Empir Software Eng @ CrossMark
https://doi.org/10.1007/s10664-018-9608-7

APIReal: an API recognition and linking approach
for online developer forums

Deheng Ye!? . Lingfeng Bao® ©© . Zhenchang Xing* -
Shang-Wei Lin!

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract When discussing programming issues on social platforms (e.g, Stack Overflow,
Twitter), developers often mention APIs in natural language texts. Extracting API mentions
from natural language texts serves as the prerequisite to effective indexing and searching
for API-related information in software engineering social content. The task of extracting
API mentions from natural language texts involves two steps: 1) distinguishing API men-
tions from other English words (i.e., API recognition), 2) disambiguating a recognized API
mention to its unique fully qualified name (i.e., API linking). Software engineering social
content lacks consistent API mentions and sentence writing format. As a result, API recog-
nition and linking have to deal with the inherent ambiguity of API mentions in informal
text, for example, due to the ambiguity between the API sense of a common word and the
normal sense of the word (e.g., append, apply and merge), the simple name of an API can
map to several APIs of the same library or of different libraries, or different writing forms

Communicated by: Denys Poshyvanyk

P4 Lingfeng Bao
lingfengbao @zju.edu.cn

Deheng Ye
ydyl1991 @gmail.com

Zhenchang Xing
zhenchang.xing@anu.edu.au

Shang-Wei Lin
shang-wei.lin@ntu.edu.sg

School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang
Avenue, Singapore, Singapore

2 Tencent Al Lab, Shenzhen, China
College of Computer Science, Zhejiang University, Hangzhou, China

Research School of Computer Science, Australian National University, Canberra, Australia

Published online: 05 March 2018 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9608-7&domain=pdf
http://orcid.org/0000-0003-1846-0921
mailto:lingfengbao@zju.edu.cn
mailto:ydyl1991@gmail.com
mailto:zhenchang.xing@anu.edu.au
mailto:shang-wei.lin@ntu.edu.sg

Empir Software Eng

of an API should be linked to the same API. In this paper, we propose a semi-supervised
machine learning approach that exploits name synonyms and rich semantic context of API
mentions for API recognition in informal text. Based on the results of our API recognition
approach, we further propose an API linking approach leveraging a set of domain-specific
heuristics, including mention-mention similarity, scope filtering, and mention-entry similar-
ity, to determine which API in the knowledge base a recognized API actually refers to. To
evaluate our API recognition approach, we use 1205 API mentions of three libraries (Pan-
das, Numpy, and Matplotlib) from Stack Overflow text. We also evaluate our API linking
approach with 120 recognized API mentions of these three libraries.

Keywords Mining software repositories - API recognition - API linking -
Semi-supervised learning - Natural language processing

1 Introduction

APIs are an important resources for software engineering. APIs appear not only in source
code, but also in natural language texts, such as formal API specifications and tutorials,
as well as developers’ informal discussions, e.g., emails and online Q&A posts. Extracting
API mentions from natural language texts serves as the prerequisite to effective indexing
and searching for API-related information in software engineering social content. With the
advances of Web 2.0, Stack Overflow has become the most prominent online forum in
software engineering, archiving rich informal textual discussions on APIs. In this paper, we
are concerned with the problem of extracting API mentions from informal texts such as
Stack Overflow discussions.

Extracting API mentions from natural language texts involves two consecutive steps:
API recognition and API linking. API recognition distinguishes API mentions from normal
English words in a sentence. We illustrate the API recognition step in Fig. 1, which shows
a sentence from a Stack Overflow post (postid is 12182744). In this sentence, we would
like to recognize the series and the second apply as API mentions, which are a class name
and a method name of the Pandas Library, respectively. In contrast, the first apply should
be recognized as a common English word. After an API mention has been recognized,
the API linking step links it to its unique fully qualified form as appeared in the official
API documentation. The API linking step is illustrated in Fig. 2. In this example, after we
recognize the API mention “apply” in the sentence shown in Fig. 1, API linking aims to
further determine which apply method this API mention actually refers to, because there are
more than one method with the simple name “apply” in the Pandas library.

Informal discussions on social platforms (such as Stack Overflow) are contributed by
millions of users with very diverse technical and linguistic background. Such informal texts

|API: the Series cIass|
\

“ | want to apply a function with arguments to series in python
pandas. The documentation describes support for apply method,
but it doesn't accept any arguments. ”

| API: the apply() method

Fig. 1 Illustrating our task. Step 1: API recognition

@ Springer

Empir Software Eng

Linking Candidates

pandas.Panel.apply()

pandas.DataFrame.apply()

pandas.Series.apply()
A recognized API; g pandas.core.window.Rolling.apply()
simple name pandas.core.window.Expanding.apply()
pandas.core.groupby.GroupBy.apply()
apply

pandas.tseries.resample.Resampler.apply()

pandas.formats.style.Styler.apply()

Fig. 2 Illustrating Our Task. Step 2: API Linking

lack consistent API mention and sentence writing format. As shown in Table 1 and Fig. 1,
fully qualified API names are rarely mentioned in developers’ discussions on Stack Over-
flow. Instead, Stack Overflow users often use the simple name or other derivational forms
of an API in the discussions. Furthermore, as shown in Table 2, even for the same API
form, the surrounding sentence context of an API mention (e.g., the usage of verb, noun and
preposition) also varies greatly. As a result, API recognition and linking have to deal with
the inherent ambiguities of API mentions in informal text. For example, we need to distin-
guish the API sense of the word “apply” and the normal sense of “apply” in the sentence
shown in Fig. 1. We need to disambiguate the specific apply method that the simple-name
API mention “apply” in a sentence actually refers to as illustrated in Fig. 2. The challenge is
that these ambiguities have to be resolved in the face of API mention and sentence context
variations as shown in Tables 1 and 2.

In this paper, we develop a semi-supervised machine learning approach to solve the API
recognition problem in informal texts. To model API-mention and sentence-context vari-
ations, our approach exploits state-of-the-art unsupervised language models, in particular
class-based Brown Clustering (Brown et al. 1992; Liang 2005) and neural-network-based
word embedding (Mikolov et al. 2013b; Turian et al. 2010) to learn word clusters of
semantically similar words from the abundant unlabeled text. Empowered by the compound
word-cluster features from unsupervised language models fed into a linear-chain Condition

Table 1 A subset of variant

forms of API mentions Writing form Frequency Remarks
pandas.DataFrame.apply() 3 Standard form
pandas.DataFrame.apply 10
.apply 624 Nonpolysemous derivations
apply() 177
-apply() 79
dataframe.apply 117
df.apply 215
df.apply() 20
apply 4,530 Polysemy

@ Springer

Empir Software Eng

Table 2 Sentences mentioning the same API form

Post ID Sentence-context variations

15589354 I have finally decided to use apply which I understand is more flexible.
29627130 if you run apply on a series the series is passed as a np.array.

25275009 It is being run on each row of a Pandas DataFrame via the apply function.
21390035 I am confused about this behavior of apply method of groupby in pandas.
18524166 You are looking for apply.

7580456 I tested with apply, it seems that when there are many sub groups, it’s very slow.

Random Field (CRF) model (Lafferty et al. 2001), together with an iterative self-training
mechanism (a.k.a. bootstrapping) (Wu et al. 2009), our approach requires a small set of
human labeled sentences to train a robust model for recognizing API mentions in informal
natural language sentences.

Based on the results of our API recognition approach, we develop a rule-based
fine-grained API linking method. Our API linking approach leverages mention-mention
similarity, mention-entry similarity, and a set of Stack Overflow specific heuristics for
scope filtering. We borrow the terms mention-mention similarity and mention-entry simi-
larity from the entity linking work done by Liu et al. (2013). Specifically, mention-mention
similarity measures the contextual similarity between recognized API mentions, and
mention-entry similarity computes the similarity between the context of the current API
mention and the content of an API entry in the knowledge base. Scope filtering uses a set
of Stack Overflow specific information, such as tags, question title and code blocks, to help
eliminate the number of linking candidates.

For the evaluation of our API recognition approach, we deploy our approach on Stack
Overflow discussions that contain APIs of three Python libraries, i.e., Pandas, Numpy and
Matplotlib. We choose these Python libraries, because they define many common-word
APIs, making their informal mentions ambiguous with the normal sense of the common
words. Meanwhile, these three libraries are popular Python libraries for very different
functionalities and have been widely discussed on Stack Overflow. We then compare our
approach with three state-of-the-art API recognition methods in natural language texts,
including lightweight regular expressions (Bacchelli et al. 2010), code-annotation enhanced
regular expressions (Parnin et al. 2012; Linares-Vasquez et al. 2014), and machine-learning
based software-specific entity recognition (Ye et al. 2016a). We show that our approach
consistently and significantly outperforms these three baseline methods. For the evaluation
of our API linking approach, we first prepare a knowledge base containing the information
of the official fully qualified API names of the Python Standard Library and the aforemen-
tioned three Python libraries. Then, based on the results of our API recognition, we examine
the API linking results of 120 ambiguous API mentions that have more than 1 linking can-
didates in the knowledge base. We show that our linking approach achieves high precision
and recall.

2 Challenges in API recognition and linking in informal text

In this section, we describe the challenges for effective API recognition and linking in
informal software engineering texts.

@ Springer

Empir Software Eng

API recognition This step aims to recognize tokens in a natural language sentence that
refer to public modules, classes, methods or functions of certain libraries as API mentions.
API mentions exist in both source code and natural language texts. In this work, we per-
form API recognition and linking from natural language texts. Extracting APIs from code
snippets using code parsers, e.g., partial program analyzer (PPA), is related to but not the
research focus of the present paper.

Recognizing API mentions in natural language sentences is a prerequisite for indexing,
analyzing, and searching informal natural language discussions for software engineering
tasks (Rigby and Robillard 2013). Many applications require API recognition as the first
step or can benefit from it, e.g., fine-grained API linking (Bacchelli et al. 2010; Dagenais
and Robillard 2012; Rigby and Robillard 2013; Subramanian et al. 2014), API recommen-
dation (Rahman et al. 2016; Zheng et al. 2011) and bug fixing (Chen and Kim 2015; Gao
et al. 2015). Indeed, the importance of API recognition from natural language sentences
has long been recognized. Representative techniques include language convention based
regular expressions (Bacchelli et al. 2009, 2010; Dagenais and Robillard 2012) and island
parsing (Bacchelli et al. 2011; Rigby and Robillard 2013). These techniques usually rely on
observational orthographic heuristics to distinguish APIs from normal words in a natural
language sentence: 1) distinct API naming conventions (e.g., words containing camelcases
or special characters like ., ::, or ()); 2) structured sentence format (e.g., code-like phrases
like “a=series.apply()” or API annotation). These heuristics perform well for cases where
orthographic features are prevalent and consistently used, e.g., extracting camelcased Java
APIs from official documentations (Dagenais and Robillard 2012). However, they fall short
to address the following two fundamental challenges in API recognition from informal
natural language texts:

— Common-word polysemy: Many APIs’ simple name is a single common word. For
example, 55.04% of the Pandas’s APIs have common-word simple names, such as the
class Series and the method apply. When such APIs are mentioned with distinct ortho-
graphic features, such as pandas.Series, <code>apply</code>, and apply(), we can
easily recognize them. Unfortunately, this is not always the case due to the informal
nature of the texts. Then, such common-word APIs appear just as common words in
a sentence, as shown in Fig. 1. In fact, the token apply (using a software-specific tok-
enizer (Ye et al. 2016a)) appears 4,530 times in the discussions tagged with pandas.
Using our trained model, we estimate that about 35.1% (1590/4530) of these apply
tokens are true API mentions (labeling confidence score > 0.8). This creates the chal-
lenge in distinguishing the API sense of a common word from the normal sense of
the word, for example, the first apply (a common word) and the second apply (an
API mention) in Fig. 1. In fact, for API recognition from developers’ informal dis-
cussions (e.g., emails). Bacchelli et al. (2010) have already shown that this challenge
poses a big threat to language-convention based regular expressions, as no observa-
tional orthographic features can be utilized. The polysemy problem becomes even more
evident for the case of the C programming language due to its API naming convention,
when compared to Java, as studied in Bacchelli et al. (2010). However, this common-
word polysemy challenge is generally avoided by considering only APIs mentions
with distinct orthographic features in an existing work (Rigby and Robillard 2013). As
to our best knowledge, there has been no research work in the software engineering
community addressing the polysemy problem in fine-grained API recognition.

— Sentence-format variations: Informal discussions on social platforms (such as Stack
Overflow) are contributed by millions of users with very diverse technical and linguistic

@ Springer

Empir Software Eng

background. Such informal discussions are full of misspellings, synonyms, inconsis-
tent annotations, etc. Consequently, the same API is often mentioned in many different
forms intentionally or accidentally. Table 1 lists a subset of variant forms of poten-
tial mentions of the apply method and their frequencies in the discussions tagged with
pandas. We can see that standard API names are mentioned very few times. Instead,
users use non-standard synonyms (e.g., DataFrame written as df) and various non-
polysemous derivational forms (e.g., .apply, df.apply) that can be partially matched to
the full name or the full name synonym. In addition, the polysemous common-word
apply is used 4,530 times. Even for the same API form, the surrounding sentence
context of an API mention also varies greatly. As shown in Table 2, there are lacks
of consistent usage of verb, noun and preposition in the discussions. All these API-
mention and sentence-context variations make it extremely challenging to develop a
complete set of regular expressions or island grammars for inferring API mentions.

To handle common-word polysemy and API-mention variations, we propose to exploit
the sentence context in which an API is mentioned to recognize API mentions in informal
natural language sentences. The rationale is that no matter what an API’s name is or in what
form an API is mentioned, the sentence context of an API mention can help distinguish an
API mention from non-API words. However, as shown in Table 2, to make effective use of
sentence context, we must model sentence-context variations in informal social discussions.
Unfortunately, it is impractical to develop a complete set of sentence context rules or to label
a huge amount of data to train a machine learning model, not only due to prohibitive effort
needed but also out-of-vocabulary issue (Li and Sun 2014; Liu et al. 2011) in informal text,
i.e., variations that have not been seen in the training data even after a huge amount of data
has been examined.

API linking After an API mention has been recognized, API linking step further links
the API mention to its unique fully qualified form as appeared in the official API docu-
mentation. As pointed out in Table 1, Stack Overflow users rarely write the fully qualified
name of an API. Instead, the unqualified informal name has been widely used, particularly
the simple name. The partially qualified name and simple name of an API can be ambigu-
ous (Dagenais and Robillard 2012; Subramanian et al. 2014). In 2014, Subramanian et al.
observed 89% of the Java unqualified method names collide. The ambiguity in API men-
tions leads to the fact that even after we recognize a word as a true API mention, we may
still not know which specific API the API mention refers to.

An API linking system should be able to handle the inherent ambiguities of API men-
tions. In 2012, Dagenais and Robillard summarized four kinds of ambiguities lying in
the supporting documents of the Spring framework written in Java (including both natu-
ral language texts and code snippets). In 2014, Subramanian et al. highlighted two kinds
of ambiguities in the Java code snippets from Stack Overflow. In our context, we are con-
cerned with linking API mentions in informal natural language texts from Stack Overflow
posts (excluding code snippets), and we use Python APIs as a case study. The ambiguities of
Python API mentions in Stack Overflow text are similar but also different to those existing
works, discussed as follows.

— Declaration Ambiguity. We reuse the term “declaration ambiguity” from Dagenais and
Robillard (2012) and Subramanian et al. (2014). Fully qualified API names are rarely
mentioned in developers’ discussions on Stack Overflow. Instead, Stack Overflow users
often use the simple name or other derivational forms of an API in a post, as shown in
Table 1 and Fig. 1. In such cases, it is not an easy task for the machine to automatically

@ Springer

Empir Software Eng

and precisely infer the correct linking target, i.e., a specific API that an ambiguous API
mention refers to.

— External Reference Ambiguity. We continue to use the term “external reference ambigu-
ity” same as Dagenais and Robillard (2012) and Subramanian et al. (2014). One Stack
Overflow discussion thread can cover knowledge of more than one library. As such,
Stack Overflow text may refer to an API declared in an external library but has the same
simple name or partially qualified name as one of the APIs in the focused libraries. For
example, Pandas is one of our studied libraries, Stack Overflow discussions on Pandas
may refer to an API in the Python Standard Library, or other related libraries.

— Synonym Ambiguity. As mentioned above, the informal nature of online Q&A dis-
cussions introduces synonyms, abbreviations, misspellings (errors), inconsistent anno-
tations, etc. Consequently, the same API is often mentioned in various forms, while
these variant writing forms should be linked to the same API in the knowledge base.
The ambiguity of such variant API mentions is different from the language ambiguity
defined in Dagenais and Robillard (2012) which only covers errors. Thus, we name it
synonym ambiguity.

3 Related work
3.1 API recognition and linking in software engineering

Our work is related to both API recognition and API linking. API recognition is a foun-
dational software engineering task. It is the prerequisite to the research on API linking
(Antoniol et al. 2002; Marcus et al. 2003; Jiang et al. 2008; Bacchelli et al. 2009, 2010;
Dagenais and Robillard 2012; Rigby and Robillard 2013; Subramanian et al. 2014). It can
also benefit many other software-related applications, such as API recommendation (Rah-
man et al. 2016; Zheng et al. 2011), bug fixing (Chen and Kim 2015; Gao et al. 2015), and
API usage tutorial linking (Wu et al. 2016). Here we discuss some representative methods
for recognizing and linking APIs, which are categorized and summarized in Table 3.

Research on API recognition and linking can be roughly divided into two categories
based on the linking granularity, i.e., coarse-grained and fine-grained. The trend is evolving
from coarse-grained to more fine-grained. Coarse-grained link refers to the link between
two coarse-grained artifacts like an entire document and a source class in the source code.
One important reason of creating coarse-grained links is to ease software maintenance by
bridging code blocks, e.g., class, to the corresponding documentation. Therefore, we can
consider these coarse-grained linking works as software maintenance oriented. By compar-
ison, fine-grained recognition and linking attempt to recognize a single API that consists
of one token and link it to its formal form. Developers can acquire more specific knowl-
edge of an API from applications based on such fine-grained linking techniques, e.g., the
Baker tool (Subramanian et al. 2014). In this sense, these fine-grained linking works could
be considered as knowledge acquisition oriented.

Antoniol et al. (2002), Marcus et al. (2003), and Jiang et al. (2008) performed coarse-
grained API linking leveraging information retrieval techniques, i.e., vector space model
(VSM), latent semantic indexing (LSI) and incremental LSI, respectively, to link the textual
content of API documentation to source code of targeted systems. In these work, there are no
advanced fine-grained API recognition techniques involved, essentially the API mentions
are preprocessed together with other texts and are represented as bag-of-words to be utilized
by information retrieval methods.

@ Springer

Empir Software Eng

pourei3-our

paurei3-ourg

paurei3-aur

paurei3-our

paureI3-asieo)

paureI3-asreo)
paureI3-asIeo))
paureis-as1eo))

paurei3d-asieo))

19)]1J 9doos

‘K)LrerTuars [en)xag,
J[orIQ 191} AToATIRIN]
S)[nsaI uoNIuS003I U0
Paseq sonsLNAY SuLL]
S)[NSaI UONIUZ0I2I U0
Paseq sonsLNaY ULy
(IST ASA) U1 Al
‘uryorew uing

IST TeluawaIou]
Surxopuy onuewag jusie|
[OPOIA 20vdg 103007

Surure|
poasiaradns-ruag

vdd

Jewwess puesy
Vvdd
‘suorssardxe rengoy

Jewwess pue[sy

suorssa1dxa 1e[n3oy
Surssoooxdard ixag,
Surssaooxdaxd 3xa],

Surssaoordard 1xag,

1X9) 2UIUQ

1oddrus apoo aurjuQ

1X9) 2UI[UQ
yaddrus apoo
JX9) WNIOJ ‘[eriony,

s[rewo 1adofaAd(q

srewrd 1odofead(q
uoneUAWNIOp [JV
uoneuaWNIOp [JV

UONBIUAWNIOP [JV

[e9YIdV
(¥10¢ 'Te 19 ueruRWRIQNG)

(€£10T pre[1qoy pue £q3ry)

(T10T pre[[Iqoy pue sreusse()
(110T 'Te 10 H[aydoey)

(010T ‘6002 Te 32 1[[yodRy)
(800 'Te 12 Suelf)

(€00 'Te 1 SnoTRY)

(200T 'Te 12 [oruojuy)

pajuatLio-

uonisiboe

a3pomouyy

pajuaLIo-

[duruajUTEW

aremjjos

Ajre[nuern)

Sunyur |dV

uonu3odar [dy

sanbruyoay, Aoy

PAIPIS SIOBIIIY

SIop Joug

spoyjour Junjur] pue uontugooar ide Sunsixa yPim Sutredwo) ¢ IqBL

pringer

NS

Empir Software Eng

Bacchelli et al. (2009, 2010) developed an API extraction and linking infrastructure
(referred to as Miler). They used lightweight regular expressions of distinct orthographic
features and information retrieval techniques to detect class and method mentions in devel-
oper emails. They found that information retrieval techniques did not work for fine-grained
API extraction task, whose performance was even significantly worse than lightweight reg-
ular expressions. Importantly, their study pointed out that common-word polysemy and
non-standard API synonyms significantly degraded the performance of lightweight regular
expressions. However, no working solution tackling the polysemy and synonym problems
in API recognition is proposed.

Dagenais and Robillard (2012) developed RecoDoc to extract Java APIs from several
learning resources (formal API documentation, tutorial, forum posts, code snippets) and
then performed traceability link recovery over the contents of these different sources. They
devised a pipeline of filters to resolve the traceability link ambiguities. However, they
extracted API mentions from natural language texts using regular expressions similar to
those of Miler (Bacchelli et al. 2010). That is, their API extraction from natural language
texts again relied on distinct orthographic features of APIs.

Island parsing is another popular technique for extracting information of interest from
texts. By defining island grammars, the textual content is separated into constructs of inter-
est (island) and the remainder (water) (Moonen 2001). Bacchelli et al. (2011) extracted
structured code fragments from natural language texts with island parsing. However, the
recognized code fragments were not further parsed to fine-grained APIs and no API link-
ing is conducted. Rigby and Robillard (2013) also used island parser to identify code-like
elements that can potentially be APIs. They further resolved the code-like phrases to fine-
grained APIs. However, they assumed that true API mentions had to be written with
orthographic features to be captured by island grammars. In their study, simple names
of methods that are not suffixed by () are simply ignored (Rigby and Robillard 2013).
For example, they considered only HttpClient.execute and execute() as API mentions, but
ignored the single word execute which also likely refers to the same APIL

There is much auxiliary information that can help users identify code or APIs in the web
page of a Stack Overflow post (e.g., the code snippets inside < code >< /code >, API
links inside < @ >< /a >, etc.). For example, both of the two studies by Parnin et al. (2012)
and Linares-Vasquez et al. (2014) utilize HTML tags including < code >< /code >
and < a >< /a > to extract and link the API entities on Stack Overflow. Using the
extracted API mentions, Parnin et al. (2012) studied the phenomena of crowd documentation
and Linares-Viasquez et al. (2014) studied the impact of API changes on Stack Overflow
discussions. Subramanian et al. (2014) developed the Baker tool to extract API mentions
from online code snippet on Stack Overflow using partial program analysis (PPA), and then
linked the extracted APIs to their formal form that appeared on the offical documentation.
The core idea of Baker is to utilize the co-occurance of APIs in the same code snippet
to iteratively reduce the number of linking candiates in the knowledge base. The artifact
studied in Baker is code snippet, while we are concerned with API recognition and linking
in informal natural language texts.

3.2 Entity recognition and linking in general domains
Our approach for API recognition is related to two lines of research in the natural language
processing community, i.e., named entity recognition (NER) whose goal is to recog-

nize and categorize entities (e.g., person, location and organization) in natural language
texts (Liu et al. 2011; Li and Sun 2014; Liao and Veeramachaneni 2009), and word sense

@ Springer

Empir Software Eng

disambiguation (WSD) whose goal is to disambiguate the sense of polysemous words in a
given sentence context (Mihalcea 2004; Navigli 2009; Chen et al. 2014). In our dataset, we
observe the sense ambiguity of normal English words (for example “set as a verb or a noun”)
and the presence of co-reference (like “it computes the length of a set in which it refers to an
API”). In this work, our focus is to disambiguate the API sense of a common word and the
normal sense of the word. Disambiguating different senses of normal English words (Mihal-
cea 2004; Navigli 2009; Chen et al. 2014) and resolving co-references (Yarowsky 1995;
Navigli 2009) themselves are very challenging NLP problems, which are out of scope of
the present paper.

Recently, Ye et al. (2016a) proposed a machine learning based approach, called S-NER,
to recognize general software-specific entities, including APIs, in software engineering
social content. S-NER’s F1-score for API recognition is much lower than that of other types
of software entities, such as programming languages and software standards. This is due
to: 1) S-NER aims to recognize a broad category of software entities, making it very dif-
ficult to build a gazetteer with good coverage of APIs; 2) S-NER uses only basic context
features, i.e., the word itself, word shape and word type of the surrounding words, and thus
has limited toleration to context variations as these basic context features cannot capture the
semantic similarity between different words. Moreover, there is no API linking performed
in S-NER.

Considering the fact that an API is an entity in the context of software engineering, our
approach for API linking belongs to the general category of entity linking. A community-
curated list of publications on entity linking can be found at http://nlp.cs.rpi.edu/kbp/2014/
elreading.html. Wikipedia has been widely used as the knowledge base to be linked to
among these work. Contextual similarity based approaches are widely adopted (Shen et al.
2012; Mihalcea and Csomai 2007; Liu et al. 2013). We adapt the similarity based method
used in Liu et al. (2013) to our specific problem of API linking in the context of Stack
Overflow textual discussions.

4 The API extraction approach

In this section, we describe the two steps of our API extraction approach, i.e., API recognition
and API linking. We name our API REcognition And Linking apporach as APIReal.

4.1 API recognition

Let T be a discussion thread, i.e., a question and all its tags, answers and comments, in
Stack Overflow. A question or answer is referred to as a post in Stack Overflow. Let S € T
be a natural language sentence with code snippets removed from a post.

Given a natural language sentence S, the API recognition step is to recognize all API
mentions in S, as illustrated in the example in Fig. 1. Specially, we use the dynamically-
typed programming language Python as a case study, and we want to extract tokens in a
natural language sentence that refer to public modules, classes, methods or functions of
certain libraries as API mentions. An API mention should be a single token rather than a
span of tokens when the given sentence is tokenized properly, preserving the integrity of
code-like tokens. API mentions can be of the following forms:

— Standard API full name: The formal full name of an API from the official API website,
e.g., pandas.DataFrame.apply or pandas.DataFrame.apply() of the Pandas library;

@ Springer

http://nlp.cs.rpi.edu/kbp/2014/elreading.html
http://nlp.cs.rpi.edu/kbp/2014/elreading.html

Empir Software Eng

— Non-standard synonym: Variants of a standard API name that are composed of
commonly-seen library or class name synonyms, e.g., pd.merge, pandas.df.apply, or
pd.df.apply in which pandas is written as pd and DataFrame is written as df;

— Non-polysemous derivational form: API mentions that can be partially case-insensitive
matched to a standard API name or its non-standard synonym, e.g., dataframe.apply,
df.apply, .apply, or apply();

— Polysemous common-word: common-words that refer to the simple name of an API,
such as Series (class) and apply (method) of Pandas, Figure (class) and draw (method)
of Matplotlib, and Polynomial (class) and flatten (method) of Numpy.

In this work, we focus on tackling common-word polysemy and sentence-format varia-
tion issues in recognizing whether a token is an API mention of certain libraries. Figure 3
shows the main steps of APIReal for recognizing API mentions: 1) APIReal performs a
preprocess step including code snippet removal, HTML tag clearing, and tokenization. 2)
APIReal uses two unsupervised language models (i.e., class-based Brown clustering (Brown
et al. 1992) and neural-network based word embedding (Turian et al. 2010; Mikolov et al.
2013b)) to learn word representations from unlabeled text and cluster semantically simi-
lar words. 3) APIReal constructs an API inventory based on the Brown clustering. 4) We
select training sentences and label them. 5) APIReal trains a linear-chain Conditional Ran-
dom Field (CRF) model based on the labeled sentences using orthographic features from
tokens, compound word-representation features from the two different unsupervised lan-
guage models, and gazetteer feature from the API inventory. 6) We also perform an iterative
self-training process to alleviate the lack of labeled data for model training.

4.1.1 Text preprocessing

Motiviation In this study, we focus on recognizing API entities from natural language
texts. Hence, given a Stack Overflow post, we need to perform a preprocessing step
including code snippet removal, HTML tags cleaning, and tokenization.

Approach We remove large code snippets in <pre> <code>, but keep short code elements
in <code> in natural language sentences. We write a sentence parser to split the post text
into sentences. For a natural language sentence, we use our software-specific tokenzier (Ye
et al. 2016b) to tokenize the sentence. This tokenizer preserves the integrity of code-like
tokens. For example, it tokenizes pandas.DataFrame.apply() as a single token, instead of

mEHE
Selection & Labeling bld) Data
[S—

API Inventory

Feature
Extraction

Labeled

SO ||

Post;

Preprocessing Sentences Clustering Representations
Word
Embedding

Fig. 3 API recognition of APIReal. The inputs are Stack Overflow sentences, and the output is a trained
machine learning model that can recognize API mentions in the input sentences

Labeling

@ Springer

Empir Software Eng

a sequence of 7 tokens, i.e., pandas . DataFrame . apply (). For other texts (e.g., email),
different preprocessing steps, sentence parser, and tokenizer may be needed.

4.1.2 Learning word representations

Motiviation In informal social discussions, both API mentions and sentence context vary
greatly (see Tables 1 and 2). These variations result in out-of-vocabulary issue (Li and Sun
2014) for a machine learning model, i.e., variations that have not been seen in the training
data. As we want only minimal effort to label training data, it is impractical to address the
issue by manually labeling a huge amount of data. However, without the knowledge about
variations of semantically similar words, the trained model will be very restricted to the
examples that it sees in the training data. To address this dilemma, we propose to exploit
unsupervised language models to learn word clusters from a large amount of unlabeled text.
The resulting word clusters capture different but semantically similar words, based on which
a common word representation can be produced to represent the words in a cluster. Word
representations are then used as features to inform the model with variations that have not
been seen in the training data.

Approach The state-of-the-art unsupervised language models include class-based Brown
clustering (Brown et al. 1992; Liang 2005) and neural-network based word embed-
ding (Mikolov et al. 2013b). Different language models make different assumptions about
corpus properties to evaluate the semantic similarity of words. Empirical studies (Guo et al.
2014; Yu et al. 2013) show that Brown clustering and word embedding produce complemen-
tary view of the semantic similarity of words, and when combined together as compound
features, they can significantly improve the performance of entity recognition techniques.
Considering the informal and diverse nature of our text, we decide to use both Brown
clustering and word embedding to learn word representations.

We assume that users are interested in extracting API mentions of a particular library
(e.g., Pandas or Numpy). To learn unsupervised language models, we collect a large set of
Stack Overflow posts that are tagged with the library, excluding those containing sentences
selected as training data. The posts are preprocessed and split into sentences in the text
preprocessing step. This produces a large set of unlabeled sentences. Unlike prior work
(Guo et al. 2014; Yu et al. 2013; Ye et al. 2016a; Li and Sun 2014; Yao and Sun 2015),
we do not convert words into lowercase. This is because many APIs have initial-capitalized
name, e.g., the Series class of the Pandas library. We want language models to treat them as
different words from their lowercase counterparts.

Given this set of unlabeled sentences, Brown Clustering (Brown et al. 1992) outputs a
collection of word clusters. Each word belongs to one cluster. Words in the same cluster
share the same bitstring representation. Previous studies (Yao and Sun 2015; Ye et al. 2016a;
Li and Sun 2014) show that Brown clusters are useful to identify abbreviations and syn-
onyms. Indeed, we exploit Brown clusters learned from unlabeled text to expand standard
API names with commonly-seen name synonymes.

For neural-network based word embedding, we use a continuous skip-gram
model (Mikolov et al. 2013a, b) to learn a vector representation (i.e., word embedding) for
each word. Word embeddings have been shown to capture rich semantic and syntactic reg-
ularities of words (Mikolov et al. 2013b; Turian et al. 2010). However, studies (Guo et al.
2014; Wang and Manning 2013; Yu et al. 2013) show that it is inefficient to directly use the
low-dimensional continuous word embeddings as features to a linear-chain CRF model for
entity recognition, because the linear CRF theoretically performs well in high-dimensional

@ Springer

Empir Software Eng

discrete feature space. Therefore, following the treatment of prior work (Guo et al. 2014; Yu
et al. 2013), we transform the word embeddings to a high-dimensional discrete representa-
tions leveraging the K-means clustering. Concretely, each word is treated as a single sample,
and each K-means cluster is represented as the mean vector of the embeddings of words
assigned to it. Similarities between words and clusters are measured by Euclidean distance.
Similar to Guo et al. (2014), we set K to a set of values (e.g., 500, 1000, 1500, 2000, 2500)
to obtain a set of K-means clusters. After K-means clustering, each word is represented as
the ID of the cluster in which the word belongs to, i.e., a one-shot K-dimensional vector
in which the ith dimension is set to 1 if the word belongs to the ith cluster and all other
dimensions are set to 0.

Word representations obtained from the Brown clusters and the word embedding clusters
are used as features to the CRF model. This helps the CRF model tolerate semantically sim-
ilar API-mentions and sentence-context variations, and thus alleviate the out-of-vocabulary
issue.

4.1.3 Constructing API inventory

Motiviation A gazetteer of known entities is often compiled for NER and WSD tasks.
Partial name match of gazetteer entities is commonly used as an important feature for the
CRF training, which has been shown to improve the performance of the trained model.
However, our previous work on software-specific NER shows that a gazetteer of standard
API names contributes only marginally to the NER performance. This is because of the wide
presence of non-standard API synonyms and their derivational forms in informal natural
language texts (see Table 1 for examples). Therefore, we construct an API inventory for a
library that contains not only standard API names but also commonly-seen synonyms of
API mentions.

Approach Our approach adopts and combines the best practices for API inventory con-
struction from API recognition and linking works (Bacchelli et al. 2010; Dagenais and
Robillard 2012; Rigby and Robillard 2013) as well as from entity extraction works in
general domain (Mihalcea 2004; Navigli 2009; Chen et al. 2014). Given a library, we
first crawl a list of standard API names from the library’s official website. For example,
for the Pandas library, the list of standard API names includes pandas.DataFrame, pan-
das.DataFrame.apply, etc. Following the treatment of prior NER (Liu et al. 2011; Li and
Sun 2014) and WSD (Navigli 2009; Mihalcea 2004) work, we remove extremely common
English words from the inventory, such as data, all, because most of mentions of these
extremely common English words are not API mentions.

Then, we examine the Brown clusters that contain the standard API names and their
derivational forms, from which we can easily observe tokens that are semantically similar
to the standard API names and their derivational forms, but written in different synonym
forms. We infer commonly-seen synonyms of API mentions from these tokens, e.g., pandas
written as pd, DataFrame written as df.

In our study, we observe that synonyms of library and class/module names are common,
while we rarely see synonyms of method/function names (except for some misspellings).
Therefore, we infer synonyms of standard API names using a simple combination of the
observed library/class/module name synonyms. As our goal is not to compile a complete list
of API synonyms, the analysis of commonly-seen synonyms does not require much effort.
According to our experience, constructing the API inventory for a library requires only 2-3
hours, if the developer is familiar with web scraping and Brown clustering techniques.

@ Springer

Empir Software Eng

The API inventory serves two purposes: 1) partial match of API names or synonyms in
the inventory is used as a feature for the CRF; 2) ensuring that training data and test data
reach a good coverage of polysemous and derivational forms of library APIs.

4.1.4 Training sentences selection and labeling

Motiviation The quality and amount of human labeled data for model training are essen-
tial to the performance of a machine learning system. However, there have been no dedicated
efforts for labeling APIs in natural language sentences for tackling common-word poly-
semy issue in the task of API extraction. To train an effective machine learning model for
distinguishing the API sense and the normal sense of common words, the labeled data must
contain not only API mentions with distinct orthographic features but also sufficient pol-
ysemous common-word API mentions. Similar treatment has been adopted in word sense
disambiguation research (Chen et al. 2014; Mihalcea 2004).

Approach In our work, we select training sentences that mention APIs of a particular
library (e.g., Pandas in our evaluation), based on the API inventory of the library. However,
the trained machine learning model is not limited to extracting API mentions of this par-
ticular library. Instead, it can robustly extract API mentions of very different libraries (e.g.,
Numpy, Matplotlib).

Inspired by the ambiguous location name extraction work (Li and Sun 2014) and the
mobile phone name extraction work (Yao and Sun 2015), we propose to generate training
data with minimal human labeling effort as follows. We manually split the APIs in the API
inventory into two subsets based on whether an API’s simple name has distinct orthographic
features and whether the simple API name can be found in a general English dictionary. The
simple name of an API in the non-polysemous set must have unambiguous orthographic
features, for example, camel case Multilndex, underscore read_csv, or must not be found in
a general English dictionary, for example, swaplevel, searchsorted. In contrast, the simple
name of an API in the polysemous set does not have distinct orthographic features and the
simple name is a general English word, for example, series, apply and merge. Although the
qualified name of an API always has distinct orthographic features, such as pandas.series,
apply(), the simple name can be polysemous.

We select Stack Overflow sentences for labeling as follows. First, we randomly select
300 sentences from the posts that are tagged with the particular library. Each of these 300
sentences must contain tokens that exactly match the standard name of at least one API in the
non-polysemous set, but must not contain tokens that match the simple name of the APIs in
the polysemous set. Different sentences may mention the same APIs in the non-polysemous
set. For these 300 sentences, we do not need to manually label the sentences. Those tokens
that exactly match the standard name of the non-polysemous APIs can be automatically
labeled as API mentions. Second, we randomly select sentences that contain tokens that
match the simple name of at least one API in the polysemous set. These sentences contain
tokens that can not only be API mentions but also be common words. Therefore, we must
manually examine the selected sentences and label API mentions (if any) in the sentences.
The selecting and labeling continues until we collect sentences that contain at least 200
mentions of the APIs in the polysemous set.

The selected sentences constitute the set of human labeled data for model training. This
initial set of training data will be expanded using self-training, as discussed in the next step.

@ Springer

Empir Software Eng

4.1.5 CRF-based classifier

Motiviation Given a token in a natural language sentence, APIReal determines whether
the token is an API mention or a normal word using a linear-chain Conditional Random
Fields (CRF) (Lafferty et al. 2001). The CRF classifier is the state-of-the-art model for
sequential labeling, which is particularly strong at learning contextual features. In our work,
the CRF classifier is trained using a small set of human labeled sentences and a large set of
machine labeled sentences obtained through self-training. After training, the classifier can
be used to label the tokens of unlabeled sentences as API mentions or normal words.

Approach In this work, we design three kinds of features for the CRF classifier: ortho-
graphic features of the current token (word) and its surrounding tokens, word-representation
features of the current token and its surrounding tokens, and gazetteer features based on the
API inventory. To illustrate our feature design, we use the following notations: w; denotes
the current token. w; 1 denotes the next kth token to the current token, e.g., w; is the next
token to the current token. w;_j denotes the previous kth token to the current token.

— Orthographic features. This set of features include: 1) exact token, including the cur-
rent token w;, the surrounding tokens of the current token in the context window [-2, 2],
the bigrams w;4xw;+x+1 (—2 < k < 1) in the context window [-2, 2], i.e., w;—pw;_1,
Wi—1 Wi, WiWit1, Wi+1Wi42; 2) word shape of the current token w; and its surround-
ing tokens in the context window [-2, 2], including whether the token contains dot(s)
and/or underscore, and whether the token is suffixed with a pair of round brackets; 3)
word type of the current token w; and its surrounding tokens in the context window [-2,
2], including type indicates if the token is all-capitalized or first-letter-capitalized, if it
is made of all-symbol, all-letter, all-digit, a mixture of symbol and letter, etc.

— Word-representation features. For K-means clusters of word embeddings, each word
in the corpus is assigned with a cluster ID. We denote the cluster ID of the current word
as ¢;. Following the pioneer work of utilizing compound cluster features (Guo et al.
2014; Yu et al. 2013), our word-embedding-cluster features are: 1) the cluster ID of the
current word and its surrounding words in the context window [-2, 2]; 2) the bigrams of
the cluster ID of the words within the context window, i.e., ¢ 4xCitk+1 (—2 < k < 1);3)
the bigram of the cluster ID of the previous word and the next word, i.e., ¢j—c;+1. For
Brown clustering, each word is represented as a bitstring. Our Brown-cluster features
are: 1) the bitstring of the current word and its surrounding words in the context window
[-2, 2]; 2) the prefixes of the bitstring of the current word and its surrounding words in
[-2, 2]. The prefix lengths we use in this work are {2, 4, 6, 8, ..., 14}.

— Gazetteer features. We use the API inventory as the gazetteer. Each standard API
name or name synonym is an entry of the gazetteer. We perform string matching to
the entries of the gazetteer, and use the matching result as our gazetteer feature. In
particular, given a token w, we first remove the “()” if w is suffixed with “()”. The
resulting word, denoted as w_nb, is then matched to the gazetteer using the follow-
ing criteria: 1) if w_nb contains no dot or w_nb ends with a dot, we perform exact
matching to the gazetteer entries; 2) if w_nb is prefixed with a dot, we consider it as
a match if any entries end with w_nb; 3) if w_nb contains dot in the middle, we con-
sider it as a match if any entries begin with w_nb or partially match to .w_nb. (i.e.,
with a prefix dot and a suffix dot). We have the third rule because, if users write
“e.g”, a simple partial string matching will match the token to the API name like
“pandas.core.groupby.GroupBy.transform”, which is not desired.

@ Springer

Empir Software Eng

4.1.6 Iterative self-training

Motiviation The quality of a machine learning model relies on the sufficient, high-quality
training data. However, we only manually label a small set of training data in this work.
Although using unsupervised word representations alleviates the out-of-vocabulary issue,
to further alleviate the lack of training data, we propose to use an iterative self-training
mechanism (Wu et al. 2009), through which high-confidence machine labeled sentences
will be added to the training dataset to retrain the model incrementally. This self-training
process will expose the model to much more sentence variations that have not been covered
by human labeled data.

Approach Algorithm 1 outlines the self-training process. The algorithm first trains a CRF
classifier using the small set of human labeled data. Then, for each unlabeled sentence S,
the algorithm uses the current CRF classifier to label the sentence and obtains a machine
labeled sentence Sigpeieq and the confidence conf of the labeling result (lines 4-5). If the
labeling confidence is above the user-specified threshold «, the machine labeled sentence
is added to the set of labeled training sentences (lines 6-9). Once more than N machine
labeled sentences are added, the algorithm retrains the CRF classifier with the larger set of
labeled sentences (including both human labeled and machine labeled) (lines 10-14). The
new CREF classifier will be used to label the rest of the unlabeled sentences. The process
continues until all unlabeled sentences are processed or the maximum number iterations has
been done.

Algorithm 1 Self-training the CRF-based Classifier

Data: A stream of unlabeled sentences unlabelsents;
A set of labeled training sentences te;

Result: The CRF classifier /

1 te < human labeled sentences;

2 | =train(te);

3 for S € unlabeledsents && iterations < M do

4 S = feature_extractor(S);

5 (Stavetea, conf) = crf label(l, S);

6

7

8

9

if conf > o then
te <—te U {Siapeled);

n=n+1;

end
10 ifn > N then
11 [l =train(te);
12 iterations + +;
13 n=020;
14 end
15 end

4.2 API linking
After we perform API recognition over a piece of natural language texts, our next task in

this paper is to disambiguate the correctly recognized API mentions to its unique formal
form (i.e., fully qualified name), as illustrated in the example in Fig. 2. API recognition

@ Springer

Empir Software Eng

tells whether a given token is an API or not, while disambiguating which specific API an
API mention refers to is the job of API linking. To perform API linking, we need an API
knowledge base for linking. Each entry of the API knowledge base is the target to be linked
to Subramanian et al. (2014), and each mention of the recognized APIs in the text is the
source to link from. Figure 4 shows the main steps of our rule-based approach for API
linking, which consists of three components: mention-mention similarity, scope filter, and
mention-entry similarity. The input is the content of a discussion thread with API mentions
recognized, which is pipelined through the three components. The output is a ranked list of
APIs to be linked.

Note that not all API mentions are ambiguous thus require linking. For example, if an
API is mentioned with its fully qualified name, there should be only one linking candidate
in the knowledge base. It is also easy to perform linking if an API’s simple name is unique.
Thus, to evaluate if an API linking approach works, we have to focus on those API mentions
that are highly ambiguous, i.e., those with multiple mappings in the API knowledge base.
An API is considered correctly linked if and only if both the recognition and linking are
correct.

Knowledge base population Unlike existing entity linking work that uses Wikipedia as
the knowledge base for general domains, there has been no publicly-available knowledge
base for our specific API linking task. Therefore, we construct a knowledge base consisting
the information of our studied Python APIs. Such knowledge base has also been named as
code element index in the software engineering community (Rigby and Robillard 2013).

We crawl API information for each studied library from their official site. Inspired by
the API information crawled in other works (Bacchelli et al. 2010; Dagenais and Robillard
2012; Rigby and Robillard 2013), each entry (or record) in our knowledge base contains 7
fields:

1. 1D, i.e., the unique ID of an entry.

name. We store the fully qualified API as it appears in the official API documentation

in this field.

URL, which is the unique URL address for the AP

4. library, which is the library the API belongs to (Pandas, Numpy, Matplotlib or Python
Standard Library).

5. class, which represents the declaring class of the API if applicable. If the API is a
method or function, then there has to be a class or a module hosting the API according
to the naming convention of Python. If the API itself is already a class or module, then
this field is populated with ‘N/A’.

6. type, e.g., if the API is a method or a class. In our case, we consider the API type of
a Python module or class as class, and we consider the type of a Python function and
method as method.

w

Ranked List

Linking candidate 1

EDiscussion Thread with ! Mention-mention " Mention-entry N .
\ APIs Recognized | > Similarity Scope Filter Similarity » Linking candidate 2

Y
Y

Fig. 4 API linking of APIReal. The input is the content of the discussion thread with API mentions
recognized, and our API linker links an API mention to its fully qualified form in the official documentation

@ Springer

Empir Software Eng

7. description. This field consists of the textual descriptions of the API from the official
API documentation.

Linking API mentions to knowledge base entries Once we recognize an API men-
tion, we match it against the “name” field of our knowledge base. Note that the “name”
field stores fully qualified API name, while the API mentions on Stack Overflow are mostly
unqualified. Hence, we design regular expressions to perform partial matching. We add a
dot as the prefix if the mention is the simple name of the API. For example, if the recog-
nized API mention is written as “apply”, our regular expression for partial matching will be
“*.apply”. We also perform lightweight normalization to API mentions that are written in
derivational forms, using the name variations observed when we constructed the API inven-
tory. For example, “df.apply” will be normalized as “dataframe.apply” before we match it
to the knowledge base entries. The matching to the knowledge base can potentially give us
a list of linking candidates. We then use the three components i.e., mention-mention simi-
larity, scope filter, and mention-entry similarity, to determine which linking candidate is the
correct one to be linked to. The three components are executed in sequence. The mention-
mention similarity component is determinative to the output once it is activated. The scope
filter is to help reduce the number of linking candidates. Finally, the mention-entry similarity
component is used to rank the linking candidates.

— Mention-mention similarity. This component checks if there exists similar API men-
tions in the context that have been linked or is relatively unambiguous. For a given
recognized API mention, we examine the global context within the discussion thread
by checking: 1) if the same API mention has been manually added with a URL link by
Stack Overflow users; and 2) if a relatively formal version of the same API mention
can be found. For example, in this Stack Overflow question http://stackoverflow.com/
questions/35782929, “groupby” is an Pandas API. One of the “groupby” mentions has
been added with a URL link to the official webpage of “groupby”. In this case, if some
other “groupby” mentions without manual links are recognized as APIs by our API
recognition, we link these “groupby” mentions to the same URL.

— Scope filter. This component consists of a set of heuristics leveraging the global context
of the current discussion thread to narrow down the scope of API linking. We first
check if the declaring library of a possible candidate can be found in the tags of the
question or title of the question. This is done through simple lowercase string match.
Stack Overflow tags help to sort questions into specific, well-defined categories so that
we can have a general idea about what the question is asking about. One Stack Overflow
question has at least one tag. Similarly, the question title summarizes the topic of the
question. With the title and tags information, we can potentially eliminate non-relevant
candidates from other libraries.

Although we are performing API linking in text rather than the code blocks on Stack
Overflow, we utilize the code blocks posted in the question or answer to reduce the
number of linking candidates. Particularly, we use code blocks to find the potential
declaring class (type) of the API mentioned in the nearby text, so as to resolve ambi-
guities for method or function names. Stack Overflow uses the Google Code Prettify
Library! to perform lightweight syntax highlighting of code blocks in posts: code ele-
ments like keywords, types (classes), literal value, comments, etc., are augmented with

Thttps://github.com/google/code- prettify

@ Springer

http://stackoverflow.com/questions/35782929
http://stackoverflow.com/questions/35782929
https://github.com/google/code-prettify

Empir Software Eng

 HTML tags of different classes. This provides a good source of information to
design our scope filters, because the potential declaring classes can be obtained easily
by selecting span elements whose class attribute is fyp. Extracting the type information
from the code blocks can be useful to cases where the post contains few textual descrip-
tions. We assume that a method is likely to be discussed together with its declaring class
rather than other classes. Therefore, once a class can be found from the code blocks, we
can use the class to help disambiguate method names recognized in discussion thread.
We further use the recognized API mentions that are classes (i.e., the recognized API is
a class) for a similar job. Recall that in our knowledge base, for each API, we stored its
type either as a class or a method. After we recognize an API mention, we further check
its type by querying the knowledge base. If the type is class, we use it to disambiguate
method mentions that are written in their simple names.

— Mention-entry similarity. Although the scope filter can potentially reduce the number
of potential candidates, it may not be able to reduce the number of linking candidates to
only 1, i.e., finding the specific fully qualified API name, because 1) the tags and title
matching only works at declaring library level; 2) we may not always find type/class
from code blocks. Similarly, the mention-mention similarity component is not applica-
ble in cases where there is no related reference URL or formal version of API mentions
found in the discussion. To overcome these shortcomings, we compute the mention-
entry similarity, which is the textual similarity between a discussion thread and the
documentation of an entry of the knowledge base. Specifically, after we apply the scope
filter, we compare the content of the current discussion thread with the content of each
of the linking candidates. We represent the content of the discussion thread and the con-
tent of the documentation of the entry as term frequency—inverse document frequency
(TF-IDF) vectors. In our context, TF is the number of times a token appear in the cur-
rent document while IDF is the inverse of the number of documents a token appears
across the collection of documents. Here the collection of documents refers to the cur-
rent discussion thread plus all the descriptions of the linking candidates (one description
is one document). We use logarithmic scaling because it is the standard way to reduce
the distorting effect of code elements that are redundantly repeated in a single docu-
ment (Rigby and Robillard 2013). We then calculate the textual similarity between the
TF-IDF vector and each of the TF-IDF vectors of the linking candidates using cosine
similarity, based on which we rank the linking candidates.

5 Experimental setup

This section describes tools we use to implement APIReal, studied libraries, model training
settings, human labeling of test dataset, evaluation metrics, and the baseline methods we
use to compare APIReal.

5.1 Implementation and replication package

We implement web crawlers using Scrapy? to crawl official API names. For the implementa-
tion of the linear CRF, we use CRFsuite,> a popular CRF toolkit for sequential labeling. For

2Scrapy, http://scrapy.org/
3CRFSuite, http://www.chokkan.org/software/crfsuite/

@ Springer

http://scrapy.org/
http://www.chokkan.org/software/crfsuite/

Empir Software Eng

Table 4 General information of the studied libraries

Library Version #Questions Attribute #APIs #Polysemous API %

Pandas 0.18.0 22,226 Panel data analysis 774 426 55.04%
Matplotlib ~ 1.5.1 16,480 2D plotting 3877 622 16.04%
Numpy 1.10.1 24,390 Scientific computing 2217 917 41.36%

Brown Clustering, we use Liang’s implementation.* We learn continuous word embeddings
using word2vec,” which contains an efficient open-source implementation of the skip-gram
model (Mikolov et al. 2013b). We use the K-means implementation from Sofia-ML 6 to
perform K-means clustering of the continuous word embeddings.

A replication package of our study can be downloaded at https://goo.gl/oeU7k8. This
replication package contains the implementation of our API recognition and linking method.
We provide training and testing data in format of CoNLL’ file, which is widely used in
Natural Language Processing (NLP). For API recognition, users can convert a text file into
a CoNLL file using the python script texttoconll.py. Then, users can extract features based
on CoNLL files using the python script enner.py. Finally, users can use CRFsuite to learn
a CRF model. For the API Linking, users can use the python script apilink.py. We also
provide the API inventory used in our study as a MySQL dump and the results of word
representations using Brown cluster and word embedding.

5.2 Studied libraries

For API recognition, the key challenge is to distinguish the API sense of a common word and
the normal sense of the word in a natural language sentence. To evaluate whether APIReal
achieves this objective, we need to choose libraries that often use common words as API
names. To this end, we choose three Python libraries, i.e., Pandas, Numpy, and Matplotlib.
Table 4 summarizes the information of the three libraries, including the number of Stack
Overflow questions that are tagged with the corresponding library tag. We construct the API
inventory for the three libraries. APIs in the inventory are then split into a non-polysemous
set and a polysemous set. Pandas, Numpy and Matplotlib have 55.04%, 16.04% and 41.36%
APIs whose simple name is polysemous common word, respectively.

For API linking, considering the scope of the case study in this paper, we construct
a knowledge base consisting of the API information of the above three libraries and the
Python Standard Library. The information is crawled from the data sources listed in Table 5.
In total, our knowledge base is populated with 13713 entries.

5.3 Model training and testing for the learning-based recognition
Training The sentence selection and labeling process has been described in Section 4.1.

The labeling results are cross-checked by the first author and the fourth author to reach
agreements. We use Fleiss Kappa (Fleiss 1971) to measure the agreement between two

4Brown Clustering, https:/github.com/percyliang/brown-cluster
SWord2vec, https://code.google.com/archive/p/word2vec/
6Sofia-ML, https://code.google.com/archive/p/sofia-ml/
http://www.signll.org/conll/

@ Springer

https://goo.gl/oeU7k8
https://github.com/percyliang/brown-cluster
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/sofia-ml/
http://www.signll.org/conll/

Empir Software Eng

Table 5 Data source for knowledge base population

Library Source

Pandas http://pandas.pydata.org/pandas-docs/stable/api.html
Matplotlib http://matplotlib.org/api/index.html

Numpy http://docs.scipy.org/doc/numpy-1.10.1/genindex.html
Python standard https://docs.python.org/2/library/index.html

annotators. The Kappa value between two annotators is equal to 0.893, which indicates an
almost perfect agreement between the annotators (see the interpretations of Kappa values
in Table 6). This level of agreement is because most of APIs are easy to be determined by
human. The disagreements between the two annotators are mainly due to misunderstandings
of APIs. Such disagreements can be resolved easily by resorting to the API documents.

Unlabeled sentences used to learn Brown clusters and word embeddings include all the
sentences from Stack Overflow that are tagged with pandas, numpy and matplotlib.
For Brown clustering, we ignore the words that appear fewer than 3 times in the unlabeled
sentences, and the number of Brown clusters is set to 500. For word-embedding clusters
using K-means, we follow the settings of Guo et al. (2014), i.e., we set K to 500, 1000, 1500,
2000, 2500 to get 5 clustering results. These 5 word-embedding clusters and the Brown
clusters are used as word-representation features to the CRF.

For the self-training process, we randomly select unlabeled sentences using the API
inventory of the Pandas library, and feed these sentences as a stream of unlabeled sentences
to Algorithm 1. We iterate the self-training 10 times (i.e., M = 10). We follow the empir-
ical parameter settings of prior work (Mihalcea 2004; Liao and Veeramachaneni 2009; Liu
et al. 2011). The threshold of confidence score for adding a machine labeled sentence into
the training set is 0.8, i.e., « at line 6 of Algorithm 1. With this high threshold, machine
labeled sentences will not introduce much noise to the model. Meanwhile, it is not too strict
so that the self-training can expand the model with unseen examples that are different from
the training examples that are already in the training set. We set N to 500, i.e., once 500
high-confidence machine labeled sentences are added into the training set, we re-train the
model.

Testing For each of the three studied library, i.e., Pandas, Numpy and Matplotlib, we
randomly select and label natural language sentences from the Stack Overflow posts and
comments that are tagged with the corresponding tag. We stop labeling once we obtain at
least 150 sentences, each of which must contain at least one mention of an API in the API

Table 6 The interpretations for

Kappa values Kappa value Interpretation
<0 poor agreement
[0.01, 0.20] slight agreement
[0.21, 0.40] fair agreement
[0.41, 0.60] moderate agreement
[0.61, 0.80] substantial agreement
[0.81, 1.00] almost perfect agreement

@ Springer

http://pandas.pydata.org/pandas-docs/stable/api.html
http://matplotlib.org/api/index.html
http://docs.scipy.org/doc/numpy-1.10.1/genindex.html
https://docs.python.org/2/library/index.html

Empir Software Eng

inventory of the library. The mention can be standard name, non-standard synonym, or non-
polysemous derivational form of the API. Meanwhile, our testing data must also contain at
least 150 sentences, each of which must contain at least one mention of a polysemous API
by its simple name. The labeling results are cross-checked by the first and third author to
reach agreement on the labels.

In the end, our testing dataset has 3,389 sentences containing 65,857 tokens. Among
these 3,389 sentences, 903 sentences (26.6%) contain at least one API mention. Table 7
summarizes the statistics of different forms of API mentions. In total, the testing data con-
tains 1,205 API mentions for the three libraries, which refer to 33.9%, 36.1% and 30% of the
APIs of the respective library. Among the 1,205 total API mentions, 44% of API mentions
(531 times) in our testing data are polysemous common-word mentions.

6 Experiment results and analysis

We now report experiment results and analyze our findings.
6.1 API recognition

6.1.1 Baselines

We compare the learning-based API recognition approach of APIReal with three state-of-
the-art methods for fine-grained API recognition from natural language texts.

— LightRegExp - Lightweight regular expressions. We implement lightweight regular
expressions used in Miler (Bacchelli et al. 2010). Specifically, Miler supports dictionary
look-up combined with lightweight regular expressions to extract APIs from emails.
Regular expressions are defined based on language convention and one punctuation
rule. Same to Miler, we perform dictionary look-up in our API inventory and devise
lightweight regular expressions based on Python’s language conventions (e.g., check
the existence of dot and underscore). We use the same punctuation checking rule as
Miler, which checks if a token is surrounded by punctuations (please refer to Subsection
“Punctuation” in Section 4 of Miler (Bacchelli et al. 2010) for details).

— CodeAnnotationRegExp - Code annotation enhanced regular expressions. We com-
bine regular expression baseline with code annotations (e.g., HTML tags < code ><
/code >, < a >< /a >) to extract API entities on Stack Overflow. Some previous
studies (e.g., Parnin et al. 2012 and Linares-Vasquez et al. 2014) have shown that these
code annotations based on HTML tags can help users identify and link API entities. In
this baseline, the token that is annotated with <code> can be considered as an “island”

Table 7 Statistics of API -]
mentions in testing dataset Library #API Mentions

Standard/deriv! Synonym/deriv Polysemy Total

Pandas 167 59 182 408
Matplotlib 184 62 189 435
Numpy 88 114 160 362
Total 439 235 531 1,205

lderiv = derivational form

@ Springer

Empir Software Eng

(i.e., an API mention), which is the island parsing idea from the approach of Rigby and
Robillard (2013). However, our baseline approach does not consider immediate and
local context for sophisticated context analysis, which is used in the approach of (Rigby
and Robillard 2013).

MLNER - Machine-learning based NER. We use the software-specific entity recog-
nition tool (S-NER) proposed in our earlier work (Ye et al. 2016a) to recognize the
API mentions in our testing data. For fair comparison, we use the same set of features
used in Ye et al. (2016a), and re-train the model of S-NER with the same set of human
labeled sentences for training the CRF model of this work.

6.1.2 Results

Metrics We use precision, recall, and Fl-score to evaluate the performance of an API
recognition method. Precision measures what percentage the recognized APIs are correct;
recall measures what percentage the API mentions in the testing dataset are recognized
correctly by a method; and F1 is the harmonic mean of precision and recall.

Overall performance Table 8 shows the performance differences of the three evaluation
metrics for using the three baseline methods and our APIReal to extract all API mentions
in the testing dataset. The API recognition method of APIReal outperforms all the baseline
methods. It achieves the best and balanced precision and recall, and the F1-score is 0.876.

Table 8 Performance

Performance Analysis for LightRegExp: we observe almost the same performance
result as that of Miler (Bacchelli et al. 2010) for extracting API mentions of the C
library Augeas. Miler’s performance for extracting mentions of the Augeas’s APIs from
developer emails: precision 0.15, recall 0.64 and Fl-score 0.24. In our experiment,
the method LightRegExp (i.e., dictionary look-up and lightweight regular expressions)
achieves precision 0.125, recall 0.723 and Fl-score 0.213. This is because both the
C library Augeas and the three Python libraries used in this experiment define many
common-word APIs, which creates common-word polysemy issue once mentioned by
their simple name in the text. Miler’s approach resolves the issue by aggressively label-
ing common-word tokens as APIs, and thus achieves very low precision but good recall.
If a conservative strategy were adopted, the result would go the opposite, i.e., improved
precision but degraded recall. Overall, the method LightReg Exp cannot properly address
common-word polysemy issue.

Performance Analysis for CodeAnnotationRegExp: This baseline, which combines
code-annotation enhanced regular expressions with code annotations, proves to be
more useful and reliable for API extraction from informal text. CodeAnnotationRegExp
achieves balanced precision and recall, and the F1-score is 3 times higher than that of
the first baseline method LightRegExp. However, it still misses about 38% of the API
mentions and about 37% of the extracted API mentions are not true API mentions. This

differences between different Method Precision Recall Fl-score
API recognition methods
LightRegExp 0.125 0.723 0.213
CodeAnnotationRegExp 0.633 0.624 0.628
MLNER 0.825 0.678 0.744
APIReal 0.879 0.872 0.876

@ Springer

Empir Software Eng

baseline approach especially falls short to extract API mentions when users forget to
annotate the API mentions, such as the mention of the series class and the apply men-
tion in Fig. 1, which is common in Stack Overflow discussions. This might be because
our baseline CodeAnnotationRegExp does not consider immediate and local context,
which is used in the approach proposed by Rigby and Robillard (2013).

— Performance Analysis for MLNER: This baseline method MLNER, i.e., machine-
learning based software-specific named entity recognition, achieves significantly
higher precision and a moderate improvement on recall, compared with the second
baseline method CodeAnnotationRegExp. APIReal can improve the precision even fur-
ther, and meanwhile significantly improve the recall. The improvement on recall over
MLNER can be attributed to the use of unsupervised word representations as com-
pound semantic context features in our method. In contrast, MLNER uses only simple
orthographic context features, and thus its model puts more weight on the orthographic
features and word representations of the current word, and less on context features.
As a result, the improvement of MLNER on recall is moderate. Other new features
introduced in APIReal, such as commonly-seen synonyms in API inventory and self-
training, also contribute to boosting up precision and recall, compared with our previous
machine-learning based method (Ye et al. 2016a).

Individual libraries Table 9 shows the comparison of the API extraction performance of
different methods for the three studied libraries, respectively. Similar observations can be
made as the comparison of the overall performance.

An interesting observation is the performance improvement of the baseline MLNER and
APIReal (i.e., two different machine-learning based methods) across libraries. The baseline
MLNER performs the best on extracting mentions of Pandas’s APIs (F1-score 0.823), but
the performance drops significantly for Numpy’s and Matplotlib’s APIs (F1-score 0.749 and
0.629 respectively). Similarly, APIReal also performs the best for Pandas’s APIs (F1-score
0.901), but the performance of APIReal drops only slightly for Numpy’s and Matplotlib’s
APIs (F1-score 0.860 and 0.867 respectively).

Recall that we train the model of the baseline MLNER using sentences mentioning
some Pandas’s APIs. This model captures the knowledge about orthographic features and
semantic representations of Pandas’s APIs. Although Pandas’s APIs mentioned in the test-
ing dataset are different from those mentioned in the training data, they are all from the
same library, share similar orthographic features, and serve the overall similar semantics.
As a result, the knowledge learned from some Pandas’s APIs can help extract mentions of
other Pandas’s APIs in the testing dataset. However, this knowledge cannot be transfered to
other libraries that have different orthographic features and support different functionalities.

Table 9 API recognition performance for the 3 studied libraries

Method Pandas Matplotlib Numpy

Prec. Rec. Fl1 Prec. Rec. Fl1 Prec. Rec. F1
LightRegExp 0.153 0.791 0257 0.107 0.689 0.180 0.111 0.675 0.191
CodeAnnotationRegExp 0.640 0.615 0.627 0.611 0.622 0.617 0.617 0.645 0.631
MLNER 0.858 0.791 0.823 0.779 0.527 0.629 0.795 0.705 0.747
APIReal 0913 0.889 0901 0.856 0.879 0.867 0.847 0.873 0.860

@ Springer

Empir Software Eng

Therefore, the performance of the baseline MLNER drops significantly, especially for
Matplotlib which is more distant from Pandas than Numpy.

In addition to orthographic features and semantic representations of API mentions,
APIReal exploits two new features, i.e., commonly-seen name synonyms and semantic
representations of surrounding context of API mentions. Both features are derived from
unsupervised language models learned from abundant unlabeled text. The knowledge about
common synonyms and semantics of surrounding context, albeit obtained through unsu-
pervised learning, makes APIReal more robust than the baseline MLNER for extracting
mentions of Numpy’s and Matplotlib’s APIs.

Feature ablation We ablate one kind of feature(s) at a time from our full feature set
and study the impact of different kinds of features on the API extraction performance.
Table 10 reports the experiment results on precision, recall and F1-score. For orthographic
features ablation, we ablate word shape and word type features, but retain the current word
itself and its surrounding words as feature. Without orthographic features, the F1-score
drops slightly to 0.858. Without word-representation features for the current token and its
surrounding tokens, the Fl-score drops to 0.828. Without gazetteer feature, the Fl-score
decreases to 0.801. And without self-training, the CRF model trained using only human
labeled sentences achieves a F1-score of 0.85.

This result implies that the performance of APIReal is contributed by the combined
action of all its features. However, features from unsupervised word representations and
API inventory have a larger impact on the performance than orthographic features of tokens.
Without a particular kind of features, APIReal still outperforms the best baseline method
(i.e., MLNER). However, when ablating both features from word representations and API
inventory, i.e., only orthographic features are retained, the performance of APIReal deterio-
rates significantly, and becomes worse than two baselines, i.e., CodeAnnotationRegExp and
MLNER. This indicates the importance of word-representation and gazetteer features that
APIReal introduces. Furthermore, the results also show that with unsupervised language
models, APIReal can already achieve good performance. With small effort to construct
the API inventory, the performance can be further improved. If the optimal performance
is desired, users may also consider spending some manual efforts to annotate a small
set of sentences mentioning APIs of the target library and retrain the model through the
self-training process.

6.2 API linking

We select recognized API mentions from Stack Overflow questions that are tagged with
either Pandas, Numpy or Matplotlib. Note these questions may contain more than 1 tag.

Table 10 The impact of one kind of feature(s)

Precision Recall F1-score
Full-features 0.879 0.872 0.876
w/o orthographic features 0.842 0.871 0.858
w/o word representations 0.816 0.849 0.828
w/o gazetteer features 0.837 0.761 0.801
w/o word representations&gazetteer features 0.745 0.447 0.559
w/o self-training 0.861 0.839 0.850

@ Springer

Empir Software Eng

To evaluate the linking efficiency, all the API mentions chosen are method names, because
method names have generally more number of mappings in the knowledge base compared
to class names, except for cases where a method is written in a relatively formal form, such
as “dataframe.apply”, which only has one mapping in the knowledge base when we perform
partial matching. In total, we select 120 API mentions, 60 of them are from Pandas ques-
tions, 30 from Matplotlib questions and 30 from Numpy questions. Note that the size of our
ground truth dataset is similar to that of Baker (Subramanian et al. 2014). On average, each
of the selected API mentions has 7.6 linking candidates in the constructed knowledge base.
We create the ground truth data by manually inspecting the context of each API mention we
selected to identify its correct linking result. We then compare the linking results given by
the API linking approach of APIReal with our ground truth data labelings.

The experimental results are shown in Table 11. We mark it as a true positive (TP) when
the linked result of APIReal is the same as the ground truth labeling. It is a false posi-
tive (FP) when the linked result does not match the labeling. A false negative (FN) is for
the case when there is no linking result returned to the API mention but we would have
expected to see a linking results. Precision is calculated as TP/(TP+FP), recall is calcu-
lated as TP/(TP+FN), and F1 is the harmonic mean of precision and recall. We can see
that the API linking approach of APIReal is able to achieve an overall F1-score of 0.884.
Using APIReal, the highest F1-score happens for the case of the Pandas Library (F1-score
is 0.909). We observe similar amount of FP and FN cases for each of the 3 studied libraries.

Furthermore, we also find that TF-IDF based cosine similarity does not always pro-
duce the highest similarity score for the correct API description. Sometimes it can only
be useful to shrink the pool of candidates instead of picking the correct candidate directly
like the mention-mention similarity component, which is similar to the scope filter com-
ponent. For example, in this Stack Overflow question http://stackoverflow.com/questions/
32350288/, for the linking of the recognized API errorbar, the mention-mention similarity
component is not activated, and the scope filter is only able to shrink the linking scope to
APIs of the Matplotlib Library, APIReal links it to the wrong entry in the knowledge base
(matplotlib.axes.Axes.errorbar) instead of the correct one (matplotlib.pyplot.errorbar) due
to similar TF-IDF scores. To overcome the limitation of TF-IDF on measuring mention-
mention and mention-entry similarity, we will consider more advanced word representation
approaches (e.g., topic distribution vector based on LDA topic model, word embedding,
etc.) in the future work to improve the linking quality.

7 Scalability of APIReal

For API recognition, our experiments demonstrate the generality of our approach for
extracting API mentions of three very different Python libraries from Stack Overflow

Table 11 Experimental results
of the API linking approach of Library #APIs TP FP FN Precision Recall Fl1

APIReal

Pandas 60 50 5 5 0.909 0.909 0.909
Matplotlib 30 22 3 5 0.880 0.815 0.846
Numpy 30 23 4 3 0.852 0.885 0.868
Total 120 95 12 13 0.888 0.880 0.884

@ Springer

http://stackoverflow.com/questions/32350288/
http://stackoverflow.com/questions/32350288/

Empir Software Eng

sentences. To expand APIReal to a new library, users need to prepare two kinds of informa-
tion, i.e., unsupervised language models and API inventory. To learn unsupervised language
models, users only need to collect a large corpus of unlabeled text, for example, Stack
Overflow posts that are tagged with the library name. Then, the learning is completely unsu-
pervised. To construct API inventory, users need to crawl standard API names from official
API websites, and then extend the standard API names with commonly-seen synonyms.
The identification of common synonyms is semi-automatic, based on human observation of
unsupervised Brown clusters. For the API Linking of APIReal, users need to prepare the
knowledge base for a new library. However, the knowledge base of APIReal is based on
API inventory, which is set up in API recognition step. Therefore, it will take little effort to
expand the API linking approach of APIReal to a new library.

Once unsupervised language models and API inventory for API recognition and knowl-
edge base for API linking are prepared, APIReal can recognize API entities in a Stack
Overflow post and link the recognized API mentions to corresponding API documentation
effectively. To evaluate the runtime performance of APIReal, we randomly select 100 Stack
Overflow posts with the tags of three Python libraries in our experiment and calculate the
runtime cost of API recognition and linking. The average and standard deviation runtime
cost per post for API recognition and linking are 7.09+5.02 and 7.38+6.24 seconds, respec-
tively. This experiment is run on a laptop with Mac OS 10.12, 2.3 GHz Intel Core i5 CPU,
and 16 GB memory. We find that the APIReal runtime is related to the length of a post, i.e.,
the longer a post, the more time APIReal takes. We also find that the processing step takes
the most proportion of runtime cost (\~80%). Thus, for the posts that have very long content,
we can split the content into several small parts, and then APIReal performs API recogni-
tion and linking for these small parts one by one. This could provide better user experience
in practice.

8 Threats to validity

API recognition One major threat to validity of the learning-based API recognition
approach of APIReal is human labeling of training and test sentences. The incorrect human
labels would potentially have negative effects on the modeling training and testing. To alle-
viate this threat, the authors cross-check the labeling results and resolve any disagreements
in the labeling results. However, sometimes even human cannot disambiguate whether a
token is an API mention or not, especially for common nouns that refer to basic comput-
ing concepts, for example, array and dataframe which can be basic computing concepts or
APIs (Numpy’s array package, Pandas’s DataFrame class). For example, Numpy has a array
package. For the sentences like “I use numpy’s array” or ”see array package of Numpy”,
we can easily label the array as API mentions. When preparing training and test sentences,
we find some sentences like “you can use array” in the post discussing the use of Numpy’s
array package. Even for human, it is difficult to determine whether the user refers to the
array package or the concept of array. Another similar case is the token dataframe, which
can be the concept of tabular data structure or the pandas.DataFrame. In our experiments,
we take a conservative strategy and do not label the token ‘array’ and ‘dataframe’ as API
mentions unless both authors agree.

The API evolution is also an threat to validity we encounter in data labeling. For example,
a user mentions “You can also downsample using the asof method of pandas.DateRange
objects” (post ID 10020591). From the sentence context, we label pandas.DateRange as an

@ Springer

Empir Software Eng

API mention. However, we cannot find pandas.DateRange in the official API reference of
the Pandas library. We search the Web and find that pandas.DateRange is an API in an old
version of Pandas, and has been renamed as pandas.data_range. In such cases, we still label
the token as an API mention. However, such cases are rare.

Another threat to validity is that we only implement two simple baseline approaches
to evaluate our approach APIReal. We find that “island parser” used in the approach of
Rigby and Robillard (2013) might be a more complicated candidate baseline. However,
Island parser is usually difficult to implement on code in English. The island parser usually
knows the structure of the language which is fine for code snippets and uses several context
filters. Most of this structure is not present when an API element is mentioned in English.
Hence, We implement a baseline using regular expression and code annotation, which has
been shown effectiveness on extracting API entities on Stack Overflow in several previous
studies (e.g., Parnin et al. 2012 and Linares-Vasquez et al. 2014). This baseline could also be
considered as a simplification of island parser because the annotated code can be considered
as an “island”, i.e., API mention but it does not consider the context around API mentions.

API linking The threats to validity of the API linking approach of APIReal in our eval-
uations involve: 1) the limited number of linking examples examined. We performed a
preliminary evaluation to our API linking approach by manually inspecting a ground truth
dataset consisting of 120 APIs for linking. However, we are able to observe similar perfor-
mances across different studied libraries. In the future, we will use more APIs from different
libraries to evaluate the API linking approach of APIReal. 2) our knowledge base only con-
sists of 13713 records crawled from 4 libraries, which is smaller compared to that of Baker
(Subramanian et al. 2014). However, Stack Overflow questions always contain at least one
tag to indicate the scope of the conservation. Even if we add more API information in the
knowledge base, we could always choose to simply limit the scope for linking to only a few
libraries or classes using our scope filter component, as covered previously.

9 Conclusions and future work

The primary focus of this paper is to address a long-avoided challenge in API recognition,
i.e., the ambiguity between the API sense and the normal sense of a common word in infor-
mal natural language sentences. We tackle the challenge by exploiting name synonyms and
semantic context features derived from unsupervised word representations learned from the
abundant unlabeled text. Our evaluation shows that using these features in conditional ran-
dom field, together with self-training, make our approach robust and accurate for extracting
common-word API mentions, even in the face of the wide presence of API-mention and
sentence-context variations in informal social discussions.

Second, this paper presents an rule-based API linking approach, based on the results of
the API recognition approach. We design a set of problem-specific heuristics that utilize the
global context of the discussion thread of a Stack Overflow question to resolve the inherent
ambiguities in API mentions. Our evaluation shows the effectiveness of the proposed linking
method.

In the future, we plan to further investigate the potential of applying clone detection based
methods (Abdalkareem et al. 2017), learning to link techniques (Milne and Witte 2008), as

@ Springer

Empir Software Eng

well as the recently proposed joint recognition and linking techniques (Ji et al. 2016), to the
research problem of API recognition and linking in software engineering.

References

Abdalkareem R, Shihab E, Rilling J (2017) On code reuse from stackoverflow: an exploratory study on
android apps. Inf Softw Technol 88:148—158

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links between code
and documentation. IEEE Trans Softw Eng (TSE) 28(10):970-983

Bacchelli A, D’ Ambros M, Lanza M, Robbes R (2009) Benchmarking lightweight techniques to link e-mails
and source code. In: Proceedings of the 16th working conference on reverse engineering (WCRE). IEEE,
Piscataway, pp 205-214

Bacchelli A, Lanza M, Robbes R (2010) Linking e-mails and source code artifacts. In: Proceedings of the
32nd ACM/IEEE international conference on software engineering (ICSE). ACM, New York, pp 375-
384

Bacchelli A, Cleve A, Lanza M, Mocci A (2011) Extracting structured data from natural language docu-
ments with island parsing. In: Proceedings of the 26th IEEE/ACM international conference on automated
software engineering (ASE). IEEE, Piscataway, pp 476-479

Brown PF, Desouza PV, Mercer RL, Pietra VID, Lai JC (1992) Class-based n-gram models of natural
language. Comput Linguist 18(4):467-479

Chen F, Kim S (2015) Crowd debugging. In: Proceedings of the 10th joint meeting on foundations of software
engineering (FSE). ACM, New York, pp 320-332

Chen X, Liu Z, Sun M (2014) A unified model for word sense representation and disambiguation. In:
EMNLP, Citeseer, pp 1025-1035

Dagenais B, Robillard MP (2012) Recovering traceability links between an api and its learning resources.
In: Proceedings of the 34th international conference on software engineering (ICSE). IEEE, Piscataway,
pp 47-57

Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378

Gao Q, Zhang H, Wang J, Xiong Y, Zhang L, Mei H (2015) Fixing recurring crash bugs via analyzing
q&a sites (t). In: Proceedings of the 30th IEEE/ACM international conference on automated software
engineering (ASE). IEEE, Piscataway, pp 307-318

Guo J, Che W, Wang H, Liu T (2014) Revisiting embedding features for simple semi-supervised learning.
In: EMNLP, pp 110-120

Ji Z, Sun A, Cong G, Han J (2016) Joint recognition and linking of fine-grained locations from tweets. In:
Proceedings of the 25th international conference on world wide web (WWW), International World Wide
Web Conferences Steering Committee, pp 1271-1281

Jiang HY, Nguyen TN, Chen X, Jaygarl H, Chang CK (2008) Incremental latent semantic indexing for
automatic traceability link evolution management. In: Proceedings of the 23rd IEEE/ACM international
conference on automated software engineering (ASE), IEEE Computer Society, pp 59-68

Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: Probabilistic models for segment-
ing and labeling sequence data. In: Proceedings of the Eighteenth international conference on machine
learning, ICML °01, pp 282-289

Li C, Sun A (2014) Fine-grained location extraction from tweets with temporal awareness. In: Proceedings
of the 37th international ACM SIGIR conference on research & development in information retrieval.
ACM, New York, pp 43-52

Liang P (2005) Semi-supervised learning for natural language. PhD thesis, Citeseer

Liao W, Veeramachaneni S (2009) A simple semi-supervised algorithm for named entity recognition. In:
Proceedings of the NAACL HLT 2009 Workshop on Semi-Supervised Learning for Natural Language
Processing, Association for Computational Linguistics, pp 58-65

Linares-Vasquez M, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D (2014) How do api changes trig-
ger stack overflow discussions? a study on the android sdk. In: Proceedings of the 22nd international
conference on program comprehension (ICPC). ACM, New York, pp 83-94

Liu X, Zhang S, Wei F, Zhou M (2011) Recognizing named entities in tweets. In: Proceedings of the 49th
annual meeting of the association for computational linguistics: human language technologies-Volume
1, Association for Computational Linguistics, pp 359-367

@ Springer

Empir Software Eng

Liu X, Li Y, Wu H, Zhou M, Wei F, Lu Y (2013) Entity linking for tweets. In: ACL (1), pp 13041311

Marcus A, Maletic J et al (2003) Recovering documentation-to-source-code traceability links using latent
semantic indexing. In: Proceedings of the 25th international conference on software engineering (ICSE).
IEEE, Piscataway, pp 125-135

Mihalcea R (2004) Co-training and self-training for word sense disambiguation. In: CoNLL, pp 33-
40

Mihalcea R, Csomai A (2007) Wikify!: linking documents to encyclopedic knowledge. In: Proceedings of
the sixteenth ACM conference on Conference on information and knowledge management. ACM, New
York, pp 233-242

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in vector space.
arXiv preprint arXiv:13013781

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of words and
phrases and their compositionality. In: Advances in neural information processing systems, pp 3111-
3119

Milne D, Witte IH (2008) Learning to link with wikipedia. In: Proceedings of the 17th ACM conference on
Information and knowledge management. ACM, New York, pp 509-518

Moonen L (2001) Generating robust parsers using island grammars. In: Proceedings of eighth working
conference on reverse engineering (WCRE). IEEE, Piscataway, pp 13-22

Navigli R (2009) Word sense disambiguation: a survey. ACM Comput Surv (CSUR) 41(2):10

Parnin C, Treude C, Grammel L, Storey MA (2012) Crowd documentation: Exploring the coverage and the
dynamics of api discussions on stack overflow. Georgia Institute of Technology, Tech Rep

Rahman MM, Roy CK, Lo D (2016) Rack: Automatic api recommendation using crowdsourced knowledge.
In: SANER

Rigby PC, Robillard MP (2013) Discovering essential code elements in informal documentation. In:
Proceedings of international conference on software engineering (ICSE). IEEE Press, Piscataway,
pp 832-841

Shen W, Wang J, Luo P, Wang M (2012) Liege:: Link entities in web lists with knowledge base. In: Pro-
ceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining,
ACM, KDD ’12, pp 1424-1432

Subramanian S, Inozemtseva L, Holmes R (2014) Live api documentation. In: Proceedings of the 36th
international conference on software engineering (ICSE). ACM, New York, pp 643—-652

Turian J, Ratinov L, Bengio Y (2010) Word representations: a simple and general method for semi-supervised
learning. In: Proceedings of the 48th annual meeting of the association for computational linguistics,
Association for Computational Linguistics, pp 384-394

Wang M, Manning CD (2013) Effect of non-linear deep architecture in sequence labeling. In: IJCNLP,
pp 1285-1291

Wu D, Lee WS, Ye N, Chieu HL (2009) Domain adaptive bootstrapping for named entity recognition. In:
Proceedings of the 2009 conference on empirical methods in natural language processing: Volume 3-
Volume 3, Association for Computational Linguistics, pp 1523-1532

Wu N, Hou D, Liu Q (2016) Linking usage tutorials into api client code pp 22-28

Yao Y, Sun A (2015) Mobile phone name extraction from internet forums: a semi-supervised approach.
World Wide Web pp 1-23

Yarowsky D (1995) Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings
of the 33rd annual meeting on association for computational linguistics, association for computational
linguistics, pp 189-196

Ye D, Xing Z, Foo CY, Ang ZQ, Li J, Kapre N (2016a) Software-specific named entity recognition in soft-
ware engineering social content. In: Proceedings of the 23rd IEEE international conference on software
analysis, evolution and reengineering (SANER)

Ye D, Xing Z, Li J, Kapre N (2016b) Software-specific part-of-speech tagging: An experimental study on
stack overflow. In: Proceedings of the 31st annual ACM symposium on applied computing, ACM, New
York, SAC *16, pp 1378-1385. https://doi.org/10.1145/2851613.2851772

Yu M, Zhao T, Dong D, Tian H, Yu D (2013) Compound embedding features for semi-supervised learning.
In: HLT-NAACL, pp 563-568

Zheng W, Zhang Q, Lyu M (2011) Cross-library api recommendation using web search engines. In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of
software engineering. ACM, New York, pp 480-483

@ Springer

http://arxiv.org/abs/13013781
https://doi.org/10.1145/2851613.2851772

Empir Software Eng

Deheng Ye Ph.D. is currently a Senior Researcher in Tencent Al Lab, Shenzhen, China. He obtained his
PhD degree from the School of Computer Science and Engineering, Nanyang Technological University,
Singapore, in 2017. His research interests lie in data mining in software engineering, including software-
specific text mining and source code mining.

Lingfeng Bao is currently a postdoctoral research fellow in the College of Computer Science and Tech-
nology, Zhejiang University. He received his B.E. and PhD degrees both from the College of Software
Engineering, Zhejiang University, in 2010 and 2016, respectively. His research interests are software
analytics, behavioral research methods, data mining, and human computer interaction.

@ Springer

Empir Software Eng

Dr. Zhenchang Xing is now a Senior Lecturer in the Research School of Computer Science, Australian
National University. Previously, he was an Assistant Professor in the School of Computer Science and
Engineering, Nanyang Technological University, Singapore, from 2012-2016. Dr. Xing’s research interests
include software engineering, data mining and human-computer interaction. His work combines soft-
ware analytics, behavioral research methods, data mining techniques, and interaction design to understand
how developers work, and then build recommendation or exploratory search systems for the timely or
serendipitous discovery of the needed information.

Shang-Wei Lin Ph.D. received his B.S. degree in Information Management from the National Chung Cheng
University, Chiayi, Taiwan, in 2003 and received his Ph.D. degree in Computer Science and Information
Engineering from the National Chung Cheng University, Chiayi, Taiwan, in 2010. From September 2003 to
July 2010, he was a teaching and research assistant in the Department of Computer Science and Information
Engineering at the National Chung Cheng University. In 2011, he was a postdoctoral researcher at School
of Computing, National University of Singapore (NUS). From 2012 to November 2014, he was a research
scientist at Temasek Laboratories in National University of Singapore (NUS). From December 2014 to April
2015, he was a postdoctoral research fellow in Singapore University of Technology and Design (SUTD).
He has joined School of Computer Science and Engineering, Nanyang Technological University (NTU) as
Assistant Professor in April 2015. His research interests include formal verification, formal synthesis, embed-
ded system design, cyberphysical systems, security systems, multi-core programming, and component-based
object-oriented application frameworks for real-time embedded systems. Recently, he is also working on
developing formal verification techniques to validate Ethereum smart contracts.

@ Springer

	APIReal: an API recognition and linking approach for online developer forums
	Abstract
	Introduction
	Challenges in API recognition and linking in informal text
	API recognition
	API linking

	Related work
	API recognition and linking in software engineering
	Entity recognition and linking in general domains

	The API extraction approach
	API recognition
	Text preprocessing
	Motiviation
	Approach

	Learning word representations
	Motiviation
	Approach

	Constructing API inventory
	Motiviation
	Approach

	Training sentences selection and labeling
	Motiviation
	Approach

	CRF-based classifier
	Motiviation
	Approach

	Iterative self-training
	Motiviation
	Approach

	API linking
	Knowledge base population
	Linking API mentions to knowledge base entries

	Experimental setup
	Implementation and replication package
	Studied libraries
	Model training and testing for the learning-based recognition
	Training
	Testing

	Experiment results and analysis
	API recognition
	Baselines
	Results
	Metrics
	Overall performance
	Individual libraries
	Feature ablation

	API linking

	Scalability of APIReal
	Threats to validity
	API recognition
	API linking

	Conclusions and future work
	References

