FIRE: Smart Contract Bytecode Function Identification via
Graph-Refined Hybrid Feature Encoding

Yu Sun, Lingfeng Bao™, Xiaohu Yang
The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China
22321296(@zju.edu.cn, lingfengbao@zju.edu.cn, yangxh@zju.edu.cn

ABSTRACT

The growing popularity of smart contracts has spurred an increas-
ing demand for efficient analysis of their bytecode. Reverse engi-
neering plays a critical role in understanding and auditing smart
contracts, with function identification being a key aspect. However,
existing function identification techniques often struggle with scal-
ability, accuracy, and adaptability across different contract versions.
This paper presents FIRE (Smart Contract Bytecode Function Iden-
tification via Graph-Refined Hybrid Encoding), a novel approach
to function identification in Ethereum smart contract bytecode. By
leveraging hybrid encoding of basic blocks and incorporating a
graph neural network (GNN) based on control flow graph (CFG),
our method improves the effectiveness of function identification.
The approach demonstrates strong generalization across contract
versions and significantly reduces runtime. We evaluate FIRE on
multiple datasets and show its superior performance compared to
existing techniques, highlighting its potential for efficient smart
contract bytecode analysis.

CCS CONCEPTS

« Security and privacy — Software reverse engineering; «
Computing methodologies — Machine learning.

KEYWORDS

Smart Contract, Reverse Engineering, Function Identification, Ma-
chine Learning, Graph Neural Network

ACM Reference Format:

Yu Sun, Lingfeng Bao, Xiaohu Yang, The State Key Laboratory of Blockchain
and Data Security, Zhejiang University, China, 22321296@zju.edu.cn, lingfeng-
bao@zju.edu.cn, yangxh@zju.edu.cn . 2025. FIRE: Smart Contract Byte-
code Function Identification via Graph-Refined Hybrid Feature Encoding.
In the 16th International Conference on Internetware (Internetware 2025),
June 20-22, 2025, Trondheim, Norway. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3755881.3755883

1 INTRODUCTION

The rise of blockchain technology [42] has revolutionized vari-
ous industries, with decentralized applications (dApps) built on

TCorresponding author, also with Hangzhou High-Tech Zone (Binjiang) Institute of
Blockchain and Data Security.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Internetware 2025, June 20-22, 2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1926-4/25/06

https://doi.org/10.1145/3755881.3755883

platforms such as Ethereum [38] gaining substantial attention. Cen-
tral to these applications are smart contracts [43], which are self-
executing agreements with the terms encoded directly into the
code. While these smart contracts offer powerful capabilities for au-
tomating processes and facilitating trustless interactions, they also
pose distinct challenges related to security [37], optimization [19],
and analysis [21]. Although Ethereum smart contracts are typically
written in high-level languages like Solidity, they are ultimately de-
ployed as low-level bytecode. This compiled form, characterized by
inherent complexity and compiler optimizations, poses significant
challenges for comprehension and analysis—even for experienced
developers. Furthermore, a substantial portion of deployed con-
tracts lack publicly available source code, making decompilation
an essential process to regenerate analyzable code for critical secu-
rity audits and vulnerability assessments. Consequently, efficiently
decompiling Ethereum bytecode has become a vital aspect of smart
contract analysis, particularly in ensuring the accuracy and security
of contracts prior to deployment.

During decompilation, reconstructing the original high-level
logic from the bytecode requires precise function identification, as
functions encapsulate the core behaviors and interactions within
a contract. The absence of explicit metadata and the compression
optimization employed in bytecode make function identification a
non-trivial task. Addressing this challenge is essential for ensuring
the reliability of decompiled code, enabling binary analysis, security
assessments [32] and vulnerability detection [30].

Traditional smart contract decompilers [5, 14, 15, 23] often rely
on heuristics or pattern matching based on common bytecode se-
quences. For example, Gigahorse [14] discovers function entries by
heuristically setting the call site pattern. These approaches, while
useful, are inherently limited by their reliance on pre-defined rules
and can be inaccurate when faced with more complex or optimized
bytecode as compiler optimizations and unconventional control
flow patterns often break the underlying assumptions of static pat-
tern matching. Furthermore, as Ethereum contracts evolve and new
patterns emerge, these heuristic-based methods often struggle with
generalization across different contract versions, making them less
effective in dynamic real-world scenarios.

Recent advancements [17, 24, 41, 44] in machine learning, par-
ticularly deep learning, have shown potential in automating and
improving bytecode analysis. These approaches have demonstrated
the capability to learn from large datasets, offering significant ben-
efits in terms of effectiveness. However, the state-of-the-art neural
models for smart contract function identification, neural-FEBI [17],
only considers the bytecode as a sequence model and uses condi-
tional random fields [22] (CRF) to predict function entries. They do
not fully utilize the information of bytecode, resulting in some per-
formance bottlenecks, especially in optimized bytecode data. Since

https://doi.org/10.1145/3755881.3755883
https://doi.org/10.1145/3755881.3755883

Internetware 2025, June 20-22, 2025, Trondheim, Norway

bytecode is not completely organized for continuous execution, the
state transitions learned in CRF may be overly dependent on train-
ing data. When the new compiler adopts additional optimizations
that cause the organization of bytecode to change, neural-FEBI is
difficult to generalize and adapt to the new version of bytecode
data.

In this paper, we propose FIRE (Function Identification via Graph-
Refined Hybrid Feature Encoding), a novel machine learning ap-
proach to function identification in Ethereum smart contracts. Our
approach addresses the limitations of traditional decompilers and
existing machine learning models , as discussed earlier, by inte-
grating a graph-based refined hybrid feature encoding modeling
strategy.

Specifically, we model the feature encoding of the basic blocks ob-
tained by bytecode segmentation. For each basic block, we perform
statistical feature analysis to obtain its local instruction frequency
encoding, and fuse it with the temporal features output by the lan-
guage model [20]. In addition, through static analysis, we construct
a control flow graph [1] with basic blocks as nodes. The hybrid
encoding is input into the graph neural network [39] and refined
iteratively through the control flow graph structure. The refined
feature encoding can be classified to determine whether the basic
block is a function entry.

The combination of hybrid encoding and GNN refinement allows
FIRE to leverage both local and global context in the bytecode, re-
sulting in a more precise identification of function entry blocks. This
advantage contributes to the robustness of our approach, enabling
models trained on low-version data to be successfully transferred
for predictions on higher-version data. Strong robustness means
that FIRE does not have to face the difficulty of labeling new ver-
sion data. Besides, the improvement in function entry identification
accuracy also enhances the effectiveness of the function boundary
identification task. Additionally, our approach achieves a significant
boost in runtime performance compared to state-of-the-art models.

In summary, the major contributions of this work are as follows:

e We propose FIRE, a novel function identification approach for
Ethereum smart contract bytecode, which integrates hybrid fea-
ture encoding and graph neural network refinement to enhance
function entry identification accuracy.

o We demonstrate the effectiveness of our approach in addressing
generalization challenges by ensuring high accuracy across
different contract versions, outperforming existing heuristic-
based methods and machine learning models.

e Our approach improves the accuracy of function entry identifi-
cation, making function boundary identification more accurate
and achieving state-of-the-art results.

e Our approach significantly improves runtime performance, pro-
viding a more efficient solution for large-scale contract analysis.

2 MOTIVATION

In this section, we provide a motivational example to introduce our
approach.

Figure 1 shows a partial subgraph of the control flow graph of
a smart contract bytecode !. There are four basic blocks (split by

!https://etherscan.io/address/0x0000009d48b12597675a02fca9¢317eadef152ch, com-
piled by solc-0.5.17 with optimization configuration.

Sun et al.

JUMP, JUMPI and JUMPDEST instructions) in the graph, which
will be referred to by their starting instruction program counter
address subscripts in the following text, namely Bs47, B2004, B2025,
and Bg91. Among them, Bzpo4 with a yellow background color is
a function entry block. From an inspection of the previous state-
of-the-art approach and consideration of the current example, the
following observations can be made.

547: PUSH2 0x022a
550: PUSH2 0x07d4
553: JUMP

.

2004: JUMPDEST
2005: CALLER
2006: PUSH1 0x00
2008: SWAP1
2009: DUP2

2010: MSTORE
2011: PUSH1 0x05
2013: PUSH1 0x20
2015: MSTORE
2016: PUSH1 0x40
2018: SWAP1
2019: SHA3

2020: SLOAD
2021: PUSH2 0x082b
2024: JUMPI

/

2042: PUSH32 0xb7108398ab4ff288e60bd1779e7c961d0f3ec78687e57ae7c7a793e5667a9793
2075: SWAP3
2076: DUP3

2077: SWAP1
2078: SUB

2079: ADD

2080: SWAP1
2081: LOG2

2082: PUSH1 0x0d
2084: DUP1

2085: SLOAD
2086: PUSH1 0x01
2088: ADD

2089: SWAP1
2090: SSTORE

2025: PUSH1 0x40

2091: JUMPDEST

2136: JUMP

Figure 1: An example of a subgraph of a control flow graph
generated from a smart contract bytecode.

Observation 1. Modeling bytecodes with the graph model
is more appropriate than the sequence model. The state-of-
the-art approach, neural-FEBI [17], treats the bytecode as a natu-
ral language sequence and performs part-of-speech tagging [33]
by combining LSTM[18] with CRF [22] to achieve function entry
classification. However, the relationships between blocks are of-
ten non-linear and can involve jumps, and branching that make
sequence-based models less effective. Different versions of compil-
ers have different degrees of optimization when organizing instruc-
tions, which may cause the dependencies captured by the sequence
model to fail to generalize. As shown in Figure 1, a control flow
graph (CFG) better captures these relationships by representing
blocks of instructions as nodes and edges as control flow between
them. The graph structure naturally reflects the dependencies and
control flow of the contract, providing richer context than what a
sequence model can represent, and thus improves the accuracy of
function identification. For example, Bs47 is a classic function call
pattern, which first pushes the return address into the stack, then

https://etherscan.io/address/0x0000009d48b12597675a02fca9c317eadef152cb

FIRE: Smart Contract Bytecode Function Identification via Graph-Refined Hybrid Feature Encoding

pushes the calling function address, and then jumps to B2004. When
using the graph neural network to predict 83904, the features of
B547 will be integrated, making it easier for the model to determine
that B4 is a function entry. Therefore, graph models have great
potential for this task and will learn more meaningful patterns and
capture complex control flows.

Observation 2. The distribution of instruction types within
abasic block can largely reflect the functionality of the block.
Each basic block in a control flow graph typically contains a set of
instructions that are executed consecutively. The types of instruc-
tions, whether arithmetic operations, stack operations, memory
operations, or storage operations, can provide strong clues about
the functionality of the block. There are usually some initializa-
tion operations at the function entry, such as setting up the stack
frame, saving register status, etc. If a basic block contains many of
these types of instructions, it may be the function entry. If there
are many arithmetic operations in a basic block, it is very likely
that some business operations are being performed, which are usu-
ally in a deeper function body. For example, Bygo4 first uses the
CALLER instruction to obtain the caller address, which may be used
to subsequently check the caller’s identity or perform permission
verification. The remaining instructions of By0¢4 are basically stack
operations and read/write operations, which are generally a series
of function initialization work. The instruction distribution shown
in the above analysis shows that B2004 is likely to be a function
entry. In addition, the instructions in Byg25 are more like ordinary
function body blocks that carry calculation and logging function-
ality. By examining the distribution and frequency of instruction
types within each basic block, we can infer the role of that block
within the overall contract and its relationship to other blocks.
This observation highlights the importance of understanding the
instruction set within blocks, which can serve as a vital feature for
accurate function identification.

3 TASK DEFINITION

The function identification task can be decomposed into two sub-
tasks with a sequential relationship, namely function entry iden-
tification and function boundary identification. Suppose a smart
contract bytecode is accessible, which contains several functions
fi,- -, fn- The two tasks are defined as follows:

Definition 1. Function Entry Identification: Given a byte-
code, find a set of offset addresses {s1,s2, - - ,sn}, where s; is the
first byte offset address in each function f;. Furthermore, the byte-
code can be decomposed into several basic blocks. Therefore, the
task can also be expressed as: Given a bytecode, find a set of basic
blocks {b1, by, - - ,bn}, where b; is the basic block that starts with
the first instructions in each function f;.

Definition 2. Function Boundary Identification: Given a
bytecode, find a set of {B1, By, - - - , B}, where each B; consists of
all basic blocks that contain the contents of function f;, and each
B; can be represented as a set of basic blocks {by, by, - - -, by, }.

Our method mainly completes the first task by designing a neural
network model to predict function entry. According to previous
work [17, 34], based on the function entry predicted by the model,
function boundaries can be identified by traversing the control flow
through static analysis.

Internetware 2025, June 20-22, 2025, Trondheim, Norway

In addition, it is important to note that the compiler embeds
a code segment called dispatcher at the beginning of the byte-
code. The dispatcher stores the function selectors [8] of each pub-
lic/external function, which is a function identifier. Before calling a
public/external function, there is a basic block to determine whether
the calling method matches the corresponding function selector. It
is easy to infer the entry of these functions through static analy-
sis. Therefore, we only consider private/internal functions in the
evaluation of the function entry identification task.

4 APPROACH

Based on the motivation example, we propose FIRE to enrich the
representation of basic blocks to better predict function entry. The
overall architecture of FIRE is shown in Figure 2. We first build
a control flow graph of the bytecode (§ 4.1), then perform hybrid
feature encoding (§ 4.2) for each node in the graph, refine the
encoding based on the control flow graph (§ 4.3), and finally conduct
binary classification of function entry for each node.

4.1 Control Flow Graph Construction

To construct the control flow graph of the bytecode, we first split
the bytecode and identify the basic blocks. Here we use basic blocks
that are mainly divided by JUMP, JUMPI and JUMPDEST instruc-
tions instead of reachable blocks used in previous work [17]. This
is because the reachable blocks are only split by the JUMPDEST
instruction as a split point. This strategy causes some blocks to be
merged with sequentially adjacent blocks, which destroys the topo-
logical relationship of the entire control flow graph. For example, if
the JUMPI instruction does not jump, it should continue to execute
downward, and the subsequent instructions should be treated as a
single block until the next jump. However, the reachable block will
not be split when it does not jump, so the block after the jump can-
not successfully establish an adjacent relationship with the existing
unsplited block. In our control flow graph (CFG), each basic block
is represented as a node. By parsing the jump instruction at the end
of each node, the connectivity between nodes can be determined.
Simple direct jumps are easy to parse, that is, the jump address is
pushed into the stack before the jump instruction. As for complex
jumps, symbolic stack execution [2] is required through depth-first
search to accurately obtain the jump address.

The CFG is crucial for understanding the program’s execution
path and enables the model to capture the relationships and transi-
tions between different parts of the bytecode. These relationships
are pivotal for accurately identifying function entries, as the func-
tion entry is typically characterized by the flow of control into the
function’s entry point. We leverage the CFG structure to enrich the
feature representation of each basic block in subsequent steps of
the approach.

4.2 Hybrid Feature Encoding

In addition to the graph structure, each node’s own feature en-
coding scheme is the most fundamental key factor in ultimately
identifying the function entry. As mentioned before (Observation
2), the instruction distribution within a basic block is an important
distinguishing feature. Therefore, we use local frequency encoding
as the most important node embedding in FIRE.

Internetware 2025, June 20-22, 2025, Trondheim, Norway

Sun et al.

v Bytecode \\‘

| 1

] 01010001 : |

5 00001100 ; ()

! 00110010 : Instruction 1 !
| conr f :
! Construction | Instruction 2
o (_instruction 3)
1 T\ 3 vernas !
| / i ‘ |
' \ ' Instruction N |
! o) ! \. J

5 | I%I " Basic Block

i |]

!) i

: | :

| ; —eeep|

Instruction
Embeddings

|
|
|
:
:
i Bi-LSTM
;
|
|
i
|
|
i
|
|

Instructions
Distribution

1
v

Temporal
Encoding

Statistical
Encoding

A Entry
Function Entry
Prediction
—

\
1
|
1
'
|
]
'
|
1
'
|
1
'
|
]
|
|
]
|
|
]
i
|
!

S FIRE

Figure 2: Overview of FIRE.

Specifically, we first count all the categories of instructions that
appear in the training set, which has a total number of m. Next,
we statistically calculate the instruction distribution in each node,
calculate the frequency of each instruction in the node, and obtain
its local frequency feature encoding e/7¢9 € R1*™_ The specific
calculation method is as follows:

¢ freq _ count;

1

—_— ie{1,2,...,m} 1)
instrs_num

, where count; is the number of times the i-th instruction appears
in node; instrs_num represents the total number of instructions in
node.

It should be noted that local frequency encoding only contains
statistical features, which lacks the sequential information of in-
structions as a kind of temporal data. We supplement this sequential
information by introducing a language model. The language model
also provides contextual information that aids in understanding
the semantics of the instructions within the node, offering a more
comprehensive feature set. We input the instructions of each node
into a bidirectional LSTM [18], and the output result is average
pooled to obtain the temporal information encoding e*¢4:

e*¢? = Pooling(BiLSTM (instructions)) 2)

We concatenate the local frequency feature encoding and the
local temporal feature encoding to obtain the final hybrid feature
encoding e as the initial node embedding vector:

e= concatenate(efreq, e*°9) ®3)

This hybrid encoding of statistical and temporal features allows
the model to better represent the complexity of the bytecode.

4.3 CFG-based Refinement

Once the hybrid feature encoding is constructed, it is input into
a graph neural network (GNN) that iteratively refines the encod-
ing based on the structure of the control flow graph (CFG). The
GNN allows us to capture higher-order relationships between basic
blocks, as it propagates feature information across the graph edges.
During this iterative refinement process, the GNN adjusts the fea-
ture representations by aggregating information from neighboring
nodes, effectively enriching the feature vectors. This step enhances
the model’s ability to detect function entry points by considering
not only the individual characteristics of each block but also the
contextual and structural information provided by the CFG.

In fact, when choosing graph neural network, we use graph
attention network (GAT) [36] to obtain refined feature encoding

e

e = Z dWey (4)
veN,
, where u is a node; Ny, means u’s neighborhood nodes including
itself; ¢ represents the attention scores calculated by GAT. W is the
trainable weights.

The GAT allow for the dynamic adjustment of feature importance
through an attention mechanism, enabling each node to assign vary-
ing attention weights to its neighbors. By applying the attention
mechanism, the GAT not only preserves the structural integrity

FIRE: Smart Contract Bytecode Function Identification via Graph-Refined Hybrid Feature Encoding

Table 1: Statistics of dataset.

solc-0.4.25 solc-0.5.17

Unoptimized Optimized Unoptimized Optimized

#Bytecode 30,265 30,260 9,090 9,099
#Average Function 22.0 21.8 31.76 30.74

of the CFG but also ensures that critical control flow information
is emphasized in the iterative refinement process. This is partic-
ularly beneficial for identifying function entry points, where the
flow of control often shifts significantly. The iterative nature of
GAT further enriches the feature representation by progressively
refining the embeddings of each basic block, ensuring that the fi-
nal representation is highly discriminative and context-aware. The
attention mechanism thus allows the model to focus on key tran-
sitions between blocks that indicate function entries, leading to a
more accurate and efficient identification of function entries.

Finally, the graph-refined hybrid feature encoding of each basic
block is sent to a classifier for binary classification to determine
whether it is a function entry.

5 EXPERIMENT SETUP
5.1 Dataset

We conducted experiments on the dataset introduced by neural-
FEBI [17], which contains 38,996 unique smart contracts. The con-
tracts were compiled using two instrumented compiler versions
(solc-0.4.25 and solc-0.5.17) and two compilation options (optimized
and unoptimized), resulting in four distinct datasets, as shown in
Table 1. The compiler with optimization configuration optimizes
the bytecode by folding constants, inlining small functions, and
eliminating redundant calculations to reduce gas costs and improve
execution efficiency. This means that the bytecode with optimiza-
tion configuration is more complex, which increases the difficulty
of function identification.

5.2 Metrics

We use the same evaluation metrics as previous work [3, 17, 34],
namely P (precision), R (recall) and F1. The calculation is as follows:

b TP)
" TP+FP
TP
R=——— (6)
TP+ FN
2PR
F1= (7)
P+R

where TP is the number of true positive predictions, FP is the
number of false positive predictions, and FN is the number of
false negative predictions. The F1 score is the harmonic mean of
precision and recall. The F1 score provides a single metric that
balances both precision and recall, giving a more comprehensive
view of the model’s performance.

For the function entry prediction task, the above evaluation met-
rics are calculated by comparing the predicted entry block with the
ground truth. The same is true for the function boundary recogni-
tion task, but a complete matching strategy is used when comparing,
that is, all blocks of the predicted function body must completely

Internetware 2025, June 20-22, 2025, Trondheim, Norway

match all blocks in the corresponding function ground truth. When
the function boundary identification task times out or is interrupted
by an error, these metrics will be recorded as 0.

5.3 Baseline

In our experiment, we set up three traditional decompilers and a
state-of-the-art method that uses machine learning methods for
function identification as baselines. They are introduced as follows:

e Gigahorse [14]: performs declarative program based on heuris-
tical rules to conduct function identification in decompilation.

e Elipmoc [15]: is built on top of Gigahorse and merged into its
code repository as Gigahorse 2.0. Elipmoc uses a transactional
context sensitivity algorithm to improve the precision of func-
tion reconstruction, especially private functions.

e Shrnkr [23]: is an improvement on Elipmoc, adding shrinking
context sensitivity analysis to improve precision.

e neural-FEBI [17]: uses the LSTM-CRF architecture to identify
function entries and designs a static analysis framework for
function boundary identification.

For another SOTA decompiler, Heimdall-rs [11] , we do not use
it as a baseline because it does not have the ability to identify
private/internal functions.

5.4 Implementation Setup

The experiments were conducted on a server equipped with an In-
tel(R) Xeon(R) Platinum 8358P CPU, featuring 128 cores running at
2.60 GHz, coupled with an NVIDIA A800 80GB PCle GPU. The con-
struction of the control flow graph of the bytecode is implemented
using the EhterSolve [6] tool. We use the pytorch [29] framework to
build the neural network. We use the cross-entropy loss to calculate
the error and the AdamW [25] algorithm to train the network. The
dimension of the instruction embedding is set to 64. The dimension
of the sequential information encoding of the LSTM output is set
to 32. We only use one layer of GAT to generate the graph-refined
hybrid feature encoding, and its dimension is set to 128. For the
running time, we set 120s as the timeout.

6 EXPERIMENT RESULTS

We assess our approach by trying to answer the following five
research questions.

e ROQ1: To what extent can FIRE perform in the function
entry identification task?

e RQ2: How does the ablation of several key components
in FIRE perform?

¢ RQ3:To what extent can FIRE perform in real-world cross-
version scenarios?

o RQ4: To what extent can FIRE improve the effectiveness
of boundary identification?

¢ RQ5: To what extent can FIRE improve the efficiency of
boundary identification?

6.1 RQ1: To what extent can FIRE perform in
the function entry identification task?

Motivation and Setting. FIRE has been carefully and uniquely
designed for function entry identification. We hope to use this RQ

Internetware 2025, June 20-22, 2025, Trondheim, Norway Sun et al.
Table 2: Comparison of different models for the internal function entries identification.
Model solc-0.4.25 solc-0.5.17
Unoptimized Optimized Unoptimized Optimized
P R F1 P R F1 P R F1 P R F1

Gigahorse 0.9579 0.8586 0.8799 0.9441 0.8270 0.8571 0.8756 0.6905 0.7361 0.8695 0.6835 0.7284
Elipmoc 0.9646 0.8642 0.8859 0.9520 0.8338 0.8644 0.9490 0.7493 0.8012 0.9326 0.7340 0.7843
Shrnkr 0.9727 0.8713 0.8934 0.9619 0.8427 0.8736 0.9701 0.7653 0.8194 0.9567 0.7542 0.8068
neural-FEBI 0.9958 0.9983 0.9955 0.9780 0.9366 0.9455 0.9928 0.9891 0.9877 0.9514 0.8455 0.8725
FIRE 0.9973 0.9955 0.9956 0.9962 0.9936 0.9936 0.9942 0.9914 0.9911 0.9910 0.9922 0.9901

to evaluate the effect of FIRE on the function entry identification
task. Consistent with previous work [17], we divide the training
set, validation set, and test set into a ratio of 4:1:5.

As shown in Table 2, the FIRE model outperforms all other mod-
els in almost every aspect, particularly in terms of F1-score, which is
a balanced measure of both precision and recall. For the solc-0.4.25
dataset, FIRE achieves an F1-score of 0.9956 in the unoptimized
setting and 0.9936 in the optimized setting, which are the highest
among all models evaluated. Similarly, for the solc-0.5.17 dataset,
FIRE achieves F1-scores of 0.9911 in the unoptimized setting and
0.9901 in the optimized setting.

The performance of the three compilers used as the baseline
of traditional methods has gradually improved. Shrnkr, which has
the most comprehensive context-sensitivity algorithm, performs
the best, but is still far from the machine learning method. The F1-
score of our method is about 0.1-0.2 higher than that of Shrnkr on
different datasets. This shows that relying solely on heuristic rules
to identify function entry has great limitations. Compared with
neural-FEBI, our model outperforms it in all metrics, except for the
recall of the solc-0.4.25-unoptimized dataset. This may be related
to the incompleteness of the control flow graph. Some function
entry blocks are not included in the control flow graph. We will
explain this in detail in Section 7. However, on this dataset, FIRE
shows comparable and not inferior performance to neural-FEBI,
and the same is true on the solc-0.5.17-unoptimized dataset using
non-optimized compilation options.

It is worth noting that on the dataset with non-optimized com-
pilation options, the neural network-based models all performed
very well. This may be because the function entry patterns hidden
in the bytecode generated by non-optimized compilation are rel-
atively simple, and the network can easily learn its rules. When
the compilation option is changed to optimized configuration, the
performance of all models except FIRE will experience a significant
decline. The optimization options make the structure of the byte-
code more complex, requiring the model to have more powerful
modeling capabilities to maintain high performance.

FIRE uses graph-refined hybrid feature encoding to integrate lo-
cal statistical features, local temporal features, and global structural
features. This greatly enriches the semantic information, allowing
it to still have excellent performance on datasets that use com-
pilation optimization options. Regardless of whether compilation
optimization options are used, FIRE can achieve a performance of

more than 0.99 in F1-score, demonstrating strong algorithm stabil-
ity. This positions FIRE as a highly effective solution for function
entry identification in smart contract decompilation tasks.

Summary: FIRE outperforms all other models in function entry
identification. Regardless of whether the dataset uses compilation
optimization options or not, FIRE can achieve an F1-score of more
than 0.99, demonstrating its effectiveness and stability.

6.2 RQ2: How does the ablation of several key
components in FIRE perform?

Motivation and Setting. In the FIRE architecture, there are three
key components, namely statistical encoding, temporal encoding,
and the CFG-based refinement module. In this RQ, we hope to
demonstrate the effectiveness of each component through abla-
tion experiments. We set up three control methods and conducted
experiments under the same settings as RQ1:

e MLPgg: Only statistical feature encodings are used as input to
the MLP [13] to demonstrate observation 2.

e FIRE wo/ SE: FIRE removes the statistical encoding component.
FIRE wo/ TE: FIRE removes the temporal encoding component.
FIRE wo/ GR: FIRE removes the CFG-based refinement com-
ponent.

The ablation results in Table 3 reveal the necessity of all three
components in FIRE. First, removing the CFG-based refinement
module (FIRE wo/GR) causes the most significant performance drop
across all scenarios, especially for solc-0.5.17 (e.g., F1 decreases from
0.9911 to 0.8467 in unoptimized cases). This suggests that struc-
tural pattern mining through CFG-based refinement is critical for
capturing deep code logic features, particularly for newer compiler
versions where code semantics may be more complex. Second, ab-
lating the statistical encoding component (FIRE wo/SE) results in a
more noticeable performance decline compared to removing the
temporal encoding component (FIRE wo/TE). For example, in solc-
0.4.25-unoptimized dataset, F1 drops from 0.9956 to 0.9835 when
statistical encoding is removed, whereas removing temporal encod-
ing only reduces F1 to 0.9897. And then, MLPsEg, which relies only
on statistical feature encoding, also achieved good results. This
suggests that statistical features provide a stronger foundational
signal for function entry identification than temporal patterns in

FIRE: Smart Contract Bytecode Function Identification via Graph-Refined Hybrid Feature Encoding

Internetware 2025, June 20-22, 2025, Trondheim, Norway

Table 3: Comparison of experimental results after FIRE ablates various components.

Model solc-0.4.25 solc-0.5.17
Unoptimized Optimized Unoptimized Optimized
P R F1 P R F1 P R F1 P R F1

MLPsg 0.8804 0.9426 0.8846 0.9021 0.9342 0.8949 0.8042 09170 0.8304 0.8068 0.9110 0.8300
FIRE wo/SE ~ 0.9860 0.9840 0.9835 0.9854 0.9831 0.9827 09838 09820 0.9813 0.9818 0.9806 0.9794
FIRE wo/TE ~ 0.9933 0.9904 0.9897 0.9919 0.9882 0.9870 0.9884 0.9840 0.9836 0.9851 0.9824 0.9800
FIRE wo/GR 0.9113 0.9462 0.9061 0.8940 0.9547 0.9006 0.7999 0.9489 0.8467 0.8241 0.9295 0.8492
FIRE 0.9973 0.9955 0.9956 0.9962 0.9936 0.9936 0.9942 0.9914 0.9911 0.9910 0.9922 0.9901

Table 4: Comparison of different neural models for the internal function entries identification in cross-version scenarios.

Model 0.4.25-U — 0.5.17-U 0.4.25-0 — 0.5.17-0

P R F1 P R F1
neural-FEBI (40% training data) 0.6644 0.9911 0.7458 0.6236 0.8468 0.6530
neural-FEBI (100% training data) 0.6250 0.8362 0.6327 0.6222 0.9924 0.7069
FIRE (40% training data) 0.8109 0.9767 0.8432 0.8850 0.9738 0.9024
FIRE (100% training data) 0.9074 0.9830 0.9280 0.8816 0.9834 0.9171

instructions, which also shows that Observation 2 is correct. Fi-
nally, while temporal encoding also contributes to performance, its
removal has a relatively smaller impact, indicating that temporal
dependencies provide supplementary but less critical information
compared to statistical and structural features. Overall. the full FIRE
architecture, with all components intact, outperforms the individual
ablations, reaffirming the necessity of combining these techniques
to achieve optimal results.

Summary: All three components——statistical encoding, temporal
encoding, and CFG-based refinement, are essential for FIRE’s optimal
performance, with CFG-based refinement being the most critical.

6.3 ROQ3: To what extent can FIRE perform in
real-world cross-version scenarios?

Motivation. In Table 2, we can observe that the F1-score of all
models on the high-version compiled data is lower than that on the
low-version data. This is because high-version compilers usually in-
troduce more advanced compilation optimization techniques. This
also introduces a new question: Can low-version data be used for
training to predict high-version data? This is actually a real-world
scenario. The production of existing datasets relies on the modifi-
cation of compilers to perform program instrumentation analysis
to obtain ground-truth. If the model trained on low-version data
cannot predict high-version data well, it is necessary to modify
the high-version compiler to obtain high-version data for training,
which is undoubtedly costly. Such a high annotation cost poses a
challenge to the generalization of the model, so we hope to use this
RQ to study the cross-version prediction performance of FIRE in
real scenarios.

Setting. In RQ1, we have trained a model with excellent perfor-
mance on low-version data using 40% of the data. We first evaluate
the performance of these models trained with only 40% of the low-
version data on the high-version data. And then, we set up a full
low-version data training scenario to explore the model’s efficiency
in utilizing data and compare the overfitting effects of different
models with increased training data. Since traditional decompilers
do not rely on training, they do not have generalization problems.
Here we only compare FIRE with neural-FEBIL

As shown in Table 4, in the 40% data training scenario, FIRE
achieved an F1-score of 0.8432 and 0.9024 on the datasets with un-
optimized compilation options and optimized compilation options,
respectively. Compared with neural-FEBI, our results are 13% and
38% higher, respectively. This shows that FIRE is strongly robust
and can handle the bytecode function entry identification task in
real scenarios. In the full data training scenario, as shown in the
Table 4, FIRE achieves an F1-score of 0.9280 and 0.9171 in the data
without compilation optimization options and the data with compi-
lation optimization options, respectively. This performance is about
47% and 30% higher than neural-FEBI, respectively.

It can be noted that the increase in low-version training data does
not make FIRE suffer from the threat of overfitting. FIRE performs
better when trained with all low-version data than when trained
with only part of the low-version data. This shows that FIRE’s
careful design can capture more subtle function entry patterns,
enabling it to use more data to enhance its performance and perform
well in high-version data prediction. In contrast, neural-FEBI suffers
from performance degradation when the training data increases.

In addition, the experimental results show that neural-FEBI per-
forms well in the recall evaluation metric. However, its precision
lags far behind, resulting in poor overall performance. This shows
that neural-FEBI has learned rough patterns that are only applicable
to low-version data, and has not captured the fine patterns that

Internetware 2025, June 20-22, 2025, Trondheim, Norway Sun et al.
Table 5: Comparison of different models for the function boundaries identification.
Model solc-0.4.25 solc-0.5.17
Unoptimized Optimized Unoptimized Optimized
P R F1 P R F1 P R F1 P R F1

Gigahorse 0.3608 0.4200 0.3868 0.1661 0.1962 0.1791 0.2641 0.2946 0.2771 0.1239 0.1416 0.1309
Elipmoc 0.3627 0.4219 0.3886 0.1670 0.1972 0.1800 0.2814 0.3146 0.2956 0.1269 0.1450 0.1341
Shrnkr 0.3647 0.4243 0.3908 0.1680 0.1984 0.1810 0.2860 0.3192 0.3002 0.1280 0.1468 0.1357
neural-FEBI 0.9638 0.9629 0.9633 0.9440 0.9367 0.9400 0.9211 09146 09175 0.8438 0.8165 0.8290
FIRE 0.9794 0.9777 0.9785 0.9732 0.9716 0.9723 0.9663 0.9566 0.9608 0.9592 0.9477 0.9524

Table 6: Statistics of runtime (seconds) of different models (excluding timeout).

Model solc-0.4.25 solc-0.5.17

Unoptimized Optimized Unoptimized Optimized
Mean Median Mean Median Mean Median Mean Median

Gigahorse 3.79 2.36 2.99 1.78 5.32 2.30 5.11 1.96
Elipmoc 3.07 2.41 2.82 2.20 4.70 2.40 5.60 2.05
Shrnkr 3.04 2.74 2.76 2.53 3.24 2.64 2.87 2.36
neural-FEBI 6.66 1.20 11.04 1.62 7.52 0.97 20.46 3.69
FIRE 1.25 0.91 1.06 0.67 1.914 0.84 1.87 0.63

really affect the function boundary, making its generalization far
inferior to FIRE.

These results demonstrate that FIRE not only performs well
within a single version of the Solidity compiler but also exhibits
strong generalization capabilities across different compiler versions.
Whether trained with a limited amount of data (40%) or a larger
dataset (100%), FIRE maintains superior performance compared to
neural-FEBI, making it highly effective for real-world cross-version
scenarios.

Summary: FIRE achieving an Fl-score over 0.9 in cross-version
prediction tasks, significantly outperforming the SOTA. It effectively
avoids overfitting even with an increasing amount of low-version
training data, showcasing high data utilization efficiency.

6.4 RQ4: To what extent can FIRE improve the
effectiveness of boundary identification?

Motivation and Setting. Identification of the function entry is
a prerequisite for identification of the function boundary, and the
two together constitute the overall task of function identification.
FIRE uses the boundary detection framework in neural-FEBI for
boundary identification. This RQ aims to assess the enhancement
in the effectiveness of function boundary identification achieved
by FIRE.

The results, as presented in Table 5, clearly demonstrate FIRE’s
superiority in boundary identification tasks. FIRE achieves the best
results across all metrics and datasets. On the most challenging
solc-0.5.17-optimized dataset, the F1-score improves by 15% com-
pared with neural-FEBL This demonstrates the improvement in

function entry identification accuracy brought by FIRE, and also
brings stable improvements to downstream function boundary iden-
tification tasks. The traditional decompilers—-Gigahorse, Elipmoc,
and Shrnkr, show consistently lower performance across all metrics.
For instance, Gigahorse, Elipmoc, and Shrnkr all struggle with low
precision and recall, particularly in the optimized settings, where
their F1-scores range from 0.1791 to 0.3002 in solc-0.4.25 and from
0.1309 t0 0.2771 in solc-0.5.17. The reason why neural-FEBI and FIRE
are much higher than them may be due to the boundary detection
framework used by neural-FEBL. Since the function entry prediction
output of FIRE is very consistent with the input of this framework,
it can pass on the advantages established in the upstream task to
the downstream task.

It can be noted that in the solc-0.4.25-unoptimized dataset, neural-
FEBI and FIRE have similar performance in the function entry iden-
tification task, but FIRE is slightly better in the function boundary
identification task. This is because neural-FEBI times out when
predicting some data and cannot produce function boundary re-
sults. The study of operating efficiency will be described in the next
research question.

Summary: FIRE significantly enhances the effectiveness of function
boundary identification, achieving the best results across all metrics
and datasets, with an impressive 15% improvement in F1-score over
neural-FEBI on the most challenging dataset.

FIRE: Smart Contract Bytecode Function Identification via Graph-Refined Hybrid Feature Encoding

10

Runtime (s)

10’ B

10 -
Gigahorse Elipmoc Shrnkr neural-FEBI FIRE
(a) 0.4.25-unoptimized.
10° g
-]
8
10’

Runtime (s)

=

10 S

Gigahorse Elipmoc Shrnkr neural-FEBI FIRE

(c) 0.5.17-unoptimized.

Internetware 2025, June 20-22, 2025, Trondheim, Norway

Runtime (s)

10
H

10
Gigahorse Elipmoc Shrnkr neural-FEBI FIRE
(b) 0.4.25-optimized.
10°
8
@ 1
- 10
g
E 1
&
H
= L

Gigahorse Elipmoc Shrnkr neural-FEBI FIRE

(d) 0.5.17-optimized.

Figure 3: Runtime of function identification on test set (excluding timeout).

6.5 RQ5: To what extent can FIRE improve the
efficiency of boundary identification?

Motivation and Setting. In this RQ, we evaluate the efficiency of
the FIRE model in function boundary identification tasks, focusing
on its runtime performance compared to other models. The goal is
to assess whether FIRE not only achieves high accuracy but also
does so in a computationally efficient manner, which is crucial for
real-world applications.

The results in Figure 3 illustrate the runtime performance distri-
bution of various models on the test sets, excluding any instances
where the process timed out. As can be seen from the figure, FIRE
consistently exhibits much lower runtimes than the other models,
particularly in the optimized settings.

Table 6 presents detailed statistics on the runtime for each model,
including the mean and median runtimes in seconds. FIRE outper-
forms all other models in terms of both mean and median run-
time, demonstrating its efficiency in boundary identification. For

solc-0.4.25, FIRE achieves a mean runtime of 1.25 seconds in the
unoptimized setting and 1.06 seconds in the optimized setting, with
median runtimes of 0.91 seconds and 0.67 seconds, respectively.
These times are significantly faster than the other models, which
range from 2.99 seconds (Gigahorse) to 11.04 seconds (neural-FEBI)
in the optimized setting. Similarly, for solc-0.5.17, FIRE’s mean run-
time is 1.94 seconds in the unoptimized setting and 1.87 seconds
in the optimized setting, with median runtimes of 0.84 seconds
and 0.63 seconds, respectively. These results are again much faster
compared to the other models, with the slowest model, neural-FEBI,
taking 20.46 seconds on average in the optimized setting.
According to our analysis, the reason why neural-FEBI has a
low operating efficiency is due to the model architecture it adopts.
The CRF module in neural-FEBI involves complex inference over
a large number of possible label sequences, which significantly
increases computational complexity. Moreover, its function bound-
ary detection framework involves multiple operations of Viterbi

Internetware 2025, June 20-22, 2025, Trondheim, Norway

Decoding [27], which leads to a large number of timeouts. As for
our approach, excluding the construction of CFG, the speed of FIRE
in function boundary detection is in the millisecond level.

The efficiency of FIRE is particularly notable when considering
the performance trade-off. Despite its significantly faster runtime,
FIRE maintains the highest performance in terms of precision, re-
call, and F1-score, as demonstrated in the previous sections. This
makes FIRE not only an accurate solution for function boundary
identification but also a highly efficient one, making it suitable for
large-scale and real-time applications in smart contract analysis.

Summary: FIRE significantly improves the efficiency of function
boundary identification, achieving much lower runtimes compared
to other models, while maintaining high accuracy.

7 THREATS TO VALIDITY

Internal Validity. First, if the control flow graph of the bytecode
fails to be constructed, FIRE cannot perform function identification.
FIRE uses EtherSolve [6], the state-of-the-art control flow graph
construction tool, to build the control flow graph. If EtherSolve fails,
FIRE will not be able to obtain the graph structure for reasoning.
However, such scenarios are very rare. In the data set, only about
0.04% of the contracts cannot be processed by EhterSolve. FIRE also
has the ability to degenerate and retain the availability of prediction
functionality when the graph structure cannot be obtained.

In addition, the quality of the CFG generated by EtherSolve also
affects the effect of function identification. Although EtherSolve is
the current state-of-the-art method, there may be some deviations
in the generation of its control flow graph. We observed that Ether-
Solve may mistakenly identify the contract termination block in
advance, and the rest is regarded as a data segment of the bytecode.
However, there may be a small amount of function body content
in these bytecodes regarded as data segments. Fortunately, this
inaccuracy has little impact in our dataset, affecting only 0.01% of
the functions. Moreover, our experimental results show that these
defects will not have much impact on the final results.

External Validity. Due to the inherent overfitting problem in
machine learning [40], FIER may face some generalization chal-
lenges. We used many common regularization methods such as L2
regularization to mitigate the impact of overfitting. And we aggre-
gated local statistical features, local sequential features, and global
structural features through graph-refined hybrid feature encoding.
This makes the feature modeling source of basic blocks richer and
makes the model performance less sensitive to the differences be-
tween different compilers. In RQ3, we simulated a real scenario
where a model trained with low-version data predicts high-version
data. The experiment shows that FIRE has sufficient generalization
and is not subject to the risk of overfitting caused by the increase
in low-version training data.

8 RELATED WORK

8.1 Smart Contract Decompilation

Smart contracts are typically written in high-level programming
languages such as Solidity [9], which are then compiled into byte-
code running on Ethereum Virtual Machine (EVM). EVM bytecode

10

Sun et al.

is lower-level than bytecodes of other languages such as JVM [35]
bytecode, making its reverse engineering process more difficult
than other languages.

Vandal [5] is a logic-driven decompiler that translates bytecode
into an intermediate representation in the form of logical relations.
Gigahorse [14] performs declarative program based on logical rules
to produce a 3-address intermediate representation that is easier to
analyze. Panoramix [28] is an official decompiler used by Etherscan
[10], which has a certain ability to regenerate source code. Elipmoc
[15] is built on top of Gigahorse and merged into its code repository
as Gigahorse 2.0. Elipmoc uses a transactional context sensitivity
algorithm to improve the precision of function reconstruction, es-
pecially private functions. Dedaub [7] is a web application that
includes a decompilation function developed on the basis of Elip-
moc. EthervmDec [11] is another online decompiler that can parse
Ethereum deployment contracts. Heimdall-rs [4] is a smart con-
tract bytecode analysis tool written in Rust [26] language, which
has extremely fast decompilation speed. Shrnkr [23] is an improve-
ment on Elipmoc, using a shrinking context sensitivity analysis
algorithm, achieving the state-of-the-art decompiler.

Among these decompilers, Gigahorse, Elipmoc, and Shrnkr, which
are used as our experimental baselines, are the most commonly
used decompilers. Other decompilers are either not open source,
cannot infer private functions, or have poor performance.

8.2 Function Identification

Function identification has always been a hot topic in decompilation.
In addition to the several smart contract decompilers mentioned in
the previous section, there are also many static analysis tools in C
language that use rule-based methods to infer function boundaries
such as Dyninst [16] and IDA Pro [12].

Function identification can be decomposed into two subtasks:
function entry identification and boundary identification. The first
task can be easily modeled as a classification task. And due to the
existence of a large amount of binary data, training a classifier
through machine learning has become an important way to iden-
tify function entry. Rosenblum et al. [31] first introduced machine
learning methods for function identification and predicted function
entry by combining logistic regression with conditional random
fields. ByteWeight [3] is also a supervised learning method that
uses weighted prefix trees to speed up model training. Shin et al.
[34] used recurrent neural networks to improve the accuracy of
function identification.

The low-level EVM bytecode is very different from C binaries.
It lacks a lot of high-level meta information, making its function
identification difficult. Neural-FEBI [17] is the only one that uses
machine learning methods to perform function identification on
smart contract bytecode. It regards bytecode as a natural language
sequence, fuses features through dual-granularity BiLSTM repre-
sentation, and performs part-of-speech tagging through conditional
random fields, achieving a certain prediction effect. The method
proposed in this paper starts from the perspective of control flow
graph and combines local information with global information to
achieve better prediction results.

FIRE: Smart Contract Bytecode Function Identification via Graph-Refined Hybrid Feature Encoding Internetware 2025, June 20-22, 2025, Trondheim, Norway

9 CONCLUSION

In this paper, we introduced FIRE, an efficient and accurate method
for identifying function boundaries in Ethereum smart contract
bytecode. By integrating CFG-refined hybrid feature encoding, FIRE
not only enhances the effectiveness of function identification but
also improves runtime efficiency, making it highly scalable. Our re-
sults show that FIRE outperforms existing methods, particularly in
terms of real-world cross-version generalization. Future work will
focus on further refining the approach for more complex scenarios
or other smart contract languages.

ACKNOWLEDGMENTS

This work is supported by the Zhejiang Province “JianBingLingYan+X”"

Research and Development Plan (2025C02020).

DATA AVAILABILITY

The replication package, which includes the source code, datasets

and experiment results, can be found at https://github.com/augustus618/

FIRE.

REFERENCES

[1] Frances E Allen. 1970. Control flow analysis. ACM Sigplan Notices 5, 7 (1970),

1-19.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and

Irene Finocchi. 2018. A survey of symbolic execution techniques. ACM Computing

Surveys (CSUR) 51, 3 (2018), 1-39.

[3] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. {BYTEWEIGHT}: Learning to recognize functions in binary code. In 23rd
USENIX Security Symposium (USENIX Security 14). 845-860.

] Jonathan Becker. 2024. Heimdall-rs. https://github.com/Jon-Becker/heimdall-rs
[5] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A scalable security
analysis framework for smart contracts. arXiv preprint arXiv:1809.03981 (2018).

[6] Filippo Contro, Marco Crosara, Mariano Ceccato, and Mila Dalla Preda. 2021.

Ethersolve: Computing an accurate control-flow graph from ethereum bytecode.
In 2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC).
IEEE, 127-137.

[7] Dedaub. 2024. Dedaub Decompiler. https://app.dedaub.com/decompile.

[8] Solidity Documentation. 2024. ABI Specification: Function Selector. https://docs.

soliditylang.org/en/v0.8.26/abi- spec.html#function-selector

[9] Solidity Documentation. 2024. Solidity Documentation. https://docs.soliditylang.

org

[10] Etherscan. 2024. Ethereum (ETH) blockchain explorer. https://etherscan.io/

[11] EthervmDec. 2024. Online Solidity Decompiler. https://ethervm.io/decompile

[12] Justin Ferguson and Dan Kaminsky. 2008. Reverse engineering code with IDA Pro.
Syngress.

[13] Matt W Gardner and SR Dorling. 1998. Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmospheric
environment 32, 14-15 (1998), 2627-2636.

[14] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Giga-
horse: thorough, declarative decompilation of smart contracts. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 1176-1186.

[15] Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis. 2022.
Elipmoc: Advanced decompilation of ethereum smart contracts. Proceedings of
the ACM on Programming Languages 6, OOPSLA1 (2022), 1-27.

[16] Laune C Harris and Barton P Miller. 2005. Practical analysis of stripped binary
code. ACM SIGARCH Computer Architecture News 33, 5 (2005), 63-68.

[17] Jiahao He, Shuangyin Li, Xinming Wang, Shing-Chi Cheung, Gansen Zhao, and
Jinji Yang. 2023. Neural-FEBI: Accurate function identification in Ethereum
Virtual Machine bytecode. Journal of Systems and Software 199 (2023), 111627.

[18] S Hochreiter. 1997. Long Short-term Memory. Neural Computation MIT-Press
(1997).

[19] Wen Hu, Zhipeng Fan, and Ye Gao. 2019. Research on smart contract optimization
method on blockchain. IT Professional 21, 5 (2019), 33-38.

[20] Kun Jing and Jungang Xu. 2019. A survey on neural network language models.
arXiv preprint arXiv:1906.03591 (2019).

[21] Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No
Lee. 2022. Ethereum smart contract analysis tools: A systematic review. Ieee
Access 10 (2022), 57037-57062.

2

[22] John Lafferty, Andrew McCallum, Fernando Pereira, et al. 2001. Conditional

random fields: Probabilistic models for segmenting and labeling sequence data.
In Icml, Vol. 1. Williamstown, MA, 3.

Sifis Lagouvardos, Yannis Bollanos, Neville Grech, and Yannis Smaragdakis. 2024.
The Incredible Shrinking Context... in a decompiler near you. arXiv preprint
arXiv:2409.11157 (2024).

Wenkai Li, Xiaoqi Li, Zongwei Li, and Yuging Zhang. 2024. Cobra: Interaction-
aware bytecode-level vulnerability detector for smart contracts. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software Engineering.
1358-1369.

I Loshchilov. 2017. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017).

Nicholas D Matsakis and Felix S Klock. 2014. The rust language. ACM SIGAda
Ada Letters 34, 3 (2014), 103-104.

J Omura. 1969. On the Viterbi decoding algorithm. IEEE transactions on informa-
tion theory 15, 1 (1969), 177-179.

palkeo. 2024. Panoramix. https://github.com/palkeo/panoramix.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Peng Qian, Zhenguang Liu, Qinming He, Butian Huang, Duanzheng Tian, and
Xun Wang. 2022. Smart contract vulnerability detection technique: A survey.
arXiv preprint arXiv:2209.05872 (2022).

Nathan E Rosenblum, Xiaojin Zhu, Barton P Miller, and Karen Hunt. 2008. Learn-
ing to Analyze Binary Computer Code.. In AAAL 798-804.

Sara Rouhani and Ralph Deters. 2019. Security, performance, and applications of
smart contracts: A systematic survey. IEEE Access 7 (2019), 50759-50779.
Helmut Schmid. 1994. Part-of-speech tagging with neural networks. arXiv
preprint cmp-1g/9410018 (1994).

Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
functions in binaries with neural networks. In 24th USENIX security symposium
(USENIX Security 15). 611-626.

Robert F Stark, Joachim Schmid, and Egon Bérger. 2012. Java and the Java virtual
machine: definition, verification, validation. Springer Science & Business Media.
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10-48550.

Zeli Wang, Hai Jin, Weiqi Dai, Kim-Kwang Raymond Choo, and Deqing Zou.
2021. Ethereum smart contract security research: survey and future research
opportunities. Frontiers of Computer Science 15 (2021), 1-18.

Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4-24.

Xue Ying. 2019. An overview of overfitting and its solutions. In Journal of physics:
Conference series, Vol. 1168. IOP Publishing, 022022.

Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo, and Ting Chen. 2023.
Deepinfer: Deep type inference from smart contract bytecode. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 745-757.

Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang.
2017. An overview of blockchain technology: Architecture, consensus, and future
trends. In 2017 IEEE international congress on big data (BigData congress). leee,
557-564.

Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
Weng, and Muhammad Imran. 2020. An overview on smart contracts: Challenges,
advances and platforms. Future Generation Computer Systems 105 (2020), 475-491.
Di Zhu, Feng Yue, Jianmin Pang, Xin Zhou, Wenjie Han, and Fudong Liu. 2022.
Bytecode similarity detection of smart contract across optimization options and
compiler versions based on triplet network. Electronics 11, 4 (2022), 597.

https://github.com/augustus618/FIRE
https://github.com/augustus618/FIRE
https://github.com/Jon-Becker/heimdall-rs
https://app.dedaub.com/decompile
https://docs.soliditylang.org/en/v0.8.26/abi-spec.html#function-selector
https://docs.soliditylang.org/en/v0.8.26/abi-spec.html#function-selector
https://docs.soliditylang.org
https://docs.soliditylang.org
https://etherscan.io/
https://ethervm.io/decompile
https://github.com/palkeo/panoramix

	Abstract
	1 Introduction
	2 Motivation
	3 Task Definition
	4 Approach
	4.1 Control Flow Graph Construction
	4.2 Hybrid Feature Encoding
	4.3 CFG-based Refinement

	5 Experiment Setup
	5.1 Dataset
	5.2 Metrics
	5.3 Baseline
	5.4 Implementation Setup

	6 Experiment Results
	6.1 RQ1: To what extent can FIRE perform in the function entry identification task?
	6.2 RQ2: How does the ablation of several key components in FIRE perform?
	6.3 RQ3: To what extent can FIRE perform in real-world cross-version scenarios?
	6.4 RQ4: To what extent can FIRE improve the effectiveness of boundary identification?
	6.5 RQ5: To what extent can FIRE improve the efficiency of boundary identification?

	7 Threats to Validity
	8 Related Work
	8.1 Smart Contract Decompilation
	8.2 Function Identification

	9 Conclusion
	Acknowledgments
	References

