
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Extracting and Analyzing Time-Series HCI Data
from Screen-Captured Task Videos

Lingfeng Bao · Jing Li · Zhenchang
Xing · Xinyu Wang · Bo Zhou

the date of receipt and acceptance should be inserted later

Abstract In recent years the amount of research on human aspects of software
engineering has increased. Many studies use screencast software (e.g., Snagit)
to record developers’ behavior as they work on software development tasks.
The recorded task videos capture direct information about which software tools
the developers interact with and which content they access or generate during
the task. Such Human-Computer Interaction (HCI) data can help researchers
and practitioners understand and improve software engineering practices from
human perspective. However, extracting time-series HCI data from screen-
captured task videos requires manual transcribing and coding of videos, which
is tedious and error-prone. In this paper we present a computer-vision based
video scraping technique to automatically extract time-series HCI data from
screen-captured videos. We have implemented our video scraping technique in
a tool called scvRipper. We report the usefulness, effectiveness and runtime
performance of the scvRipper tool using a case study of the 29 hours task
videos of 20 developers in the two development tasks.

Keywords screen-captured video · video scraping · HCI data · online search
behavior

L. Bao · X. Wang (�) · B. Zhou
College of Computer Science, Zhejiang University, Hangzhou, China
E-mail: wangxinyu@zju.edu.cn

L. Bao
E-mail: lingfengbao@zju.edu.cn

B. Zhou
E-mail: bzhou@zju.edu.cn

J. Li · Z. Xing
School of Computer Engineering, Nanyang Technological University, Singapore

J. Li
E-mail: jli030@ntu.edu.sg

Z. Xing
E-mail: zcxing@ntu.edu.sg

2 Empir Software Eng

1 Introduction

It has long been recognized that the humans involved in software engineer-
ing, including the developers as well as other stakeholders, are a key factor in
determining project outcomes and success. A number of workshops and con-
ferences (e.g. CHASE, VL/HCC) have focused on human and social aspects in
software engineering. An important area of these studies is to investigate the
capabilities of the developers (von Mayrhauser and Vans 1997; Lawrance et al.
2013; Corritore and Wiedenbeck 2001), their information needs in developing
and maintaining software (Wang et al. 2011; Ko et al. 2006; Li et al. 2013),
how developers collaborate (Koru et al. 2005; Dewan et al. 2009), and what
we can do to improve their performance (Ko and Myers 2005; Hundhausen
et al. 2006; Robillard et al. 2004; Duala-Ekoko and Robillard 2012).

Different from software engineering research with technology focus, re-
search that focuses on human aspects in software engineering adopts behav-
ioral research methods widely used in humanities and social sciences (Leary
1991). The commonly used data collection methods in such human studies in-
clude questionnaire, interview, and observation. Among these data collection
methods, observation can provide direct information about behavior of indi-
viduals and groups in a natural working context. It also provides opportunities
for identifying unanticipated outcomes.

Two kinds of techniques have been commonly used to automatically record
observational data in the studies of developer behavior: software instrumen-
tation and screencast techniques. We can instrument software tools that the
developers use to log the developers’ interaction with the tools and the ap-
plication content. For example, Eclipse IDE can record which refactorings the
developers apply to which part of the code (Vakilian et al. 2012). We re-
fer to such data as Human-Computer Interaction (HCI) data. Instrumenting
many of today’s software systems is considerably complex. It often requires
sophisticated reflection APIs (e.g., Accessability API or UI Automation API)
provided by applications, operating systems and GUI toolkits (Hurst et al.
2010; Chang et al. 2011). Furthermore, developers use various tools (e.g., IDE,
web browsers) in software development tasks. Instrumenting all of these tools
requires significant efforts.

Screencast techniques and tools offer a generic and easy-to-deploy alterna-
tive to instrumentation. Screencast software (e.g., Snagit 1) can easily capture
the developer’s interaction with several software tools. It produces a screen-
captured video, i.e., a sequence of time-ordered screenshots that the screencast
tool takes at a given time interval (often 1/30 - 1/5 second). Each screenshot
records the software tools the developer uses and the application content he
accesses or generates at a specific time.

We surveyed 26 papers that were published in top-tier software engineer-
ing conferences from 1992 to 2014. These papers have studied various human
aspects in software engineering. Screencast techniques were commonly used

1 http://www.techsmith.com/snagit.html

Empir Software Eng 3

to record the developers’ behavior in these studies. However, many studies
used video data mainly as qualitative evidence of study findings. Some stud-
ies (Lawrance et al. 2013; Li et al. 2013; Ko and Myers 2005) performed quan-
titative analysis of developers’ behavior by manually transcribing and coding
screen-captured videos into HCI data (e.g., software used, content accessed or
generated). These studies provided deeper insight into the developers’ behavior
in various software development tasks. Such quantitative analysis was expen-
sive and time consuming. It was reported that the ratio of video recording
time to video analysis time was about 1:4-7.

As the amount of research on human aspects of software engineering has
increased, there has been a greater need to come up with a solution to auto-
matically extract and analyze the HCI data from screen-captured videos, in
order to facilitate quantitative analysis of the developers’ behavior in software
development tasks. In this paper, we present a computer-vision-based video
scraping technique to meet this need. Given a screen-captured video, our video
scraping technique can recognize window-based applications in the screenshots
of the video, and extract application content from the recognized application
windows. It essentially transforms a screen-captured video into a time-series
HCI data. A time-series HCI data consists of a sequence of time-ordered items.
Each item captures the software tool(s) and application content shown on the
screen in the screenshot at a specific time in the video.

We have implemented our video scraping technique in a video scraping
tool called scvRipper. We conducted a case study to evaluate the usefulness,
effectiveness, and runtime performance of our video scraping technique and
the scvRipper tool. Our study demonstrated the effectiveness of video scrap-
ing technique in extracting time-series HCI data from screen-captured videos.
Based on the extracted time-series HCI data, we conducted a quantitative
analysis of the 20 developers’ online search behavior in the two development
tasks. This quantitative study demonstrated the usefulness of the time-series
HCI data extracted from the screen-captured task videos for studying devel-
opers’ behavior in software development tasks. Our study also identified the
improvement space of the tool’s runtime performance.

The remainder of the paper is structured as follows. Section 2 summarizes
our survey of the use of scree-captured videos in the 26 studies on human
aspects of software engineering. Section 3 discusses a formative study of the
challenges in the manual transcription of screen-captured videos. Section 4
discusses technical details of our video scrapping technique. Section 5 reports
our evaluation of the tool scvRipper. Section 6 reviews related work. Section 7
concludes the paper and discusses the future work.

2 A Survey of the Use of Screen-Capture Videos in SE Studies

We searched Google Scholar using keywords such as “software engineering”,
“exploratory study”, “empirical study”, ‘screencast” and/or “screen capture”.
From the search results, we surveyed 26 papers that studied human aspects

4 Empir Software Eng

of software engineering. Among these 26 papers, 14 papers studied and mod-
eled the developers’ behavior in various software development tasks, such as
debugging (von Mayrhauser and Vans 1997; Lawrance et al. 2013; Sillito et al.
2005), feature location (Wang et al. 2011), program comprehension (Corritore
and Wiedenbeck 2001; Ko et al. 2006; Li et al. 2013; Robillard et al. 2004;
Corritore and Wiedenbeck 2000; Lawrance et al. 2008; Piorkowski et al. 2011;
Fritz et al. 2014), feature enhancement (Sillito et al. 2005), and using un-
familiar APIs (Duala-Ekoko and Robillard 2012; Dekel and Herbsleb 2009);
3 papers elicited information needs and requirements for improving software
development tools (Ko and Myers 2005; Ko et al. 2005a,b); 5 papers studied
software engineering practices such as novice programming (Hundhausen et al.
2006), pair programming (Koru et al. 2005), distributed programming (Dewan
et al. 2009), testing of plugin systems (Greiler et al. 2012), and game develop-
ment (Murphy-Hill et al. 2014); and 4 papers investigated visualization tech-
niques of software data such as code structure (Brade et al. 1992; Ammar
and Abi-Antoun 2012), program execution (Lawrence et al. 2005), and social
relationship in software development (Sarma et al. 2009).

Our survey showed that screencast (also known as video screen capture)
tools have been widely used to collect observational data in studying human
aspects of software engineering, especially for modeling the developers’ behav-
ior in software development tasks and eliciting design requirements for inno-
vative software development tools. Some studies (von Mayrhauser and Vans
1997; Lawrance et al. 2013; Koru et al. 2005; Piorkowski et al. 2011; Brade
et al. 1992; Ammar and Abi-Antoun 2012; Sarma et al. 2009) used think-aloud
technique (Van Someren et al. 1994) to collect the data about the developers’
behavior in the tasks. Think-aloud technique is obtrusive. It may affect the
developers’ normal behavior. A few studies (von Mayrhauser and Vans 1997;
Koru et al. 2005; Lawrence et al. 2005) used human observers to observe and
take notes of the developers’ behavior. This human-observer approach does not
scale well and may suffer from experimenter expectancy effect (Leary 1991).
Studying software engineering practices (e.g., peer programming (Koru et al.
2005), game development (Murphy-Hill et al. 2014), and plugin testing (Greiler
et al. 2012)) usually used survey and interview methods that can collect only
self-reported qualitative data.

Although screencast techniques provide scalable and unobtrusive tech-
niques to collect the developers’ behavior data, the collected video data have
been underused in many studies. A key reason for this underuse is the signifi-
cant time and efforts required for manually transcribing or coding video data
into HCI data (e.g., software used, content accessed or generated) for the study
purpose. 15 studies reported manual analysis of screen-captured videos in or-
der to identify types of information the developers explored (Lawrance et al.
2013; Corritore and Wiedenbeck 2000; Lawrance et al. 2008), information for-
aging actions (Wang et al. 2011; Ko and Myers 2005; Hundhausen et al. 2006;
Sillito et al. 2005; Dekel and Herbsleb 2009; Ko et al. 2005a,b), and patterns of
developers’ information behavior (Ko et al. 2006; Li et al. 2013; Robillard et al.
2004; Duala-Ekoko and Robillard 2012; Piorkowski et al. 2011). 4 papers (Ko

Empir Software Eng 5

et al. 2006; Ko and Myers 2005; Hundhausen et al. 2006; Ko et al. 2005b) of
these studies reported the efforts required for manual coding of the collected
screen-captured video data. The reported ratio of video recording time and
analysis time was between 1:4-7, depending on the details and granularity of
the HCI data to be collected.

The most costly studies were to study fine-grained behavioral patterns in
software development tasks (e.g., (Wang et al. 2011; Ko and Myers 2005))
because they required iterative open coding of screen-captured videos. For ex-
ample, Ko and Myers (Ko and Myers 2005) reported “analysis of video data by
repeated rewinding and fast-forwarding”. However, compared with qualitative
data collection and analysis methods, such fine-grained studies of the devel-
opers’ behavior can provide deeper insights into the outstanding difficulties
in software development, and thus inspire innovative tool support to address
these difficulties (Ko and Myers 2004; Wang et al. 2013).

Summary: Previous human studies demonstrated the usefulness of screen-
captured videos in studying human aspects of software engineering. However,
to fully exploit the potentials of screen-captured video data in software engi-
neering studies, there is a great need for automated tools that can extract and
analyze time-series HCI data from screen-captured videos.

3 Formative Study

We conducted a formative study to better understand the challenges in man-
ually transcribing screen-captured videos into time-series HCI data.

3.1 Study Design

We recruited 3 graduate students from the School of Computer Engineering,
Nanyang Technology University. We asked them to manually transcribe a 20-
minutes screen-captured task video. The 20-minutes task video was excerpted
from the 29-hours task videos that we collected in our previous field study of
the developers’ online search behavior in software development tasks Li et al.
(2013). The developers in that study used the Eclipse IDE to complete the
two programming tasks. They used Chrome, Internet Explorer, and Firefox to
search the Internet and browse web pages. In this formative study, we asked
the participants to identify the applications that the developers used in the
20-minutes task video, the time and duration of application usage, and the
application content that the developer interacted with (including source files
viewed, web pages visited, and search queries issued).

We asked the participants to log their manual transcription results in a
table like Table 1. A record in the table include the start Time of using an
Application and the corresponding Application Content. For web browser, the
application content has the URL of the web page currently visited and a query
if the web page is a search engine result. For Eclipse, the application content

6 Empir Software Eng

is the name of the source file currently viewed. The duration of application
usage can be computed by subtracting start time of two consecutive records.
The participants were also asked to identify application usage with unique
content and assign it an unique Index. For example, the first web page visited
is assigned Url1, the second web page is assigned Url2, the first source file
viewed is assigned Src1, and so on. Note that the two web pages visited at
Time 00:20 and 01:30 are the same. Thus, they are assigned the same Index
Url2.

Table 1: An Example of Manual Transcription Logs

Index Time Application Application Content

Url1 00:00 Chrome
URL: www.google.com
Query:IProgressMonitor editor

Url2 00:20 Chrome URL: help.eclipse.org/...
Src1 01:05 Eclipse SrcFile: MyEditor.java
Src2 01:10 Eclipse SrcFile: SampleAction.java
Url2 01:30 Chrome URL: help.eclipse.org/...

3.2 Results

Table 2 shows how much time each participant took to transcribe the 20-
minutes task video, and how many records they logged. The results show that
the ratio of video recording time to video analysis time is about 1:3-3.75. We
can also see that the number of records that different participants logged are
very different. The participant S1 logged about 3 times more records than
the participant S3 did. We looked into the transcription results of the three
participants. We found that the participant S1 considered screenshots with
different content resulting from window scrolling in the same web page or
source file as different application content, while the participant S1 and S2
did not consider so. This results in much more records in S1 ’s transcription
results than that of S2 and S3. Furthermore, the participant S3 omitted some
application switchings whose duration was very short (i.e., switching from one
application to another and then quickly switching back). This results in much
less records in S3 ’s transcription results than that of S1 and S2.

Table 2: The Statistics of Manual Transcription by the Three Participants

Participant TotalTime (minute) #NumOfRecords
S1 71 136
S2 56 73
S3 75 47

Empir Software Eng 7

In the 20-minutes screen-captured video, the developer used two web search
engines (Baidu and Google) and visited nine web pages. We further compared
the search engines and web pages that the three participants logged. Table 3
shows the results. Note that different web pages from the same web site are
annotated with an index number, such as topic.csdn.net (1), topic.csdn.net
(2). We can see that the participant S1 logged all the two search engines and
the nine web pages, but both S2 and S3 missed three web pages. The missed
web pages are from the same web site as some web pages previously visited.
The participants S2 and S3 failed to recognize them.

Table 3: The Transcription Results of Search Engines or Web Pages Visited

Index Search Engine or Web Page Visited S1 S2 S3
1 www.baidu.com 3 3 3
2 www.google.com.hk 3 3 3
3 topic.csdn.net (1) 3 3 3
4 topic.csdn.net (2) 3 7 3
5 hongyegu.iteye.com 3 3 3
6 www.itpub.net 3 3 7
7 www.blogjava.net 3 3 3
8 docs.oracle.com 3 3 3
9 help.eclipse.org (1) 3 3 3
10 help.eclipse.org (2) 3 7 7
11 help.eclipse.org (3) 3 7 7

Finally, we abstracted each record in the transcription results of the three
participants into a universal identifier (UID) based on the query used, the
web page visited, and the source file viewed in the record. As such, we ob-
tained a sequence of UIDs for each participant. Note that the participant S1
logged the same web page or source file with different content resulting from
window scrolling as a sequence of records. As such, the sequence of UIDs of
S1 contains consecutive repetition of the same UID. We replaced the consec-
utive repetition of an UID with that UID. For example, a sequence of UIDs
{0, 0, 1, 1, 1, 2, 2, 1, 1} will be replaced as the sequence {0, 1, 2, 1}. We computed
the Longest Common Subsequence (LCS) of the sequence of UIDs of the two
participants (Si and Sj). Then we measured the similarity of the sequence
of UIDs of the two participants as 2∗LCS

|Si|+|Sj | , where |Si| is the length of the

sequence of UIDs of the participant Si. As shown in Table 4, the transcription
results of different participants overlap to certain extent, but the similarity of
their transcription results is not high.

Table 4: The Similarity between the Sequence of UIDs of the Two Participants

(S1, S2) (S1, S3) (S2, S3)
LCS 45 32 30
Similarity 0.62 0.46 0.67

8 Empir Software Eng

GUIComponent

label : String

tobescraped : Bool

Row

index: Int

Window GUIItem

index: Int

ViusalCue

name: String

icons: Set<Image>

isunique: Bool

0..*{order}

Fig. 1: The Metamodel of Application Windows

Summary: Our formative study shows that manual transcription of screen-
captured videos requires significant time and effort. To obtain high-quality
transcription results, a person must pay attention to micro-level of details.
Due to the differences in observing and interpreting the videos, the transcrip-
tion results by different participants can often be inconsistent.

4 The Video Scraping Technique

We now present our computer-vision based video scraping technique for au-
tomatically extracting time-series HCI data from screen-captured videos. We
refer to our technique as scvRipper. In this section, we first describe the meta-
model of application window scvRipper assumes. We then give overview of our
scvRipper technique. Finally, we detail the key steps of scvRipper.

4.1 Definition of Application Window

A person recognizes an application window based on his knowledge of the win-
dow layout and the distinct visual cues (e.g., icons) that appear in the window.
Our video scraping technique (scvRipper) requires as input the definition of
application windows to be recognized in the screenshots of a screen-captured
video. The definition of an application window “informs” the scvRipper tool
with the window layout, the sample images of distinct visual cues of the win-
dow’s GUI components, and the GUI components to be scraped once they are
recognized.

Figure. 1 shows the metamodel of application windows. scvRipper assumes
that an application window is composed of a hierarchy of GUIComponents.
Rows and windows define the layout of the application window. A row or win-
dow can contain nested rows, nested windows, and/or leaf GUIItems. Rows
and GUIItems have relative positions in the application window (denoted as

Empir Software Eng 9

Chrome

Header WebPage

NavigationPart

index = 1 index = 2

tobescraped = true

index = 1

Go Back

icons =

isunique = true

Go Forward

icons =

isunique = true

Refresh

icons =

isunique = true

AddressBar

index = 2

tobescraped = true

Store

icons =

isunique = true

Tool

index = 3

Tool

icons =

isunique = true

SearchBox

index = 1

tobescraped = true

Search

icons =

isunique = true

(a) Definition of Google Chrome Window

Eclipse

Menu ToolBar MainContent StatusBar

index = 2 index = 3 index = 4 index = 5

JavaFile

icons =

isunique = false

Console

icons =

isunique = false

TitleBar

index = 1

tobescraped = truet b d tt b d t

CodeEditor

tobescraped = true

ConsoleView

index = 2i d 2i d 2

EditAreaFileTab

index = 1

EclipseIcon

icons =

isunique = true

ConsoleTab

index = 1 index = 2i d 2i d 2

DisplayArea

Tips

icons =

isunique = false

(b) Definition of Eclipse IDE Window

Fig. 2: Two Instances of Application-Window Metamodel

index), while windows do not have. A GUIItem contains an order set of Visu-
alCues. A VisualCue contains a set of sample images of the visual cue. If the
application window can have only one instance of a VisualCue, the isunique
of the VisualCue is true. The GUIComponents whose tobescraped = true will
be scraped from the application window in the screen-captured video.

Figure. 2 shows the definition of the Eclipse IDE and the Google Chrome
window. The definition of the Eclipse window assumes that the Eclipse window
consists of a GUIItem (TitleBar) and four rows (Menu, ToolBar, MainContent,
and StatusBar) from top down. We omit the definition details of Menu, Tool-
Bar and StatusBar due to space limitation. The TitleBar contains a unique
VisualCue (Eclipse application icon). MainContent row may contain CodeEdi-
tor windows and ConsoleView windows. CodeEditor window contains FileTab

10 Empir Software Eng

Fig. 3: The Configuration Tool for Window Definition

and EditArea GUIItems. These two GUIItems contain non-unique visual cues
(such as Java file icons, compile error icons). This definition instructs scvRipper
to scrape CodeEditor and ConsoleView windows from the Eclipse window.

The definition of the Chrome window assumes that the Chrome window
consists of two rows from top down: Header and WebPage. The Header con-
tains three GUIItems from left to right: NavigationPart, AddressBar, and Tool.
NavigationPart contains three VisualCues from left to right: GoBack, GoFor-
ward, and Refresh buttons. These buttons are unique in the Chrome window.
The WegPage may contain a SearchBox GUIItem as commonly seen in search
engine wegpages. A SearchBox has a unique Search button VisualCue. This
definition instructs scvRipper to scrape AddressBar, SearchBox and WebPage
from the Chrome window.

We have developed a configuration tool to aid the definition of applica-
tion windows. The tool can define the hierarchy of GUIComponents, configure
the attributes of GUIComponents, and attach sample images of visual cues to
GUIComponents. Figure. 3 shows the screenshot of using configuration tool
to define the Eclipse IDE window and the Google Chrome window shown in
Figure. 2. Collecting sample images of visual cues may require certain efforts.
However, this task usually needs to be done only once. The definition of an
application window can be applied to screen-captured videos taken in differ-
ent screen resolutions and window color schema, as neither window definition
nor computer-vision techniques that scvRipper uses are sensitive to screen
resolutions and window color schema.

Empir Software Eng 11

Detecting Application Windows

Time-Series Interaction Data

Detecting Horizontal and

Vertical Lines

Detecting Individual

Visual Cues

Grouping Detected

Visual Cues

Scraping Content Data from

Application Windows

Screen-captured

Video

Detecting Distinct

Screenshots

Distinct-Content

Screenshots

Definition of

Application Window

Detecting Window

Boundaries

DeDetecting Horizontal and

Vertical Lines

Detecting Horizontal and

Vertical Lines

Detecting Individual

Visual Cues

Detecting Individual

Visual Cues

Grouping Detected

Visual Cues

Grouping Detected

Visual Cues

Detecting Window

Boundaries

Detecting Window

Boundaries

Software Usage

Application Content

Fig. 4: The Process of Our Video Scraping Technique to Extract Time-Series
HCI Data

4.2 Technique Overview

Figure. 4 presents the process of our video scraping technique to extract time-
series HCI data. We have implemented our technique in a tool (called scvRip-
per) using OpenCV (an open-source computer vision library). Our scvRipper
tool takes as input a screen-captured video, i.e., a time-series screenshots taken
by screencast tools such as Snagit. It produces as output a time-series HCI
data (i.e., software used and application content accessed/generated) extracted
from the video. Our scvRipper tool essentially uses computer-vision techniques
to transcribe a time-series screenshots that only human can interpret into a
time-series HCI data that a computer can automatically analyze or mine for
behavioral patterns.

First, scvRipper uses image differencing technique (Wu and Tsai 2000) to
detect screenshots with distinct content in the screen-captured video. This
step reduces the number of screenshots to be further analyzed using compu-
tationally expensive computer-vision techniques. Next, the core algorithm of
scvRipper processes one distinct-content screenshots at a time to recognize
application windows in the screenshot based on the definition of application
windows provided by the user. The recognized application windows identify
software used at a specific time in the video. Then, scvRipper scrapes the
GUIComponent images from the recognized application windows in the screen-
shot as specified in the definition of application windows. It uses Optical-Char-
Recognition (OCR) technique to convert the scraped GUIComponent images
into textual application content processed at a specific time in the video.

The upper part of Figure. 5 shows an illustrative example of a screen-
captured video. In this example, four distinct-content screenshots are identified
at five time periods. The lower part of Figure. 5 shows the time-series HCI
data extracted from these four distinct-content screenshots according to the
definition of Eclipse IDE and Google Chrome window in Figure. 2. Bulky
contents (e.g., web page, code fragment) are omitted due to space limitation.
This time-series HCI data identifies the software tools that the developer used
at different time periods. It also identifies the application content that the

12 Empir Software Eng

Timeline

Screen-Captured Video

scvRipper

Time-Series HCI Data

Timeline

Software: Chrome

URL:

www.google.com.sg/

www.vogella.com/tutorials/

Query:

plugin openEditor

Software: Chrome

URL:

www.google.com.sg

Query:

plugin openEditor

Software: Eclipse

Code:

Activator.java

Console:

IllegalArgumentExcept ion

Software: Eclipse

Code:

SimpleAction..java

Console:

IllegalArgumentExcept ion

Software: Chrome

URL:

www.google.com.sg

Query:

plugin openEditor

t1 t2 t3 t4 t5

t1 t2 t3 t4 t5

Fig. 5: An Illustrative Example of a Screen-Captured Video and Video Scrap-
ing Results

developer accessed and/or generated (such as search queries, web pages, code
fragments, and runtime exceptions) at different time periods.

In the following subsections, we describe technical details of our scvRipper
technique.

4.3 Detecting Distinct-Content Screenshots

The screencast tools can record a large number of screenshots (e.g., 30 screen-
shots per second). A sequence of consecutive screenshots can often be the
same, for example a person does not interact with the computer for a while.
Or they may differ little, for example due to mouse movement, button click,
or small scrolling. Thus, there is no need to analyze each screenshot in the
screen-captured video.

To that end, scvRipper uses an image differencing algorithm (Wu and
Tsai 2000) to filter out subsequent screenshots with no or minor differences
in the screen-captured video. This produces a sequence of distinct consecu-
tive screenshots, s1, s2, ..., sn where any two consecutive screenshots si and
si+1 are different, i.e., over a user-specified threshold (tdiff). The two non-
consecutive screenshots can still be the same in this sequence of distinct consec-
utive screenshots. scvRipper uses image differencing technique again to iden-
tify distinct-content screenshots. scvRipper stores the traceability between a
distinct-content screenshot and all the screenshots it represents during this
image differencing process.

Take the screen-captured video in Figure. 5 as an example. The developer
views two web pages side-by-side in the two Chrome windows. He then maxi-
mizes one of the Chrome windows. After a while, he switches from the Chrome
window to an Eclipse IDE window. He opens two different methods in Eclipse
and read the code. Next he switches from the Eclipse window back to the
Chrome window. Assume this sequence of human-computer interaction takes

Empir Software Eng 13

(a) A Screenshot of Eclipse IDE Window

(b) Part of Screenshot

(c) Canny Edge Map

(d) Line Map

(e) Clustered Line Map

Fig. 6: An Example of Detecting Horizontal and Vertical Lines

120 seconds. A screencast tool can record 600 screenshots at the sample rate
of 5 screenshots per second.

Given this stream of 600 screenshots, scvRipper can identify a sequence of
five distinct consecutive screenshots as shown in Figure. 5. It can then identify
that the screenshots at time periods t2 − t3 and t5 − t6 are the same. The
screenshots at time periods t1 − t2 and t2 − t3 are similar but still different
enough to be considered as two distinct-content screenshots. As such, scvRip-
per only needs to further analyze four distinct-content screenshots out of 600
raw screenshots.

4.4 Detecting Application Windows

The core algorithm of scvRipper takes as input a distinct-content screenshot
and the definition of application windows to be recognized in the screenshot. It
recognizes application windows in the screenshot in four steps: 1) detect hor-
izontal and vertical lines, 2) detect individual visual cues, 3) group detected
visual cues, and 4) detect window boundaries. scvRipper can accurately rec-
ognize stacked or side-by-side windows.

4.4.1 Detecting Horizontal and Vertical Lines

Figure. 6 illustrates the process of detecting horizontal and vertical lines. Fig-
ure. 6(a) is the screenshot of the Eclipse window at time period t3 − t4 in
Figure. 5. scvRipper assumes that an application window (or subwiondow) has
explicit window boundaries and occupies a rectangular region in the screen-
shot. Thus, scvRipper first uses the canny edge detector (Canny 1986) to
extract the edge map of a screenshot. An edge map is a binary image where

14 Empir Software Eng

each pixel is marked as either an edge pixel or a non-edge pixel. Figure. 6(c)
shows the canny edge map of the part of the screenshot in Figure. 6(b).

Then scvRipper performs two morphological operations (erosion and dila-
tion) on the canny edge map. Erosion with a kernel (a small 2D array, also
referred to filter or mask) (Gonzalez and Woods 2002) shrinks foreground
objects by stripping away a small layer of pixels from the inner and outer
boundaries of foreground objects. It increases the holes enclosed by a single
object and the gaps between different objects, and eliminates small details.
Dilation has the opposite effect of erosion. It adds a small layer of pixels to
the inner and outer boundaries of foreground objects. It decreases the holes
enclosed by a single object and the gaps between different objects, and fills in
small intrusions into boundaries.

For horizontal lines, erosion followed by dilation with the kernel [1]1×K
(i.e., a horizontal line of K pixels) on the edge map remove the horizontal lines
whose length is less than K. For vertical lines, erosion followed by dilation with
the kernel is [1]K×1 (i.e., a vertical line of K pixels) on the edge map remove
the vertical lines whose length is less than K. These erosion and dilation
operations generates a line map of the screenshot (see Figure 6(d)).

The horizontal (or vertical) lines in the line map can be very close to
each other. Such close-by horizontal (or vertical) lines introduce noises and
increase complexity to detect the window boundaries. Given a line map of the
screenshot, scvRipper uses density-based clustering algorithm (DBSCAN (Es-
ter et al. 1996)) to cluster the close-by horizontal (or vertical) lines based on
their geometric distance and overlap. For each cluster of horizontal (or ver-
tical) lines, scvRipper generates a representative line by choosing the longest
line in the cluster and extending this line to the smallest start pixel position
and the largest end pixel position of all the lines in the cluster.

4.4.2 Detecting Individual Visual Cues

scvRipper uses the samples of visual cues provided in the definition of an
application window as image templates. It detects the distinct visual cues of an
application in the screenshot using key point based template matching (Lowe
1999; Bay et al. 2008). Key point based template matching is an efficient and
scale invariant template matching method. A key point in an image is a point
where the local image features can differentiate one key point from another.

scvRipper uses the Features from Accelerated Segment Test (FAST) algo-
rithm (Rosten and Drummond 2006) to detect the key points of an image.
It extracts the Speeded Up Robust Features (SURF) (Bay et al. 2008) of the
detected key points. scvRipper detects the occurrences of a template image
in a given screenshot by comparing the similarities between the key points
of the template image and the key points of the screenshot (Muja and Lowe
2009). Figure. 7a visualizes the key points image of the part of the screenshot
in Figure. 6(b). The left corner of Figure. 7b visualizes the key points image

of the visual cue of ConsoleView of Eclipse window. scvRipper detects the

Empir Software Eng 15

(a) Key Points of Part of Screenshot in Fig 6(b) (b) Key Point Matching

Fig. 7: An Example of Detecting Individual Visual Cues

occurrence of this visual cue in the screenshot as indicated by the lines in
Figure. 7b

The visual cues of an application are usually small icons. Some small icons
may not always have enough key points, for example, the Java file icon of
CodeEditor of Eclipse window. In such cases, scvRipper detects the visual cues
in a screenshot using template matching with alpha mask. The alpha mask
of an image is a binary image used to reduces the effect of transparent pixels
on the template matching. Given a visual cue image, its alpha mask, and the
screenshot, scvRipper computes the normalized cross-correlation between the
visual cue image and the subimages of the screenshot with the same size as
the visual cue image (Forsyth and Ponce 2002). The higher the normalized
cross-correlation value, the more similar between the visual cue image and
the subimages. scvRipper considers it as a match if the normalized cross-
correlation value between the visual cue image and the subimage is greater
than a user-specified threshold (usually a high threshold like 0.99).

4.4.3 Grouping Detected Visual Cues

A screenshot may or may not contain the application windows of interest.
To determine if the screenshot contains the window(s) of a given application,
scvRipper counts the number of the detected visual cues that belong to the
application according to the definition of the application window. Multiple
instances of the same type of VisualCues are counted once. If the number of
the detected visual cues that belong to the application is more than tapp% (a
user-specified threshold) of the number of VisualCues defined in the window
definition of the given application, scvRipper considers that the screenshot
contains the window(s) of the given application.

If the screenshot contains the application window(s) of interest, scvRipper
uses normalized min-max cut algorithm (Shi and Malik 2000) to group the
detected visual cues into different application windows, as the screenshot may
contain two or more windows of the same application. Normalized min-max
cut algorithm is an image segmentation technique that groups pixels into seg-
ments based on an affinity matrix of pairwise pixel affinities such as pixel color
similarity and geometric distance. In our application of normalized min-max
cut algorithm we define the affinity of the two detected visual cues as the
possibility of the two visual cues belonging to the same application window.

If the two visual cues belong to two different applications (e.g., Eclipse
versus Chrome) according to the definition of application windows, scvRipper

16 Empir Software Eng

V1

V2

V3

V4

Fig. 8: An Example of Affinity Calculation

sets their affinity at 0. If the two visual cues belong to the same application,
scvRipper computes the affinity of the two visual cues based on the uniqueness
of the visual cues, their relative positions, and their geometric distance.

If the two visual cues are the same type of VisualCue of an application and
the isunique of this type of VisualCue is true, scvRipper sets their affinity
at 0. That is, it is impossible that these two visual cues belong to the same
application window because the application window can have only one instance
of this type of VisualCue. Figure. 8 shows the screenshot of the two side-by-
side Chrome windows at time period t1 − t2 in Figure. 5. In this example,
the affinity between the two detected “Go Back” visual cues (V1 and V3) is 0
because a Chrome window can have only one “Go Back” button. The same
for the “Tool” visual cues (V2 and V4).

If the two visual cues are different types of VisualCues of an application,
scvRipper compares the relative position of the two visual cues against the
position constraints defined in the definition of the application window. If
the relative position of the two visual cues is inconsistent with the position
constraints, scvRipper set their affinity at 0. For example, the “Go Back”
button is supposed to be at the left of the “Tool” button in a Chrome window.
Thus, it is impossible that the detected “Go Back” button V3 and the “Tool”
button V2 belong to the same Chrome window, because V3 is at the right of
V2.

Given the two visual cues whose affinity is not yet set at 0 based on the
uniqueness and relative positions of the visual cues, scvRipper computes their

affinity as e−(d2ij/δ
2) where dij is the distance between the center of the two

Empir Software Eng 17

visual cues Vi and Vj and δ is a term proportional to the image size. Intuitively,
the more distance between the two visual cues, the less likely the two visual
cues belong to the same application window. In Figure. 8 the visual cues V1

and V3 (or V2 and V4) more likely belong to the same Chrome window than
V1 and V4.

4.4.4 Detecting Window Boundaries

Given a group of detected visual cues belonging to an application window,
scvRipper first calculates the smallest rectangle enclosing the group of de-
tected visual cues. It then expands this smallest rectangle to find the bound-
ing horizontal and vertical lines that form the bounding box of the group of
detected visual cues. This bounding box is considered as the boundary of the
application window. scvRipper records software usage at a specific time t in
the screen-captured video in terms of the application window(s) present in the
screenshot at time t. Once the boundary of an application window is deter-
mined, scvRipper further determines the boundary of the GUI components to
be scraped within the application window boundary using the same method,
based on the group of detected visual cues belonging to the to-be-scraped GUI
components.

Figure. 9 shows the detected boundaries of the Eclipse window (at time
period t3−t4 in Figure. 5) and the Chrome window (at time periods t2−t3 and
t5−t6 in Figure. 5). It also shows the detected boundaries of the to-be-scraped
GUIComponents in the two windows. The detected boundaries are highlighted
in the same color as that of the corresponding type of GUIComponent in
Figure. 1.

4.5 Scraping Content Data from Application Windows

Based on the detected boundary of the to-be-scraped GUIComponents, scvRip-
per crops the portion of the screenshot and uses Optical-Character-Recognition
(OCR) techniques (e.g., ABBYY FineReader) to convert image content into
textual data. Figure. 9 presents an example of the image scraping results
of the Eclipse window and the Chrome window. The OCRed textual data
records which contents the developer accesses or generates at a specific time
in the screen-captured video. For example, the scraped code snippet and the
exception message show that the developer is editing the Activator class and
he encounters the exception IllegalArgumentException. The scraped URL and
search query show that the developer uses the Google search engine (domain
name “google.com” in the URL) and his search query is “plugin openEditor”.

5 Case Study

We used the 29-hours screen-captured task videos from our previous study (Li
et al. 2013) to evaluate the runtime performance and effectiveness of our

18 Empir Software Eng

1

AddressBar

2

Search Box

3
Web Page

1

2
Console View

Code Editor

Fig. 9: An Example of Boundary Detection and Image Scraping Results

Task1

Task2

TVL(minutes)

12010080604020

Fig. 10: The Statistics of Task Video Length (TVL)

scvRipper tool. Furthermore, we analyzed the developers’ online search be-
havior in software development using the time-series HCI data extracted from
the 29-hours videos. Finally, we discussed the findings in the developers’ online
search behavior and their implications for enhanced tool supports.

5.1 Data Set

The data we used is the screen-captured videos that we collected in our pre-
vious study of the developers’ online search behavior during software develop-
ment (Li et al. 2013). This previous study included two software development
tasks. The first task (Task1) is to develop a new P2P chat software. The
Task1 requires the knowledge about Java multi-threading, socket APIs, and
GUI framework (e.g., Java Swing). The second task (Task2) is to maintain an
existing Eclipse editor plugin. The Task2 includes two subtasks. The first sub-
task is to fix two bugs in the existing implementation. To fix these two bugs,

Empir Software Eng 19

developers need knowledge about Eclipse editor API and plugin configuration.
The second subtask asks developers to extend existing editor plugin with file
open/save/close features and file content statistics (e.g., word count). This
subtask requires developers to program to Eclipse editor and view extension
points (e.g., EditorPart).

11 graduate students were recruited in the first task, and 13 different grad-
uate students were recruited in the second task from the School of Computer
Science, Fudan University. As the participants did not possess necessary knowl-
edge for completing the tasks, they had to interleave coding, web search, and
learning during the tasks.

The participants were instructed to use a screen-capture software to record
their working process. They used their own computers that had different win-
dow resolutions and color schema. As the task videos of 4 participants were
corrupted, we used the 29 hours task videos of the 20 participants (8 from the
first task and 12 from the second task) to evaluate our video scraping tool.
Fig. 10 shows the box-plot of the Task Video Length (TVL in minutes) of
these participants.

Based on the software tools that the participants used in our previous
study, we defined application windows for the scvRipper tool to recognize
Eclipse IDE window and web browser window (Google Chrome, Mozilla Fire-
fox, Internet Explorer). Fig. 2 shows partially the definitions of the Eclipse IDE
and Google Chrome window defined in this study. The definition instructs the
scvRipper tool to scrap: 1) code editor and console view content in Eclipse
IDE window, and 2) address bar, search box and web page content in web
browser window (see Fig. 9 for an example).

5.2 Runtime Performance

We ran our scvRipper tool on a Windows 7 computer with 4GB RAM and
Intel(R) Core(TM)2 Duo CPU. The 29 hours task videos were recorded at sam-
ple rate 5 screenshots per second. As such, the 29 hours task videos consists of
in total over 520K screenshots. Our scvRipper tool took 43 hours to identify
about 11K distinct-content screenshots from the 29 hours videos at the thresh-
old tdiff = 0.7. One distinct-content screenshot on average represents about
10 seconds video (about 50 screenshots). The scvRipper tool took about 122
hours to extract time-series HCI data from the 11K distinct-content screen-
shots, i.e., on average 38.41 ± 16.94 seconds to analyze one distinct-content
screenshot. The OCR of the scraped image content took about 60 hours .

The current implementation of the scvRipper ’s core algorithm processes
one distinct-content screenshot at a time (i.e., sequential processing). The
most time-consuming step of the core algorithm is the second step (i.e., de-
tect individual visual cues). Our definition of the Eclipse IDE and Chrome
window consists of about 30 and 20 visual cues respectively. The current im-
plementation detects visual cues in a screenshot one at a time. This step
consumes about 97% of the processing time of distinct-content screenshots.

20 Empir Software Eng

Since the processing of individual screenshots and the detection of individual
visual cues are independent, the runtime performance of the scvRipper tool
could be significantly improved by parallel computing (Zhang et al. 2008) and
hardware-implementation of template-matching algorithm (Sinha et al. 2006).
Parallel computing and hardware acceleration 2 could also reduce the time of
detecting distinct-content screenshots and the OCR of scraped screen images.

5.3 Effectiveness

We randomly sampled 500 distinct-content screenshots from different develop-
ers’ task videos at different time periods. We qualitatively examined the screen-
shots that these sampled distinct-content screenshots represent. We found that
the scvRipper ’s image differencing technique (at tdiff = 0.7 in this study) can
tolerate the reasonable differences between the screenshots caused by scrolling,
mouse movement, and pop-up menus. Ignoring these screenshots should not
cause significant information loss for data analysis.

We qualitatively examined the results of detected application windows in
these sampled distinct-content screenshots. Our scvRipper tool sometimes may
miss certain visual cues. As long as some visual cues were detected (over 80%
of defined VisualCues in this study), scvRipper usually can still recognize the
application window. However, missing some visual cues may result in the less
accurate detection of window boundary. For example, the detected window
boundary may miss the title bar due to the failure of detecting the corre-
sponding title bar visual cue. Our scvRipper tool can accurately recognize
side-by-side or stacked windows. But it cannot accurately detect several (≥ 3)
overlapping windows, each of which is only partially visible. However, screen-
shots with several overlapping windows are rare in our dataset.

We evaluated the accuracy of the OCR results using the extracted query
keywords. scvRipper identified 236 distinct-content screenshots that contain a
search query. These queries contain 253 English words and 809 Chinese words
in total. The OCR accuracy of the English words is about 88.5% (224/253),
while the OCR accuracy of the Chinese words is about 74.9% (606/809). The
screenshots had low DPI (Dots Per Inch, only 72-96 DPI in participants’ com-
puter) which is lower than the 300 DPI that the OCR tool generally requires.
The OCR tool (ABBYY FineReader) we used scaled the low DIP screenshots
to 300 DPI and produced acceptable OCR results.

5.4 Data Analysis on Online Search

This section analyzes the developers’ online search activities using the ex-
tracted HCI data.

2 http://docs.opencv.org/modules/gpu/doc/introduction.html

Empir Software Eng 21

Table 5: The Top Three Most-Visited Web Sites of 7 Web Categories

The Top 3 Most-Visited Web Sites

Search engines (SE)
www.google.com
www.baidu.com
www.bing.com

Document sharing sites (DS)
www.360doc.com
www.doc88.com
www.docin.com

Technical tutorials (TT)
blog.csdn.net
www.newasp.cn
developer.51cto.com

Topic forums (TF)
topic.csdn.net
java.chinaitlab.com
www.newsmth.net

Code hosting sites (CH)
download.csdn.net
code.google.com
github.com

Q&A sites (QA)
zhidao.baidu.com
stackoverflow.com
iask.sina.com.cn

API specification (API)
docs.oracle.com
developers.google.com
www.aspose.com

5.4.1 Most Visited Web Sites

First, we extracted web sites (i.e., domain name) from the scrapped URLs. We
categorized the web sites that the developers visited during the two tasks into
seven web categories: search engines (SE), technical tutorials (TT), document
sharing sites (DS), topic forums (TF), code hosting sites (CH), Q&A sites
(QA), and API specifications (API). Table 5 lists the top three most visited
web sites of these seven categories in our study.

5.4.2 Web Page Opened after a Search

Figure 11 presents the times that the developers opened a specific number of
web pages after a search in the two tasks. We can see that the developers in
the first task opened much less number of web pages after a search than the
developer in the second task did. This reflects the complexity of the two tasks
and the information needs of the developers in the two tasks.

5.4.3 Web Page Visited and Web Page Switching

Figure 12 shows the number of unique URLs (i.e., web pages) that the 20
developers visited in the two tasks and the number of switchings between
these web pages. In the first task 5 developers visited less than 9 web pages
and made less than 9 web-page switchings. However, the other 3 developers
visited on average 20 ± 4 web pages and made on average 37.6 ± 19.5 times
web-page switchings. In the second task only 2 developers visited less than 6

22 Empir Software Eng

���������	�
����������������������	������	��

� � � � � � ��

�
!�
�
�

�

�

��

��

��

��

��

��

���"�

���"�

Fig. 11: The Statistics of Opening a Specific Number of Web Pages

���������	

�
 �� �� � �� �� �� ��

�
�
�
�
�
�

�

��

�

��

��

��

��

�

��

����

��������� �!"

(a) Task1

���������	

�
 ��� ��� ��� ��� ��� ��� ��� ��� ��� ��
 ��

�
�
�
�
�
�

�

�

��

��

��

���

��

���

���

����

�������� !�"#

(b) Task2

Fig. 12: Statistics of Unique URLs and URL Switchings

web pages and made less than 5 web-page switchings. These two developers are
experienced Eclipse plugin developers. They completed the task much faster
than the other 10 less experienced developers (i.e., the two “outlier” ∗ in
Figure 10). During the task, they only issued a few searches and explored a
small number of web pages. The other 10 developers visited on average 31.4±
13.1 web pages and made on average 75.7± 38.1 times web-page switchings.

The results show that in less than two hours of the tasks most of the de-
velopers had to explore, examine, and use a large amount of information when
searching and using online resources. The developers often need to compare
several web pages in order to select the web pages most relevant to the tasks.
Depending on the developer’s working habit, this can sometimes result in the
opening of a large number of web pages. For example, the developers D2 issued
only 2 new queries. But he preferred to open several web pages from the search

Empir Software Eng 23

results, and then examined these web pages to determine their relevance. He
visited in total 20 web pages and made 24 times web-page switchings.

Furthermore, the developers often follow information scents from one web
page to another during their online search process. This can also result in open-
ing many web pages and switching between them. For example, the developer
D15 searched “PermGen space”. He opened a web page about “PermGen space
error” on “http://www.cnblogs.com” from the search results. He followed the
link on this web page to another web page on “http://blog.csdn.net” about
“JVM parameter setting”. This csdn web page helped him fix the virtual
memory issue to run the Eclipse IDE.

Table 6: Statistics of Distinct Keywords and Keyword Sources

Developer ID #DistinctKW #FromCode #FromConsole #Self-phrasing
Taks1

D1 2 1 0 1
D2 5 0 0 5
D3 13 2 2 9
D4 12 0 0 12
D5 5 1 0 4
D6 13 0 0 13
D7 9 2 1 6
D8 13 1 0 12

mean±standard
deviation(D1-D8)

9±4.15 0.87±0.78 0.37±0.69 7.75±4.11

Task2
D9 10 2 0 8
D10 2 1 0 1
D11 32 14 6 12
D12 10 3 1 6
D13 9 1 0 8
D14 16 5 1 10
D15 13 1 5 7
D16 20 3 3 14
D17 18 5 0 13
D18 18 7 0 11
D19 9 5 0 4
D20 15 6 9

mean±standard
deviation(D9-D20)

14.33±7.5 4.41±3.49 1.33±2.05 8.58±3.61

5.4.4 Keyword Source in Queries

Given a search query extracted from search results web pages, we determined
the sources of its keywords by searching code fragments and console out-
puts extracted from the distinct Eclipse IDE screenshots before the web-page
screenshot in which a keyword was used for the first time. If a keyword ap-
pears in code fragments, for example, the keyword “openEditor” in the query
“java.lanq.IllegalArqumentException openEditor” is an Eclipse API used in
the source code, we considered its source as “FromCode”. If a keyword appears
in console outputs, for example, the keyword “IllegalargumentException” in
the above query is an exception thrown in the console view, we considered its
source as “FromConsole”. If a keyword appears in both code fragments and

24 Empir Software Eng

Table 7: Most-Used Keywords in the Two Tasks

Keywords Frequency (times) Who Used These Keywords
Task1

java 7 D1, D2, D3, D5, D6, D7, D8
socket 5 D1, D3, D4, D5, D7
TCP 4 D2, D3, D6, D8
SWT 3 D5, D6, D8

button 2 D3, D8
event 2 D5, D8
chat 2 D3, D6

Task2
eclipse 10 D9, D11, D12, D13, D14, D15, D16, D17, D18, D20
plugin 8 D12, D13, D14, D15, D16, D17, D18, D20

EditorPart 6 D10, D11, D12, D17, D18, D19
openEditor 6 D12, D15, D16, D17, D18, D20

IEditorInput 5 D11, D13, D14, D19, D20
doSave 4 D11, D12, D18, D19
editor 4 D11, D12, D14, D16

IWorkbenchPage 4 D14, D17, D18, D20
SWT 4 D9, D11, D16, D17

savefile 4 D12, D13, D17, D20
view 4 D9, D11, D17, D20

console outputs, we consider the keyword as “FromCode”. If a keyword ap-
pears in neither code fragments nor console outputs, we considered its source
as self-phrasing, for example, the keywords “eclipse” and “rcp” in the query
“eclipse rcp EditorPart EdtorInput”.

Table 6 summarizes the number of distinct keywords that the developers
used in the two tasks and the sources of these keywords. In the first task the
developers keywords were mainly self-phrased. In the second task the keywords
were both self-phrased and from IDE context.

Table 7 presents the top 7 most-used keywords by at least two developers
in the first task and the top 11 most-used keywords by at least four developers
in the second task. In the first task, all the seven most-used keywords were
considered as self-phrasing. 3 of these 7 keywords were from task descriptions
(socket, TCP, chat and 4 described programming language and techniques
to be used (Java, SWT, button, event). Using these keywords the developers
can find good online examples to complete the first task. They occasionally
searched for unfamiliar APIs or errors (e.g., IProgressMonitor and ConnectEx-
ception) while modifying reused code examples.

In the second task, 6 out of the 11 most-used keywords were considered
as self-phrasing, three of which described application platform and techniques
to be used (Eclipse, plugin, SWT) and three were from task description (ed-
itor, view, savefile). The other 5 most-used keywords were from IDE context,
which described Eclipse APIs required for the task (EditorPart, openEditor,
IEditorInput, doSave, IWorkbenchPage). In the second task, developers had
to fix bugs of using specific Eclipse APIs and extend specific Eclipse interface.
However, using only specific Eclipse APIs often cannot find good online ex-
amples to accomplish the second task. Developers had to use application and
task context to restrict the search.

Empir Software Eng 25

5.4.5 Query Refinement

���������	

�
 �� �� � �� �� �� ��

�
��
�
	

�

�

�

�

�

�

�

���������

�����������

(a) Task1

���������	

�
 ��� ��� ��� ��� ��� ��� ��� ��� ��� ��
 ��
�

��
�
	

�

�

�

�

��

�

��

��

���������

����������

(b) Task2

Fig. 13: The Statistics of New Queries and Query Refinements

Given the search queries that a developer issued, we measured the similar-
ity of the two consecutive queries Qi and Qi+1 using the Jaccard coefficient
of distinct keywords of the two queries, i.e., |Qi

⋂
Qi+1|/|Qi

⋃
Qi+1|. If the

Jaccard coefficient of the two consecutive queries is greater than 0.5, Qi+1 is
considered as the refinement of Qi. For example, the 4th query “openEditor
java.lanq.IllegalArqumentException” of the developer D11 was considered as
a refinement of his 3rd query “java.lanq.IllegalArqumentException”, while his
5th query “eclipse rcp EditorPart EdtorInput” was considered as a new query
as it was very different from the 4th query.

Figure 13 shows the number of new queries and the number of query re-
finements in the two tasks. In the first task the developers issued in total 27
new queries (on average 3.37±1.34 new queries per developer). The developers
found satisfactory information in the search results of 7 of these 27 new queries
and thus did not refine the queries. They refined 12 new queries 1-3 times, and
2 new queries more than 3 times. The rest 6 queries were too different from
their preceding queries, and thus were considered as new queries. In the sec-
ond task the developers issued in total 57 new queries (on average 3.37± 2.18
new queries per developer). 9 of these 57 new queries were not refined because
satisfactory information were found in the search results. 30 new queries were
refined 1-3 times, and 9 new queries were refined more than 3 times. The rest
4 queries were considered as new queries because they were too different from
their preceding queries.

5.4.6 Search Frequencies and Intervals

The extracted time-series HCI data identifies the search queries that the par-
ticipants issued through the tasks. We considered the first appearance of a

26 Empir Software Eng

search query in the time-series HCI data as the time when the participants
searched the Internet with this query. We collected the interval time of the two
consecutive searches with different queries (denoted by τ) of the 20 developers
in the two tasks. We used probability density function p (τ) to describe the
relative likelihood of the interval time of two consecutive searches between a
given interval. We obtained the probability density function of our data sam-
ples of interval time of two consecutive searches by kernel smoothing density
estimation (Silverman 1986), as shown in black dot line in Fig. 14.

According to theory of human dynamics (Barabasi 2005), the probabil-
ity density function p (τ) of human activity interval time obeys a power-law
distribution as p (τ) = kλe−λτ , where λ is exponent parameter and k is a con-
stant coefficient. We fitted our data samples of interval time of two consecutive
searches in terms of this equation using Least Squares Fitting (Weisstein 2011).
The fitting result is shown in red line in Fig. 14. This red line is p (τ) = 1

1.41 ×
0.45e−0.45τ . We employed coefficient of determination R2 (Colin Cameron and
Windmeijer 1997) to determine how well our experimental data fit the statis-
tical model. The R2 was 0.97 which indicates that our data samples can be
well explained by the statistical model represented by the red line.

Given the probability density function p (τ), the probability of variable τ
ranging from τ1 to τ2 is equal to P (τ1 < τ ≤ τ2) =

∫ τ2
τ1
p (τ)dτ (Parzen 1962).

Based on the statistical model p (τ) = 1
1.41 × 0.45e−0.45τ , the probability that

the developers in the two tasks searched with a different query within 1 minute
is 0.48, within 3 minutes is 0.68, and within 10 minutes is 0.86.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Interval time τ (minutes)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y
 f
u
n
c
ti
o
n
 p

(
τ
)

Experimental data

Power−law

λ =0.45

Fig. 14: The Distribution of Interval Time of Two Consecutive Queries

Empir Software Eng 27

5.5 Data Analysis on Context Switching

This section analyzes the developers’ context switching activities within and
across the IDE and web browser.

5.5.1 Working Context Switching

0

5

10

15

20

25

30

35

40

45

50

10−minutes time slots

T
im

e
s

0−10

10−20

20−30

30−40

40−50

50−60

60−70

70−80

80−90

90−100

(a) IDE
 Browser in Task1

0

50

100

150

200

250

10−minutes time slots

T
im

e
s

0−10

10−20

20−30

30−40

40−50

50−60

60−70

70−80

80−90

90−100

(b) Within-Browser in Task1

0

10

20

30

40

50

60

10−minutes time slots

T
im

e
s

0−10

10−20

20−30

30−40

40−50

50−60

60−70

70−80

80−90

90−100

(c) Within-IDE in Task1

0

5

10

15

20

25

30

35

40

45

50

10−minutes time slots

T
im

e
s

0−10

10−20

20−30

30−40

40−50

50−60

60−70

70−80

80−90

90−100

(d) IDE
 Browser in Task2

0

50

100

150

200

250

10−minutes time slots

T
im

e
s

0−10

10−20

20−30

30−40

40−50

50−60

60−70

70−80

80−90

90−100

(e) Within-Browser in Task2

0

10

20

30

40

50

60

10−minutes time slots

T
im

e
s

0−10

10−20

20−30

30−40

40−50

50−60

60−70

70−80

80−90

90−100

(f) Within-IDE in Task2

Fig. 15: Statistics of Application and Content Switchings in Every 10 Minutes

Given a sequence of distinct consecutive screenshots, if the two consecutive
screenshots contain the Eclipse window and the web browser window respec-
tively, we count one switching between IDE and web browser (IDE
 Browser
switching). If the two consecutive screenshots contain the same type of appli-
cation windows (Eclipse IDE or web browser), we count one switching between
distinct IDE content (Within-IDE switching) or one switching between distinct
web content (Within-Browser switching). We also computed the time that the
developers spent on the distinct IDE contents and the distinct web contents
in the two tasks.

Fig. 15 shows the number of IDE
 Browser switchings, Within-Browser
switchings, and Within-IDE switchings that the developers performed in every
10 minutes in the two tasks. The box plots label data with 5 attributes. The
bottom and top of the box are the first (25%) and third (75%) quartiles (Q1

and Q3) of the switchings that the developers performed in a 10-minute time
slot. The band inside the box is the second quartile (Q2, i.e., the median). The
gray boxes indicate the interquartile range (IQR = Q3−Q1). The lowest end
of the whiskers represents minimal observation, and the highest end of whiskers

28 Empir Software Eng

represents maximal observation. The blue line shows the mean values of the
number of switchings over time.

In the first task the developers started with a small number of IDE

Browser switchings and a large number of Within-Browser switchings and
Within-IDE switchings in the first 10 minutes. This indicates that the devel-
opers were trying to understand the problem they need to solve. Next, the
developers’ Within-Browser and Within-IDE switchings switchings remained
relative stable or dropped in the 11-30 minutes, while the IDE
 Browser
switchings increased in the 11-30 minutes. This indicates that the develop-
ers found good online examples and started integrating online examples in
the IDE. Then, the developers’ Within-Browser and IDE
 Browser switch-
ings dropped for the rest of the first task, while the developers’ Within-IDE
switchings remained active. That is, the developers focused on developing the
software within the IDE without much need for further online search.

In the second task the developers also started with a small number of IDE

 Browser switchings and a large number of Within-Browser switchings and
Within-IDE switchings in the first 10 minutes. Next, there was a surge in the
Within-Browser switchings in the 11-20 minutes followed by a surge in the
IDE
 Browser switchings in 20-30 minutes. Similar to the first task, the
developers found some useful online resources and started integrating them
into the IDE in the first 30 minutes. However, the Within-Browser and IDE

 Browser switchings were much more intense in the second task than in the
first task. Furthermore, the Within-Browser and IDE
 Browser switchings
did not drop after the 30 minutes in the second task. Unlike the first task in
which the developers’ search activity occurred mainly in the beginning of the
task, the developer int the second task had to frequently search and integrate
online resources for the emerging problems throughout the task.

5.5.2 Markov Model on Context Switching

To further study the implicit information flow within web browser and between
IDE and web browser, we built Markov Models (Whittaker and Poore 1993)
for describing the developers’ information flow behavior in Within-Browser
switchings and in IDE
 Browser switchings. The Markov Models consists of
8 states: the 7 web categories (see Table 5) and the Eclipse IDE. A transition
between the two states represent the switching between the two web categories
or the switching between a web category and the Eclipse IDE. The probabil-
ity of a transition is computed based on the frequencies of the corresponding
switchings, i.e., the number of switchings from one state to another state di-
vided by the number of switchings from this state to all the states. Table 8
presents the the transition probabilities of the Markov Model. The maximal
probability of each row is highlighted in bold font.

The table shows that the developers had the highest probabilities to switch
between the Eclipse IDE and the technical tutorials (TT) in the first task. The
technical tutorials seem to be the most useful information source in the first

Empir Software Eng 29

Table 8: Markov Transition Matrices.

(a) Task 1

Destination States
Eclipse SE TT DS TF CH QA API

Eclipse 0 0.16 0.62 0.03 0.11 0 0.07 0.01
SE 0.27 0 0.34 0.08 0.20 0.05 0.06 0
TT 0.73 0.20 0 0 0.06 0 0.01 0
DS 0.38 0.50 0 0 0.13 0 0 0
TF 0.38 0.45 0.07 0 0 0 0.07 0.03
CH 0.33 0.67 0 0 0 0 0 0
QA 0.42 0.42 0.08 0 0.08 0 0 0

Source
States

API 0.50 0.50 0 0 0 0 0 0

(b) Task 2

Destination States
Eclipse SE TT DS TF CH QA API

Eclipse 0 0.12 0.26 0.28 0.15 0.02 0.01 0.15
SE 0.19 0 0.26 0.06 0.14 0.03 0.05 0.28
TT 0.58 0.25 0 0.03 0.05 0 0.02 0.07
DS 0.81 0.09 0.04 0 0.02 0.02 0 0.02
TF 0.56 0.25 0.08 0.02 0 0.01 0.01 0.08
CH 0.45 0.31 0.03 0.07 0.03 0 0.07 0.03
QA 0.20 0.33 0.10 0 0.10 0.13 0 0.13

Source
States

API 0.53 0.27 00.10 0.02 0.02 0.01 0.04 0

task. In fact, the technical tutorials often contain downloadable code exam-
ples that the developers can directly reuse to complete the task. In addition,
the developer also integrated the information found on Q&A sites (QA) and
API specification sites (API) in the IDE, as indicated by the high probabili-
ties to switch from the QA or API categories to the Eclipse. In the first task,
other than technical tutorials (TT), the developers had the highest probabil-
ities to switch from different web categories (document sharing (DS), topic
forum (TF), code hosting (CH), Q&A (QA), and API specification (API)) to
the search engine. This suggests that the developers may collect hints from
different web sites and then use the hints to refine their search.

The developers in the second task exhibited different information flow be-
havior. First, the probabilities to switch from the Eclipse IDE to different
web categories (i.e., technical tutorials (TT), document sharing sites (DS),
topic forums (TF), and API specifications (API)) are more evenly distributed.
Furthermore, unlike the first task, the developers had highest probabilities to
switch from technical tutorials (TT), document sharing (DS), topic forums
(TF), code hosting (CH) sites, and API specifications (API) to the IDE, in-
stead of to the search engine. This suggests that the technical tutorials were
not the dominant information sources in the second task. The developers need
more diverse information from different sources. Furthermore, the develop-
ers were more likely to integrate the information found on these information
sources, instead of using the information to refine their search.

30 Empir Software Eng

5.6 Implications of Behavior Analysis Results

Our analysis of time-series HCI data extracted from screen-captured task
videos reveals the developers’ micro-level behavioral patterns while they in-
terleave coding and web search in software development. These micro-level
behavioral patterns identify opportunities and challenges for supporting de-
velopers’ online search during software development.

5.6.1 Context Sensing and Reasoning

In light of previous work showing context to be useful in search tasks (Matejka
et al. 2011; Brandt et al. 2010), our study suggests that more detailed studies
are required to understand which types and scopes of context are more effective
for providing useful results.

The scopes of context must be carefully determined. Existing tools use
mainly the limited program context (e.g., a snapshot of current code) to aug-
ment the developer’s queries. This limited context may not be sufficient to
satisfy the developer’s information needs in a task because the developer of-
ten needs application-level and task-level context to help to restrict the search.
Application-level and task-level context may not be observable. Infer the high-
level context (e.g., user interest) from the low-level observable contextual cues
can be difficult. Spurious contextual information can introduce noise which
may raises the rank of less-useful results. Showing contextual query keywords
and allowing the developers to adjust them may be beneficial because it of-
fers a mixed strategy to combine the developer’s knowledge and the implicit
context sensing and reasoning.

The dynamics of context must be carefully modeled. Many types of con-
textual information can be described as a static set of facts providing the
background for online search. This static view of context may not be suffi-
cient to reason about the developer’s information needs over time because
the developer’s working context can change fast and frequently. Recommen-
dation systems should avoid giving too many “helpful” hints by adjusting
notification level based on the developer’s progressions through the task. The
developer’s progression patterns may be modeled (e.g., using Hidden Markov
Model (Rabiner and Juang 1986) or progression stages in time-evolving event
sequences (Yang et al. 2014)) for predicting when the developer may most
likely need online resources.

5.6.2 Exploratory Search of Online Resources

The online search does not end with presenting a list of results. The developers
have to explore, examine, and use many web pages and refine their queries in
an iterative search process. This suggests that more intuitive presentation and
interaction techniques are required to bridge the gulf of evaluation of online
search results.

Empir Software Eng 31

Our recent work (Wang et al. 2013) proposed an intelligent, multi-faceted,
interactive search UI for exploring the feature location results in a code base.
The automatically mined code facets provide to the developers more abstract
and structured feedback about the feature location results. As a result, the
developers can better refine their feature queries based on the hints they ob-
serve from different facets. This multi-faceted, exploratory search approach
may also be beneficial for exploring multi-dimensional information space of
online search results. Unlike source code, web contents vary greatly in formats
as well as in both technical and presentational quality.

Entity-centric search (Bordes and Gabrilovich 2014; Guha et al. 2003)
seems like a promising direction. Unlike current web search engines that essen-
tially conduct page-level search, entity-centric search can uncover connected
information about real-world entities. Entity-centric search has demonstrated
its effectiveness in people search (Zhu et al. 2009), academic search (Nie and
Zhang 2005), and product search (Nie et al. 2007). It can answer complex
queries with direct and aggregate answers because of the availability of se-
mantics defined by the knowledge graph (Nie and Zhang 2005; Bordes and
Gabrilovich 2014). Otherwise, it could take one a long time to sift through
many web pages returned by a page-level search engine. The challenge here is
how to extract and model meaningful knowledge entities (e.g., programming
languages, frameworks, application features) and their relationships from on-
line software engineering resources.

5.6.3 Remembrance Agent and Community of Practices

In searching and using online information, the developers’ working context
changes fast and frequently. The information flows implicitly during context
switchings within and across applications. This suggests that effective tech-
niques are required to track the information at micro-level and support smooth
information flow as the developer interleaves coding and web search in software
development.

Several tools (Brandt et al. 2010; Sawadsky and Murphy 2011; Ponzanelli
et al. 2013) have been proposed to embed search engine or online resources
into the IDE. These tools can reduce the switching cost of searching online
resources while working in the IDE, especially when using online resources
as reminders of technical details (Brandt et al. 2009). When the developers
have to intensively search, browse, and learn online resources for a complex
task, these tools may worsen the information overloading problem, because
browsing several web pages in a small IDE view could be much less efficient
than using normal web browser.

A remembrance agent (Rhodes 1996) would be useful to track the infor-
mation that the developers search, browse and use during the task. Auto-
completion technique could use the tracked information to augment human
memory by displaying a list of information which may be relevant to the de-
veloper’s current search or coding context. The tracked information further
has the potential to support “community of practice” (Kimble et al. 2008;

32 Empir Software Eng

Kushman and Katabi 2010; Matejka and Li 2009; Bateman et al. 2012; Hart-
mann et al. 2010). Our data analysis suggests the developers shared common
information needs and information flow patterns in the task. The contextual
“fingerprints” of some developer’s search history could be used to help other
developers not only find relevant online resources in similar context, but also
learn how to search for needed resources from others. According to theories
of social learning (Bandura 1986) and cognitive apprenticeship (Brown et al.
1989), observing and imitating skilled practitioners performing the task in
the context can help people incrementally adjust their performance until they
reach competence.

6 Related Work

Computer vision techniques have been used to identify user interface elements
from screen-captured images or videos. Prefab (Dixon and Fogarty 2010) mod-
els widgets layout and appearance of an user interface toolkit as a library of
prototypes. A prototype consists of a set of parts (e.g., a patch of pixels) and
a set of constraints regarding those parts. Prefab identifies the occurrence of
widgets from a given prototype library in an image of an user interface by first
assigning image pixels in parts from the prototype library and then filtering
widget occurrences according to the part constraints.

Waken (Banovic et al. 2012) uses image differencing technique to identify
the occurrence of GUI elements (cursors, icons, menus, and tooltips) that an
application contains in screen-captured videos. The identified GUI elements
can be associated with videos as metadata. This metadata allows the users to
directly explore and interact with the video, as if it were a live application, for
example, hove over icons in the video to display their associated tooltips.

Sikuli (Yeh et al. 2009) uses template matching techniques (Forsyth and
Ponce 2002) to find GUI patterns on the screen. It supports visual search
of a given image in the screenshot. It also supports a visual scripting API to
automate GUI interactions, for example automating GUI testing (Chang et al.
2010) or enhancing interactive help systems.

These computer-vision based techniques inspired the design and implemen-
tation of our video scraping technique, including the metamodel of application
window, the detection of distinct-content screenshots, and the detection of ap-
plication window. These existing techniques have focused on visual search, GUI
automation, and implementing new interaction techniques. In contrast, our
work focuses on extracting and analyzing time-series HCI data from screen-
captured videos. Unlike the video data that only human can interpret, the
extracted time-series HCI data can be automatically analyzed to discover be-
havioral patterns.

Instrumentation techniques (Hilbert and Redmiles 2000; Kim et al. 2008)
can directly log a person’s interaction with software tools and application con-
tent. They usually requires the support of sophisticated reflection APIs (e.g.,
Accessability API or UI Automation API) provided by applications, operat-

Empir Software Eng 33

ing systems and GUI toolkits. Furthermore, a person can use several software
tools (e.g., Eclipse IDE, different web browsers) in his work. Instrumenting all
these software tools require significant efforts.

Some work proposes to combine low-level operating system APIs and com-
puter vision techniques to track human computer interaction. Hurst et al. (Hurst
et al. 2010) leverages image differencing and template matching techniques to
improve the accuracy of target identification that the users click. Chang et
al. (Chang et al. 2011) proposed a hybrid framework for detecting text blobs
in user interface by combining pixel-based analysis and accessibility meta-
data of the user interface. In contrast, our video scrapping technique analyzes
screen-captured videos without any accessibility information.

7 Conclusions and Future Work

This paper presented a computer-vision based video-scraping technique (called
scvRipper) that can automatically extract time-series HCI data from screen-
captured videos. This video-scraping technique is generic and easy to deploy.
It can collect software usage and application content data across several ap-
plications according to the user’s definition. Our scvRipper tool can address
the increasing need for automatic observational data collection methods in the
studies of human aspects of software engineering.

Our case study demonstrated the effectiveness and accuracy of the tool’s
extracted HCI data. It also demonstrated the usefulness of the extracted time-
series HCI data in modeling ana analyzing the developers’ online search be-
havior during software development. Our study also identified the bottleneck
of the tool’s runtime performance and suggested potential solutions.

We will improve the scvRipper tool’s runtime performance using parallel
computing and hardware acceleration. We are also interested in combining
operating system level instrumentation (e.g., mouse and keystroke) with the
core algorithm of scvRipper to collect more accurate time-series HCI data.

References

N. Ammar, M. Abi-Antoun, Empirical Evaluation of Diagrams of the Run-time Structure
for Coding Tasks, in Proc. WCRE, 2012, pp. 367–376

A. Bandura, Social foundations of thought and action: A social cognitive theory, vol. 1 1986,
p. 617

N. Banovic, T. Grossman, J. Matejka, G. Fitzmaurice, Waken: reverse engineering usage
information and interface structure from software videos, in Proc. UIST, 2012, pp. 83–
92

A.L. Barabasi, The origin of bursts and heavy tails in human dynamics. Nature 435(7039),
207–211 (2005)

S. Bateman, J. Teevan, R.W. White, The search dashboard: how reflection and comparison
impact search behavior, in Proc. CHI, 2012, p. 1785

H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features (surf). Computer
vision and image understanding 110(3), 346–359 (2008)

A. Bordes, E. Gabrilovich, Constructing and Mining Web-scale Knowledge Graphs: KDD
2014 Tutorial, in Proc. KDD, 2014, p. 1967

34 Empir Software Eng

K. Brade, M. Guzdial, M. Steckel, E. Soloway, Whorf: A visualization tool for software
maintenance, in Proceedings 1992 IEEE Workshop on Visual Languages, 1992, pp. 148–
154

J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, S.R. Klemmer, S. Francisco, Two Studies
of Opportunistic Programming : Interleaving Web Foraging , Learning , and Writing
Code, in Proc. CHI, 2009, pp. 1589–1598

J. Brandt, M. Dontcheva, M. Weskamp, S.R. Klemmer, S. Francisco, Example-Centric Pro-
gramming : Integrating Web Search into the Development Environment, in Proc. CHI,
2010, pp. 513–522

J.S. Brown, A. Collins, P. Duguid, Situated Cognition and the Culture of Learning, 1989
J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.

Intell., 679–698 (1986)
T.-H. Chang, T. Yeh, R. Miller, Associating the visual representation of user interfaces with

their internal structures and metadata, in Proc. UIST, 2011, pp. 245–256
T.-H. Chang, T. Yeh, R.C. Miller, GUI testing using computer vision, in Proc. CHI, 2010,

pp. 1535–1544
A. Colin Cameron, F.A. Windmeijer, An r-squared measure of goodness of fit for some

common nonlinear regression models. Journal of Econometrics 77(2), 329–342 (1997)
C.L. Corritore, S. Wiedenbeck, Direction and scope of comprehension-related activities by

procedural and object-oriented programmers: An empirical study, in Proc. IWPC, IEEE,
2000, pp. 139–148. IEEE

C.L. Corritore, S. Wiedenbeck, An exploratory study of program comprehension strategies
of procedural and object-oriented programmers. INT J HUM-COMPUT ST 54(1), 1–23
(2001)

U. Dekel, J.D. Herbsleb, Reading the documentation of invoked API functions in program
comprehension, in Proc. ICPC, 2009, pp. 168–177

P. Dewan, P. Agarwal, G. Shroff, R. Hegde, Distributed side-by-side programming, in Pro-
ceedings of the 2009 ICSE Workshop on Cooperative and Human Aspects on Software
Engineering, 2009, pp. 48–55

M. Dixon, J. Fogarty, Prefab: implementing advanced behaviors using pixel-based reverse
engineering of interface structure, in Proc. CHI, 2010, pp. 1525–1534

M. Dixon, D. Leventhal, J. Fogarty, Content and hierarchy in pixel-based methods for reverse
engineering interface structure, in Proc. CHI, 2011, pp. 969–978

E. Duala-Ekoko, M.P. Robillard, Asking and answering questions about unfamiliar APIs:
An exploratory study, in Proc. ICSE, 2012, pp. 266–276

J.S. Dumas, J. Redish, A practical guide to usability testing (Intellect Books, ???, 1999)
M. El-Ramly, E. Stroulia, P. Sorenson, From run-time behavior to usage scenarios: An

Interaction-Pattern Mining Approach, in Proc. KDD, 2002, p. 315
M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters

in large spatial databases with noise., in Proc. KDD, vol. 96, 1996, pp. 226–231
J. Fernquist, T. Grossman, G. Fitzmaurice, Sketch-sketch revolution: an engaging tutorial

system for guided sketching and application learning, in Proc. UIST, 2011, pp. 373–382
D.A. Forsyth, J. Ponce, Computer vision: a modern approach (Prentice Hall Professional

Technical Reference, ???, 2002)
T. Fritz, D.C. Shepherd, K. Kevic, W. Snipes, C. Bräunlich, Developers’ code context models

for change tasks. Proc. FSE, 7–18 (2014)
R.C. Gonzalez, R.E. Woods, Digital image processing (Prentice hall Upper Saddle River,

NJ:, 2002)
M. Greiler, A. van Deursen, M. Storey, Test confessions: a study of testing practices for

plug-in systems, in Proc. ICSE, 2012, pp. 244–254
T. Grossman, J. Matejka, G. Fitzmaurice, Chronicle: capture, exploration, and playback of

document workflow histories, in Proc. UIST, 2010, pp. 143–152
R. Guha, R. Guha, R. McCool, R. McCool, E. Miller, E. Miller, Semantic search, in Proc.

WWW, 2003, pp. 700–709
B. Hartmann, D. Macdougall, J. Brandt, S.R. Klemmer, What Would Other Programmers

Do ? Suggesting Solutions to Error Messages, in Proc. CHI, 2010, pp. 1019–1028
M.G. Helander, T.K. Landauer, P.V. Prabhu, Handbook of human-computer interaction

(Elsevier, ???, 1997)

Empir Software Eng 35

D.M. Hilbert, D.F. Redmiles, Extracting usability information from user interface events.
ACM Comput. Surv. 32(4), 384–421 (2000)

C.D. Hundhausen, J.L. Brown, S. Farley, D. Skarpas, A methodology for analyzing the
temporal evolution of novice programs based on semantic components, in Proceedings
of the ACM International Computing Education Research Workshop, 2006, pp. 59–71

A. Hurst, S.E. Hudson, J. Mankoff, Automatically identifying targets users interact with
during real world tasks, in Proc. IUI, ACM, 2010, pp. 11–20. ACM

M.Y. Ivory, M.A. Hearst, The state of the art in automating usability evaluation of user
interfaces. ACM Comput. Surv 33(4), 470–516 (2001)

J.H. Kim, D.V. Gunn, E. Schuh, B. Phillips, R.J. Pagulayan, D. Wixon, Tracking real-
time user experience (TRUE): a comprehensive instrumentation solution for complex
systems, in Proc. CHI, 2008, pp. 443–452

C. Kimble, P.M. Hildreth, I. Bourdon, Communities of Practice: Creating Learning Envi-
ronments for Educators vol. v. 1 (Information Age Pub., ???, 2008)

A.J. Ko, B.A. Myers, Designing the whyline: a debugging interface for asking questions
about program behavior, in Proc. CHI, 2004, pp. 151–158

A.J. Ko, B.A. Myers, A framework and methodology for studying the causes of software
errors in programming systems. J VISUAL LANG COMPUT 16(1), 41–84 (2005)

A.J. Ko, H.H. Aung, B.A. Myers, Design requirements for more flexible structured editors
from a study of programmers’ text editing, in CHI’05 extended abstracts on human
factors in computing systems, ACM, 2005a, pp. 1557–1560. ACM

A.J. Ko, H.H. Aung, B.A. Myers, Eliciting design requirements for maintenance-oriented
IDEs: a detailed study of corrective and perfective maintenance tasks, in Proc. ICSE,
2005b, pp. 126–135

A.J. Ko, B.A. Myers, M.J. Coblenz, H.H. Aung, An exploratory study of how developers
seek, relate, and collect relevant information during software maintenance tasks. IEEE
Trans. Softw. Eng. 32(12), 971–987 (2006)

A.G. Koru, A. Ozok, A.F. Norcio, The effect of human memory organization on code reviews
under different single and pair code reviewing scenarios, in ACM SIGSOFT Software
Engineering Notes, vol. 30, 2005, pp. 1–3

N. Kushman, D. Katabi, Enabling Configuration-Independent Automation by Non-Expert
Users. Proceedings of the Ninth USENIX Symposium on Operating Systems Design and
Implementation, 223–236 (2010)

J. Lawrance, R. Bellamy, M. Burnett, K. Rector, Using information scent to model the
dynamic foraging behavior of programmers in maintenance tasks, in Proc. CHI, ACM,
2008, pp. 1323–1332. ACM

J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, S.D. Fleming, How programmers
debug, revisited: An information foraging theory perspective. IEEE Trans. Softw. Eng.
39(2), 197–215 (2013)

J. Lawrence, S. Clarke, M. Burnett, G. Rothermel, How well do professional developers test
with code coverage visualizations? An empirical study, in Proc. VL/HCC, 2005, pp.
53–60

M.R. Leary, Introduction to behavioral research methods (Wadsworth Publishing Company,
???, 1991)

V.I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10(8), 707–710 (1966)

H. Li, Z. Xing, X. Peng, W. Zhao, What help do developers seek, when and how?, in Proc.
WCRE, 2013, pp. 142–151

D.G. Lowe, Object recognition from local scale-invariant features, in Proc. ICCV, vol. 2,
1999, pp. 1150–1157

J. Matejka, W. Li, CommunityCommands: Command Recommendations for Software Ap-
plications. Proc. UIST, 193–202 (2009)

J. Matejka, T. Grossman, G. Fitzmaurice, Ambient help, in Proc. CHI, 2011, pp. 2751–2760
M. Muja, D.G. Lowe, Fast Approximate Nearest Neighbors with Automatic Algorithm Con-

figuration., in VISAPP (1), 2009, pp. 331–340
E.R. Murphy-Hill, T. Zimmermann, N. Nagappan, Cowboys, ankle sprains, and keepers of

quality: how is video game development different from software development?, in Proc.
ICSE, 2014, pp. 1–11

36 Empir Software Eng

T. Nakamura, T. Igarashi, An application-independent system for visualizing user operation
history, in Proc. UIST, 2008, pp. 23–32

Z. Nie, Y. Zhang, Object-Level Ranking : Bringing Order to Web Objects, in Proc. WWW,
2005, pp. 567–574

Z. Nie, Y. Ma, S. Shi, J.-r. Wen, W.-y. Ma, Web Object Retrieval, in Proc. WWW, 2007,
pp. 81–90

E. Parzen, On estimation of a probability density function and mode. Annals of mathemat-
ical statistics 33(3), 1065–1076 (1962)

D. Piorkowski, S.D. Fleming, C. Scaffidi, L. John, C. Bogart, B.E. John, M. Burnett, R.
Bellamy, Modeling programmer navigation: A head-to-head empirical evaluation of pre-
dictive models, in Proc. VL/HCC, 2011, pp. 109–116

L. Ponzanelli, A. Bacchelli, M. Lanza, Seahawk: Stack overflow in the IDE, in Proc. ICSE,
2013, pp. 1295–1298

L. Rabiner, B.H. Juang, An introduction to hidden markov models. IEEE ASSP Magazine
3(1), 4–16 (1986)

R. Ragulayan, D. Gunn, R. Romero, A gameplay-centered design framework for human
factors in games (Taylor & Francis, 2006)

L.M. Rea, R.A. Parker, Designing and conducting survey research: A comprehensive guide
(Proc. John Wiley & Sons, ???, 2012)

B. Rhodes, Remembrance Agent: A continuously running automated information retrieval
system, in The Proceedings of The First International Conference on The Practical
Application Of Intelligent Agents and Multi Agent Technology, 1996, pp. 122–125

M.P. Robillard, W. Coelho, G.C. Murphy, How effective developers investigate source code:
An exploratory study. IEEE Trans. Softw. Eng. 30(12), 889–903 (2004)

E. Rosten, T. Drummond, Machine learning for high-speed corner detection, in Computer
Vision–ECCV 2006 (Springer, ???, 2006), pp. 430–443

A. Sarma, L. Maccherone, P. Wagstrom, J. Herbsleb, Tesseract: Interactive visual explo-
ration of socio-technical relationships in software development, in Proc. ICSE, 2009, pp.
23–33

N. Sawadsky, G.C. Murphy, Fishtail: From Task Context to Source Code Examples, in
Proceeding of the 1st workshop on Developing tools as plug-ins - TOPI, 2011, p. 48

J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell 22(8), 888–905 (2000)

J. Sillito, K. De Voider, B. Fisher, G. Murphy, Managing software change tasks: An ex-
ploratory study, in International Symposium on Empirical Software Engineering, IEEE,
2005, p. 10. IEEE

B.W. Silverman, Density estimation for statistics and data analysis, vol. 26 (CRC press,
???, 1986)

S.N. Sinha, J.-M. Frahm, M. Pollefeys, Y. Genc, GPU-based video feature tracking and
matching, in EDGE, Workshop on Edge Computing Using New Commodity Architec-
tures, vol. 278, 2006, p. 4321

M. Vakilian, N. Chen, S. Negara, B.A. Rajkumar, B.P. Bailey, R.E. Johnson, Use, disuse,
and misuse of automated refactorings, in Prco. ICSE, 2012, pp. 233–243

M.W. Van Someren, Y.F. Barnard, J.A. Sandberg, et al., The think aloud method: A prac-
tical guide to modelling cognitive processes, vol. 2 (Academic Press London, ???, 1994)

A. von Mayrhauser, A.M. Vans, Program understanding behavior during debugging of large
scale software, in Empirical Studies of Programmers, 7th Workshop, ACM, 1997, pp.
157–179. ACM

J. Wang, X. Peng, Z. Xing, W. Zhao, An exploratory study of feature location process:
Distinct phases, recurring patterns, and elementary actions, in Proc. ICSM, 2011, pp.
213–222

J. Wang, X. Peng, Z. Xing, W. Zhao, Improving feature location practice with multi-faceted
interactive exploration, in Proc. ICSE, 2013, pp. 762–771

M. Weigel, V. Mehta, J. Steimle, More than touch: understanding how people use skin as
an input surface for mobile computing, in Proc. CHI, ACM, 2014, pp. 179–188. ACM

E.W. Weisstein, Least squares fitting–exponential. MathWorld-A Wolfram Web Resource.
http://mathworld. wolfram. com/LeastSquaresFittingExponential. html (2011)

J.A. Whittaker, J.H. Poore, Markov analysis of software specifications, 1993

Empir Software Eng 37

D.-C. Wu, W.-H. Tsai, Spatial-domain image hiding using image differencing. Proc. IC-
CVISP 147(1), 29–37 (2000)

J. Yang, J. McAuley, J. Leskovec, P. LePendu, N. Shah, Finding progression stages in time-
evolving event sequences, in Proc. WWW, 2014, pp. 783–794

T. Yeh, T.-H. Chang, R.C. Miller, Sikuli: using GUI screenshots for search and automation,
in Proc. UIST, 2009, pp. 183–192

Q. Zhang, Y. Chen, Y. Zhang, Y. Xu, SIFT implementation and optimization for multi-core
systems, in Proc. IPDPS, 2008, pp. 1–8

J. Zhu, Z. Nie, X. Liu, B. Zhang, J.-R. Wen, StatSnowball: a statistical approach to extract-
ing entity relationships, in Proc. WWW, 2009, p. 101

