi-cores of a CPU to speed up tasks that can execute in parallel such as feature engineering and clustering processes. To maximize the degree of parallelism in DSM, users can change the values of "--max_cpu" to indicate the number of processes that can be used by DSM. The more CPUs are assigned to DSM, the faster the specification mining process is. DSM also provides "--min_cluster" and "--max_cluster" options to optimize the clustering process (see Section 2). These options regulate the number of clusters considered by the clustering algorithms. By default the range is [2, 20].

In our experiments, we select 11 target library classes as the benchmark to evaluate the effectiveness of our proposed approach.
Table 3: Effectiveness of DSM. “F” is F-measure.

<table>
<thead>
<tr>
<th>Class</th>
<th>F (%)</th>
<th>Class</th>
<th>F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrayList</td>
<td>22.21</td>
<td>Signature</td>
<td>100.00</td>
</tr>
<tr>
<td>HashMap</td>
<td>86.71</td>
<td>Socket</td>
<td>54.24</td>
</tr>
<tr>
<td>HashSet</td>
<td>76.84</td>
<td>StackAr</td>
<td>74.38</td>
</tr>
<tr>
<td>Hashtable</td>
<td>79.92</td>
<td>StringTokenizer</td>
<td>100.00</td>
</tr>
<tr>
<td>LinkedList</td>
<td>30.98</td>
<td>ZipOutputStream</td>
<td>88.82</td>
</tr>
<tr>
<td>NFT</td>
<td>77.52</td>
<td>Average</td>
<td>71.97</td>
</tr>
</tbody>
</table>

These library classes were also investigated by previous research works [7, 8]. Table 2 shows further details of the selected library classes including information of collected execution traces. Among these library classes, 9 out of 11 are from Java Development Kit (JDK); the other two library classes are DataStructure.StackAr (from Apache Xalan) and NumberFormatExceptionTokenizer (from Apache Xalan). Table 3 shows the F-measure of DSM for the eleven target library classes. From the table, our approach achieves an average F-measure of 71.97%. Noticeably, for StringTokenizer and Signature, DSM infers models that exactly match ground truth models (i.e., F-measure of 100%). There are other 6 out of the 11 library classes where our approach achieves F-measure of 70% or higher.

5 RELATED WORK

k-tails is a classic algorithm proposed by Biermann and Feldman [2] to infer a FSA from execution traces. The algorithm takes as input a set of execution traces and a parameter \(k \). \(k \)-tails first builds a prefix tree acceptor (PTA), and then merges every two states of the PTA that have identical sequences of the next \(k \) method invocations (i.e., k-tails). The effectiveness of \(k \)-tails depends the choice of \(k \) and the quality of its input traces.

Krka et al. propose a number of specification miners that are capable of inferring a FSA from execution traces and likely invariants [7]. These miners are CONTRACTOR++, state-enhanced k-tails (SEKT), and trace-enhanced MTS inference (TEMI). Among the above three approaches, CONTRACTOR++ only utilizes value-based program invariants inferred by Daikon [5] to construct FSAs. On the other hand, state-enhanced k-tails (SEKT) and trace-enhanced MTS (Modal Transition System) inference (TEMI) analyze both execution traces and Daikon’s likely invariants to infer FSA based specifications.

SpecFor is built on the top of Krka et al.’s proposed miners [7] and k-tails [2]. There are two important processes in SpecFor: model fission and model fusion. SpecFors employs model fission to extract many temporal rules from input FSAs, and select a number of interesting rules that frequently appear in input FSAs. Then, model fusion is utilized to construct a new automata that satisfies that selected temporal rules.

Additionally, Lo et al. propose SMArTIC that mines a FSA from a set of execution traces [4] using a variant of k-tails to construct a probabilistic FSA. Walkinshaw and Bogdanov propose an approach that allows users to input temporal properties to support a specification miner to construct a FSA from execution traces [17]. Mariani et al. propose k-behavior [12] that creates an automaton by inspecting one single trace at a time. Synoptic infers three kinds of temporal invariants from execution traces and uses them to generate a concise FSA [1].

Different from DSM, none of the above-mentioned studies leverage deep learning to mine specifications from execution traces. We have also shown in our research paper [9] that DSM substantially outperforms a number of baselines in terms of quality of mined specifications and ability to detect malicious behaviors of Android apps.

6 CONCLUSION

In this work, we present DSM which is an automated tool that applies deep learning to mine finite-state automaton (FSA) based specifications from execution traces. In particular, we describe the design, usage scenarios, and performance of DSM. DSM is open-source and can be run from command line with simple options. Our dataset, DSM’s implementation, and a technical report that includes additional results are publicly available at: https://github.com/lebuientduy/DSM.

ACKNOWLEDGMENT

This research was supported by the Singapore National Research Foundation’s National Cybersecurity Research & Development Programme (award number: NRF2016NCR-NCR001-008).

REFERENCES