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Abstract—The SZZ algorithm has been widely used for iden-
tifying bug-inducing commits. However, it suffers from low
precision, as not all deletion lines in the bug-fixing commit
are related to the bug fix. Previous studies have attempted to
address this issue by using static methods to filter out noise,
e.g., comments and refactoring operations in the bug-fixing
commit. However, these methods have two limitations. First, it
is challenging to include all refactoring and non-essential change
patterns in a tool, leading to the potential exclusion of relevant
lines and the inclusion of irrelevant lines. Second, applying these
tools might not always improve performance.

In this paper, to address the aforementioned challenges, we
propose NEURALSZZ, a deep learning approach for detecting the
root cause deletion lines in a bug-fixing commit and using them
as input for the SZZ algorithm. NEURALSZZ first constructs
a heterogeneous graph attention network model that captures
the semantic relationships between each deletion line and the
other deletion and addition lines. To pinpoint the root cause of
a bug, NEURALSZZ uses a learning-to-rank technique to rank
all deletion lines in the commit. To evaluate the effectiveness of
NEURALSZZ, we utilize three datasets containing high-quality
bug-fixing and bug-inducing commits. The experiment results
show that NEURALSZZ outperforms various baseline methods,
e.g., traditional machine learning-based approaches and Bi-
LSTM in identifying the root cause of bugs. Moreover, by
utilizing the top-ranked deletion lines and applying the SZZ
algorithm, NEURALSZZ demonstrates better precision and F1-
score compared to previous SZZ algorithms.

Index Terms—SZZ Algorithm, Deep Learning, Heterogeneous
Graph Attention Network, Learning to Rank

I. INTRODUCTION

Modern software development relies heavily on version
control systems (VCSs) to manage source code, track changes,
and facilitate the collaboration among developers. As one of
the most popular VCSs used today, Git is especially well-
suited for distributed development scenario. A commit in Git
is a fundamental unit of change that represents a snapshot
of the repository at a particular point in time. However,
some commits may introduce bugs, and these are known
as bug-inducing commits [1], [2]. These commits contain
crucial information about how bugs are introduced in software
development, and as a result, have raised increasing research
attention. Many studies have been conducted to identify the
features of bug-inducing commits [3]–[6], make use of these
commits to enable Just-In-Time (JIT) defect detection [1],
[7]–[9] and determine the affected software versions of a
vulnerability [10].
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The SZZ [11] algorithm is a primary approach for identi-
fying bug-inducing commits in projects. Given a bug-fixing
commit, the SZZ algorithm identifies the bug-inducing com-
mits by examining the previous commits and finds the one that
made the last change to the deletion lines in the bug-fixing
commit. However, the SZZ algorithm is known to have low
precision because of the existing noise in bug-fixing commits.
To solve the problem, many variants of the SZZ algorithm
have been proposed [12]–[14]. Most of the variants use static
methods to improve the precision of the SZZ algorithm. They
attempt to filter out non-essential changes in the bug-fixing
commit, such as comments and refactoring operations.

Despite the advancements made by the existing works, there
are still limitations. One such limitation is the difficulty of
integrating all types of refactoring operations into a single tool.
RA-SZZ algorithm [14] integrates the RefDiff tool [15] that
can only detect 13 types of refactoring operations, leading
to the potential inclusion of irrelevant lines [16]. A newer
tool proposed by Tsantalis et al. [17] supports 15 types of
refactoring operations. However, it is still far from the number
of refactoring types (i.e., 65 in total) identified by Fowler [18].
Moreover, these tools may also exclude relevant lines [16].
For instance, RefDiff [15] can not pinpoint the line numbers
associated with refactoring operations, particularly in method
bodies, which means that it may mark some relevant lines
as refactoring operations by mistake. Thus, applying these
refactoring detection tools may not improve precision much,
and in some cases, may even worsen the performance. For
instance, the original SZZ algorithm outperforms RA-SZZ on
the dataset of Rosa et al. [19] in terms of F1-score (0.50 vs.
0.39).

Therefore, the goal of our study is to provide a new way to
improve the precision of the SZZ algorithm. In this study, we
propose a deep learning based approach named NEURALSZZ
that prioritizes all deletion lines in a bug-fixing commit based
on their likelihood of being the root cause of the bug. To
achieve this, NEURALSZZ makes use of crucial factors that
have not been utilized in prior research, i.e., semantic mean-
ings of the deletion statements and their relationships with
other statements. Specifically, it constructs a heterogeneous
graph for each bug-fixing commit, where the nodes represent
the deletion and addition statements, and the edges represent
the relationships between them. NEURALSZZ extracts edges
based on various types of graphs, including control flow graph
and data dependency graph. We use a Heterogeneous Graph
Attention Network (HAN) [20] model to generate embeddings



for each statement in the graph. Finally, we train a pairwise
rank model to rank all deletion statements in the graph based
on their embeddings.

To train and evaluate our model, we first combine three
high-quality datasets collected by Wen et. al [21], Song et.
al [22], and Neto et. al [16] into one. For each bug in the
merged dataset, we manually annotate the root causes based on
the given bug-fixing and inducing commit. Then, we evaluate
our proposed approach by answering the following research
questions:
RQ1: How effective is NEURALSZZ compared to baselines
for identifying the root cause in the bug-fixing commits?

We perform a 10-fold cross-validation to evaluate the ef-
fectiveness of NEURALSZZ. Various baseline methods are
included in comparison, including five machine learning based
approaches (e.g., RF, LR, SVM, XGB and KNN) and Bi-
LSTM. The result shows that our approach can identify the
root cause more effectively than baselines, improving the best
baseline by 8.5% in recall at the top 1.
RQ2: How effective is NEURALSZZ in the cross-project
setting?

In order to verify the generalizability of NEURALSZZ, we
conducted additional evaluations on its performance under
cross-project scenario. For this purpose, we employed the
developer-informed oracle provided by Wen et. al [21] as the
test set, while the other two were utilized as training sets.
Our findings indicate that NEURALSZZ also outperforms the
baselines under cross-project scenario.
RQ3: How effective is NEURALSZZ compared to previous
SZZ algorithms in detecting the bug-inducing commits?

Our goal is to explore whether utilizing the deletion lines
ranked by NEURALSZZ, which are supposed to be the root
cause, can enhance the SZZ algorithms. We apply the original
SZZ algorithm by inputting the top 1, 2, and 3 deletion lines
ranked by NEURALSZZ to identify bug-inducing commits.
Compared to the best baseline, NEURALSZZ can enhance the
F1-score by 40.7%, 36.7%, and 36.2% for the top 1, top 2,
and top 3 deletion lines, respectively.
RQ4: How effective are the key components of NEURAL-
SZZ?

We also perform an ablation experiment to verify the
effectiveness of the key designs. The result shows that both
CodeBERT and HAN have improved the performance of
NEURALSZZ.

In summary, we have the following contributions:

• To the best of our knowledge, we are the first to leverage the
semantic meanings of deletion lines and their relationships
with other modified lines to improve the precision of the
SZZ algorithm.

• We collect a dataset containing 675 bug-fixing commits and
their corresponding bug-inducing commits. We manually
annotate the root causes of bug-fixing commits based on
the given bug-inducing commits. We provide a replication
package to foster future work, in line with good research
practices [23].

4   ......

5 - LOG.info("FairCallQueue is in use with " + numQueues + " queues.");

6 + LOG.info("FairCallQueue is in use with " + numQueues +

7 + " queues with total capacity of " + capacity);

8 ......

9 +  int queueCapacity = capacity / numQueues;

10 + int capacityForFirstQueue = queueCapacity + (capacity % numQueues);

11 for(int i=0; i < numQueues; i++) {

12 - this.queues.add(new LinkedBlockingQueue<E>(capacity));

13 + if (i == 0) {

14 + this.queues.add(new LinkedBlockingQueue<E>(capacityForFirstQueue));

15 + } else {

16 + this.queues.add(new LinkedBlockingQueue<E>(queueCapacity));

17 + } 

FairCallQueue.java
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Fig. 1: A Motivation Example

• Experimental results show that our approach can rank root
cause deletion lines and identify bug-inducing commits
more effectively.

II. BACKGROUND

In this section, we first introduce the SZZ algorithm and its
variants. Then we present our motivation example.

A. SZZ Algorithms

B-SZZ. The original SZZ algorithm (B-SZZ) was proposed
by Sliwerski et al [11]. It tracks back to the last changes that
introduced the deleted/modified lines in the bug-fixing commit,
marking them as bug-inducing commits. To achieve this, it
uses the annotate function provided by the version control
system.
AG-SZZ. Kim et al. proposed AG-SZZ [12]. They improved
B-SZZ by using an annotation graph to filter out blank
lines, flagging comments, and cosmetic changes in bug-fixing
commits. The annotation graph can provide more comprehen-
sive information about line changes and movement than the
annotate function.
MA-SZZ. Da Costa et al. proposed MA-SZZ [13], which
filters out meta-changes from potential bug-inducing changes.
Meta-changes include branch changes, merge changes, and
property changes, each of which does not change the source
code.
RA-SZZ. Neto et al. [14] noticed that previous SZZ algo-
rithms incorrectly identify bug-inducing changes due to the
impact of refactoring operations. To address this, they inte-
grated the refactoring detection tools RefDiff and Refactoring
Miner into the RA-SZZ algorithm they proposed.

B. Motivation Example

Figure 1 presents a bug-fixing commit in Hadoop [24].
Four files have been modified in this commit, resulting in
37 additions and 17 deletions in total. Due to the page
limitation, we only show the most significant part of the
patch. According to the commit message, the root cause of
the bug corresponds to FairCallQueue.java, Line 12.
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Fig. 2: Graph Construction

The changes in Line 13-17 ensure that the capacity of the
FairCallQueue is distributed equally among all the sub-
queues, with the first sub-queue having an excess capacity. The
original implementation (Line 12) simply used the capacity
variable as the capacity of each sub-queue, which could result
in the total capacity of the FairCallQueue being larger
than the configured capacity, thus causing the bug.

Running the original SZZ algorithms directly on all the
modifications (17 deletion lines) in this bug-fixing commit
could introduce a considerable amount of noise. This might
result in inaccurate or misleading findings. Furthermore, it’s
important to note that these changes are not refactors. Thus,
the other SZZ algorithms (e.g., RA-SZZ) can not remove them.
As shown in Figure 1, there are 17 deletion lines. But many
of them are irrelevant to the bug, such as the changes that
are related to the Log function and those in the test files.
Therefore, if we consider the semantic meanings of changed
lines, we can identify that those lines are related to logs
and tests and remove this type of noise.

Furthermore, we observe that relations between changed
lines in the bug-fixing commit can help identify the root
cause. In the motivation example, it may not be immediately
clear what causes the bug if we only look at the deletion of
Line 12. However, taking into account the relationship between
Line 12 and Line 13-16 enables us to gain more insight. By
doing so, we can see that the previous version of the code
does not account for different scenarios when adding an item
to the queue. This leads to the addition of an if statement
in the new version. Therefore, we can conclude that deleting
Line 12 has the highest probability of being the root cause of
the bug.

III. APPROACH

Inspired by the above observations, we propose a new
approach named NEURALSZZ to effectively detect the root
cause among all deletion lines. Our approach leverages a
heterogeneous graph attention network to make full use of the
semantic meanings of changed lines as well as the relations
between them in a bug-fixing commit.

Our approach consists of three steps: ❶ Graph Construc-
tion: Given a bug-fixing commit, we first extract nodes and
edges by analyzing its changed lines to construct a graph. ❷

Heterogeneous Graph Attention Network (HAN): We train
a HAN that allows each node to update its embedding based
on its meta-path-based neighbors and different types of meta-
paths in the graph. ❸ Ranking Deletion Nodes (Lines): A
rank model is trained to rank all deletion lines in a pair-wise
manner, aiming to identify the one that is most likely to be
the root cause among all deletion lines.

A. Graph Construction

Figure 2 presents the process of graph construction. The
node IDs in this figure correspond to the IDs in Figure 1. Given
a bug-fixing commit, we use the following steps to construct
a graph:
Node Extraction: We first extract the Java source code of the
previous and newer versions in the bug-fixing commit. Then,
we use the JavaParser tool [25] to build an Abstract Syntax
Tree (AST) for the previous and newer files (i.e., ASTpre

and ASTnew), respectively. We map the deletion lines in the
bug-fixing commit into a node of ASTpre and mark it as a
deletion node. Similarly, we extract addition nodes by mapping
the addition lines in the bug-fixing commit into the nodes of
ASTnew.
Edge Extraction: Based on the extracted nodes, we build
edges by considering different relationships among them based
on various graphs, including control flow graphs (CFG) [26],
data dependency graphs (DDG) [27], call graphs (CG) [28],
and class member reference graphs (CMFG). We first use the
static analysis tool Joern [29] to build these graphs for the
previous and newer versions of source code in the bug-fixing
commit, respectively. For both deletion and addition nodes,
we use a depth-first-search algorithm to search for paths in
each type of graph. If there exists a path between two nodes
in one type of graph, we add an edge whose type depends
on the type of graph (e.g., CFG or DDG edge). Thus, we
construct one graph for the previous version (Gpre) and one
for the newer version (Gnew), respectively. Furthermore, we
merge the two graphs by mapping the deletion and addition
nodes with a line mapping algorithm. If lines in a deletion
node can be mapped to lines in another addition node, we add
a line mapping edge between them. We implement the line
mapping algorithm using the Abstract Syntax Tree mapping
tool GumTree [30].
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Fig. 3: Overview of NeuralSZZ

Figure 2 presents the detailed graph construction process of
our motivation example (see Figure 1). We begin by extracting
nodes from the changed lines in the bug-fixing commit. For
example, the addition lines 6 and 7 (they form one statement)
correspond to addition node 1 in Gnew, while the deletion line
3 corresponds to deletion node 1 in Gpre. Then, we employ the
depth-first-search algorithm to extract edges from the original
graph produced by Joern. For instance, we determine that
addition node 1 can establish a path to addition node 2 without
passing through any other addition node in the CFG produced
by Joern. As a result, we add a control-flow edge between
them. We repeat this process for each type of graph to retrieve
all edges between any pair of relevant nodes. Finally, we
identify that deletion node 2 can be mapped to addition node
5, thus we add a line mapping edge between them to obtain
the final graph.

B. Heterogeneous Graph Attention Network

Traditional machine learning and graph neural networks
[31]–[33] often fail to effectively leverage the diverse types
of nodes and edges presented in a heterogeneous graph [34],
leading to the loss of diverse information embedded in the
heterogeneous graph. Nevertheless, Heterogeneous Graph At-
tention Network (HAN) [20] overcomes this limitation by
incorporating the semantic-level attention that captures the
significance of various meta-paths. Figure 3 presents the
detailed architecture of HAN.
Node Embedding Layer. Each node in the heterogeneous
graph corresponds to one statement. We first utilize Code-
BERT [35] as the node embedding layer to embed statements
into fixed-length vectors. CodeBERT is a widely adopted pre-
trained language model that has demonstrated top performance
in various code-related tasks [35]. It can capture the semantic
meaning of code statements and provide rich node represen-
tations that are suitable for our graph neural network. For
each node i, we leverage CodeBERT to get its corresponding
embedding hi.
HAN Layer. The Heterogeneous Graph Attention Network
(HAN) layer is applied after the node embedding step. It
begins by performing node-level attention, where for each

type of meta-path (e.g., control-flow edge, data-flow edge, call
edge), node i learns embeddings from its meta-path neighbors.
This process can be described as:

h
′

i = Mϕi · hi (1)

αΦ
ij =

exp(σ(aTΦ · [h′

i

∥∥h′

j ])∑
k∈NΦ

i

exp(σ(aTΦ · [h′
i

∥∥h′
k])

(2)

zΦi =

K∥∥∥
k=1

σ(
∑

j∈NΦ
i

αΦ
ijh

′

j) (3)

In Equation 1, Mϕj is a transformation matrix that projects
the node features into a predefined feature space. Equation 2
computes αΦ

ij , which denotes the attention weight that reflects
the importance of node j to node i. To compute the attention
weight, we concatenate the projected embedding h

′

i of node
i with its neighbor’s embedding h

′

j , and further multiply the
concatenated embedding [h

′

i

∥∥h′

j ] with a vector aΦ to get the
initial weight. The aΦ is optimized during model training.
Then, we normalize all weights to get the final weight αΦ

ij of
node j to node i. Based on the calculated node attention, we
further calculate the updated node embedding zΦi by merging
the embeddings of its neighbors NΦ

i regarding meta-path Φ
(see Equation 3). To address the high variance problem in
graph data, HAN extends the node-level attention to multi-
head attention [20], which repeats the node-level attention K
times and concatenates all the calculated embeddings.

Then, HAN calculates the semantic-level attention to learn
the importance of each meta-path. Given the meta-path set
{Φ1,Φ2, ...,Φp}, the importance of each meta-path is calcu-
lated as:

wΦp =
1

V

∑
i∈V

qT · tanh(W · zΦp

i + b) (4)

where wΦp
denotes the attention weight of meta-path p, while

W , b, and q are learnable parameters.



Finally, HAN combines the node embeddings under various
meta-paths

{
zΦ1
i , zΦ2

i , ..., zΦn
i

}
to get the final node embed-

ding zi:

zi =

P∑
p=1

wΦp
· zΦp

i (5)

C. Ranking Deletion Nodes

After obtaining the embeddings of each node, we further
train a model for ranking the deletion nodes. Specifically, we
leverage the RankNet model [36], a pairwise based ranking
method, due to its effectiveness in real-world ranking prob-
lems [37]–[39].

The RankNet model is trained by learning the relative
priorities of deletion nodes in a pairwise manner. Specifically,
for each training pair of nodes ⟨ni, nj⟩, the RankNet first
assigns a score to each node, denoted as si and sj , respectively.
Then, the learned probability that ni ranks higher than nj is
calculated as: Pij =

1

1+e−(si−sj)
. The ground truth probability

of the relative priority within the node pair is defined as:

P ij =


1 ni is root cause node andnj is not

0 nj is root cause node andni is not

0.5 otherwise

(6)

Finally, the RankNet model is trained with a cross-entropy loss
defined as:

L = −P ij logPij − (1− P ij)log(1− Pij) (7)

During inference, the trained RankNet model assigns a score
to each deletion node, which is directly utilized to determine
the overall priority of the deletion nodes.

IV. DATA PREPARATION

In this section, we first describe the dataset construction
process of bug-fixing and bug-inducing commits. Then, we
show the process of manual annotation for the root cause.
Finally, we present the annotation results.

A. Dataset

To train our model and evaluate the performance of our
method, we require a high-quality dataset containing both bug-
fixing and bug-inducing commits. Since there are many noises
in the dataset of bug-introducing commits generated by SZZ
algorithms [21], we do not use these datasets in our study.
Previous studies have constructed datasets that contain bug-
fixing commits and the corresponding reliable bug-introducing
commits by manual verification based on bug reports [21]
or utilizing test cases [22]. However, these datasets often
have a limited number of bug-fixing commits. Therefore, we
combine the following three reliable datasets to construct a
comprehensive dataset:
DATASET1 was collected by Wen et. al [21]. They search the
information of bug-inducing commits in the bug reports and
manually verified all the candidates to ensure the quality of
the data.

1  - LOG.info("Using callQueue: " + backingClass + " scheduler: " +

2  - schedulerClass);

Deletions in CallQueueManager.java

3  - LOG.info("FairCallQueue is in use with " + numQueues + " queues.");

4  - this.queues.add(new LinkedBlockingQueue<E>(capacity));

Deletions in FairCallQueue.java

5 manager = new CallQueueManager<FakeCall>(queue, scheduler, false,

6 - 2, "", conf);

7 + 8, "", conf);

Deletions in TestCallQueueManager.java

8 - import static org.junit.Assert.assertEquals;

9 - import static org.junit.Assert.assertFalse;

10 ......

11 - fcq = new FairCallQueue<Schedulable>(2, 5, "ns", conf);

Deletions in TestFairCallQueue.java

Fixing Commit: a2a5cb60b09 in Hadoop

Inducing Commit: 4b3a6b87221

d95c6eb32ce

4b3a6b87221

d95c6eb32ce

4b3a6b87221

Fig. 4: The Annotation Process for the Motivation Example

DATASET2 was built by Song et. al [22]. They utilized tests
in the code repository to pinpoint bug-inducing and bug-fixing
commits. In particular, a commit is labeled as bug-inducing if
a test fails for that commit but succeeds for the preceding
commit. Conversely, if the same test passes for a commit
following the bug-inducing commit, it is identified as the bug-
fixing commit associated with the bug-inducing commit. This
approach leverages tests as a reliable indicator of bug inducing
and fixing commits.
DATASET3 was gathered by Neto et al [16]. They use the
detailed information provided by the Defects4J dataset [40],
including documents of changes in the version control system
and patches with the exact changes to re-introduce the bug.
After carefully analyzing the information, they isolate the truly
bug-fix modifications from those that were not intended to fix
the bug and identify the bug-inducing commits.

Table I presents the summary of the statistics for the
three datasets, including the number of bug-fixing commits
and bug-inducing commits in each dataset. It is important
that some bug-fixing commits in the original dataset are not
found on GitHub, and we remove them from further analysis.
Additionally, we also report the count of deletion lines in
the patches. If a patch has fewer than five deletion lines,
we categorize it as a small patch (SMALL). Otherwise, we
classify it as a large patch (LARGE). This information helps
us to understand the size and characteristics of the patches in
our dataset for further analysis.

B. Manual Annotation for Root Cause

Based on the three reliable datasets containing bug-fixing
commits and bug-inducing commits, we further determine
which deletion lines in the fixing commits are the root cause
of the bugs. First, we use the git blame tool to identify
the commits that last modified each deletion line in the
bug-fixing commits. For each deletion line in a bug-fixing
commit, if the inducing commits are absent from the identified
commits, we consider it as not the root cause for the bug.
If all identified commits do not contain the bug-inducing
commits, we exclude the bug from our dataset. On the other
hand, if the identified commits include the inducing commits,
we consider it a potential root cause of the bug. Second,
we manually review all the candidate lines to identify the



TABLE I: The statistics of the bugs and corresponding bug fixing commits in three datasets

Dataset Project #Bug-Fixing #Bug-Inducing #SMALL #LARGE

DATASET1

accumulo
ambari
hadoop
lucene
oozie

35
38
53
70
45

55
44
57

145
50

20
17
28
41
23

15
21
25
29
22

Total 241 351 129 112

DATASET2

jsoup
fastjson
verdict
closure-templates
twilio-java
...(120 more projects)

63
222
53
32
39

548

63
222
53
32
39

548

35
144
11
7

14
328

28
78
42
25
25

220

Total 957 957 539 418

DATASET3

mockito
joda-time
commons-math
commons-lang
closure-compiler

32
23
85
53
98

53
27

111
65

122

13
12
44
36
61

19
11
41
16
37

Total 291 378 166 124

TABLE II: Annotation results

Dataset #Bugs #Bug-inducing #Nodes #Edges

DATASET1 157 219 2,677 5,283
DATASET2 284 284 5,659 12,965
DATASET3 234 316 2,186 4,398

Total 675 819 10,522 22,646

final lines that represent the actual root cause of the bugs.
Figure 4 presents an example of the annotation process. We
mark all commits that last modified deletion lines in the
figure. Since commits in CallQueueManager.java and
TestCallQueueManager.java do not contain the bug-
inducing commit, we simply drop them out. Moreover, dele-
tion lines in TestFairCallQueue.java are all related
to test, and Line 3 in FairQueue.java is a log function
and unrelated to the commit message, thus we also exclude
them. So we can find that the root cause lies in Line 3 in
FairQueue.java. For each deletion node in the graph, if it
contains lines that are the root cause of the bugs, it is marked
as a root cause node. Otherwise, it is marked as not a root
cause node.

C. Annotation Result

After the filtering in annotation, the statistics of our final
dataset are presented in Table II. This dataset comprises data
from 87 open-source projects on GitHub and includes a total
of 675 bug-fixing commits. The table provides information on
the number of bug-inducing commits in each dataset, as well
as the total number of nodes and edges in the patch graph.
Specifically, the final dataset consists of 10,522 nodes and
22,646 edges.

V. EXPERIMENT SETUP

A. Experiment Setting

The experimental environment consisted of a server
equipped with an NVIDIA GTX 3090 GPU, Intel Xeon

6226R CPU, running on Ubuntu OS. For graph learning,
we utilize the pre-trained CodeBERT model [35] from the
Hugging Face library following [41] and use the default HAN
implementation [20] from PyTorch. For node ranking, we
implement the RankNet algorithm on PyTorch, which is the
same as [42].

In our study, we select three reliable datasets containing
bug-fixing and bug-inducing commits. We divide the whole
dataset into ten parts and perform 10-fold cross-validation [43]
to verify the effectiveness of our approach. In each run of
experiments, we use bugs in one part as the test set and those
in the other nine parts as the training set. We report the average
values of each metric in the experimental results. We also do
the cross-project prediction to ensure the generalizability of
our model.

Because we use a pair-wise ranking model, we need to
group all deletion nodes in each commit as pairs. Since
the number of training pairs is exponential to the number
of deleted lines in the commit, we extract up to 100 pairs
from each commit. We do this to prevent large commits from
producing too many training pairs. By extracting a limited
number of pairs from each commit, we obtain a total of 17,027
pairs on average to train the model.

B. Baselines

We compare our approach with the following baselines in
identifying the root cause by ranking deletion lines in bug-
fixing commits:
• Machine Learning (ML) based baselines: We select sev-

eral ML algorithms, including Random Forest (RF), Linear
Regression (LR), Support Vector Machine (SVM), XGBoost
(XGB), and K-Nearest Neighbor (KNN). These approaches
are commonly used in recent research related to code and
text processing, such as security bug prediction [44] and
commit-level software vulnerability assessment [45]. For
these ML-based baselines, we constructed features using the



TABLE III: The performance comparisons between our ap-
proach and baselines in ranking deletion lines

Approach Recall@1 Recall@2 Recall@3 MFR

RF
LR
SVM
XGB
KNN

0.694
0.701
0.714
0.718
0.677

0.811
0.813
0.806
0.811
0.792

0.882
0.872
0.869
0.867
0.860

3.295
3.541
3.215
3.133
2.773

Bi-LSTM 0.656 0.746 0.820 3.448

NEURALSZZ 0.779 0.841 0.886 2.425

bag-of-words approach and limited the vocabulary size to
10K following [45], [46].

• Bi-LSTM [47]: We select it as a deep learning based base-
line, which has been also used in previous studies, such as
security patch identification [44]. We set the vocabulary size
to 10K and used pre-trained 300-dimensional Glove [48]
word embeddings. [44], [45].

The classifiers compute the probability of each deletion line in
a bug-fixing commit being the root cause. We rank all deletion
lines in a bug-fixing commit based on their probabilities.

To investigate whether our approach can improve the preci-
sion of the SZZ algorithm, we apply the B-SZZ algorithm on
deletion lines on top of the ranking list. We compare the result
with other SZZ algorithms. We select the SZZ algorithms
in Section II-A, i.e., SZZ, AG-SZZ, MA-SZZ, and RA-SZZ.
The implementation of all these SZZ algorithms is from the
replication package provided by Rosa et al [19].

C. Evaluation Metrics

To evaluate the performance of identifying the root cause
in bug-fixing commits, we use the widely-used measurements
as follows:
Recall@N. The Top-N metric computes the number of bug-
fixing commits that have at least one root cause deletion line
localized within the top N positions in the ranked list. Previous
studies have shown that developers tend to pay attention to a
small number of elements at the top of the ranked list [49].
Therefore, we limit the value of N to 1, 2, and 3.
Mean First Rank (MFR). For all deletion lines in a commit,
the first rank means the ranking of the first root cause deletion
line in the list. MFR calculates the mean of first ranks for all
bug-fixing patches.

To evaluate the effectiveness of our approach in identifying
bug-inducing commits, we employ two metrics used in the
previous studies [10], [19], i.e., precision and recall. We
compare our approach with traditional SZZ algorithms by
selecting the top k deletion lines from the ranking list and
applying the B-SZZ algorithm to them to find the bug-inducing
commits. We calculate the recall metric using the bug-inducing
commits found by the top k deletion lines, denoted as Recallk.
Similarly, we obtain the Precisionk and F1−scorek metrics.
We limit the value of k to 1, 2, and 3.

VI. EXPERIMENT RESULTS

In this section, we present the experiment results of the four
research questions.

TABLE IV: The performance comparisons between our ap-
proach and baselines in cross-project prediction

Approach Recall@1 Recall@2 Recall@3 MFR

RF
LR
SVM
XGB
KNN

0.697
0.643
0.681
0.675
0.675

0.783
0.834
0.789
0.802
0.770

0.834
0.859
0.866
0.853
0.847

2.866
2.528
2.630
2.318
3.369

Bi-LSTM 0.541 0.689 0.847 5.095

NEURALSZZ 0.786 0.860 0.891 2.197

A. RQ1. Effectiveness of NEURALSZZ in identifying the root
cause

Table III presents the results of NEURALSZZ and the
baselines on identifying deletion lines as the root cause in
bug-fixing commits. The results show that XGB outperforms
all other ML baselines in recall@1. On the other hand, LR
performs better than the other ML baselines in recall@2. For
recall@3, RF achieves the best score. Finally, KNN performs
the best in MFR. The DL approach performs relatively poorly
compared to the ML baselines, which aligns with the findings
of Wu et al. [46]. According to their study, simple text clas-
sification methods performed better than specially designed
deep-learning approaches on clean datasets. This could be due
to the use of pre-trained Glove word embeddings, which are
trained on natural languages rather than code and may affect
the performance of the DL approach.

Our evaluation shows that NEURALSZZ outperforms all
the baselines across all metrics. It achieves recall scores of
0.779, 0.841, and 0.886 at the top 1, 2, and 3, respectively.
It surpasses the best baseline by 8.5% in the recall at top 1.
Moreover, NEURALSZZ achieves a better mean first rank of
2.425, improving upon the best baseline by 12.4%. To ensure
validity, we also conduct statistical tests, specifically applying
the Wilcoxon signed-rank test [50] at a 95% significance level
on all metrics. The results show that p-values are smaller than
0.05, signifying statistically significant improvement at a 95%
confidence level. Therefore, we believe that NEURALSZZ is
a more effective method for identifying the root cause in the
bug-fixing commits than the baselines.

RQ-1: NEURALSZZ is more effective in identifying the
root cause than the baselines, improving recall at top 1 by
8.5%. Additionally, NEURALSZZ achieves an improvement
of 12.5% in the mean first rank compared to the best
baseline.

B. RQ2. Effectiveness of NEURALSZZ in cross-project setting

In cross-project prediction, we use DATASET1 as the test set,
while DATASET2 and DATASET3 are used as the training set.
We choose DATASET1 as the test set because it is a developer-
informed oracle, thus it has the best quality. Note that the
data from these three datasets have no overlap. Table IV
presents the performance comparisons between NEURALSZZ
and commonly used ML and DL baselines. The best results are
highlighted in bold. Among the ML baselines, LR performs



TABLE V: The performance comparisons between our ap-
proach and baselines for finding bug-inducing commits

Approach Precision Recall F1-score

BSZZ
AG-SZZ
MA-SZZ
RA-SZZ

0.376
0.348
0.319
0.333

0.730
0.604
0.543
0.466

0.496
0.441
0.401
0.388

NEURLSZZ@1 0.834 0.598 0.698

NEURLSZZ@2 0.728 0.635 0.678

NEURLSZZ@3 0.685 0.667 0.676

the worst in identifying the root cause deletion nodes at the top
of the ranking list. However, the performance of all machine
learning approaches in terms of recall@2 and recall@3 is
close. Notably, KNN, an unsupervised approach, performs
much worse in terms of the MFR metric. The DL approach
also performs worse than the ML baselines

NEURALSZZ outperforms all other baselines in terms of all
ranking metrics mentioned above. It achieves the highest recall
scores at the top 1, 2, and 3 positions, with values of 0.786,
0.860, and 0.891, respectively. These represent improvements
of 12.8%, 3.12%, and 2.89% over the best baseline. Addi-
tionally, NEURALSZZ achieves the best mean first rank of
2.19, which is an improvement of 5.51% compared to the
best baseline. Among all the metrics, we observed that the
improvement on recall@1 is particularly significant, as it can
greatly reduce manual efforts for developers. These statistics
provide strong evidence of the effectiveness of NEURALSZZ
in identifying the root cause deletion nodes and its higher
performance compared to the other baselines.

RQ-2: The performance of NEURALSZZ in cross-project
prediction is superior to that of the baselines, with notable
improvements in the recall at top 1, 2, and 3 by 12.8%,
3.12%, and 2.89%, respectively. Additionally, NEURAL-
SZZ achieves an improvement of 5.51% in the mean first
rank compared to the best baseline.

C. RQ3. Effectiveness of NEURALSZZ in identifying bug-
inducing commits

Table V presents the results of both the SZZ algorithms
and our approach in identifying the bug-inducing commits.
As shown in the table, we can observe that the precisions of
all previous SZZ algorithms are relatively low, resulting in a
low F1-score. Among all previous SZZ algorithms, we can
see that the performance of RA-SZZ is the lowest, which is
consistent with many previous studies [19], [21].

Here, NEURLSZZ@N means that we use top N deletion
lines in the ranking list to identify bug-inducing commits.
From the table, we can see that NEURALSZZ outperforms all
baselines on all metrics except for recall. Despite the decrease
in the recall, our approach demonstrates a significant im-
provement in precision. In particular, NEURALSZZ enhances
precision by 121.8%, 93.6%, and 82.1% for the top 1, top 2,
and top 3 lines, respectively. Since recall and precision are

equally important, we use F1-score as the primary evaluation
metric to avoid bias. F1-score can measure whether an increase
in precision outweighs the decrease in recall. NEURALSZZ
achieves a better balance between precision and recall than
the baselines. This is evident in the F1 scores, where NEU-
RALSZZ achieves F1 scores of 0.698, 0.678, and 0.676 for the
top 1, top 2, and top 3 lines. It outperforms the baselines by
40.7%, 36.7%, and 36.2%, respectively. Therefore, we believe
that NEURALSZZ is more effective in detecting bug-inducing
commits than original SZZ algorithms.

RQ-3: NEURALSZZ achieves the best trade-off between
precision and recall among all the baselines, outperform-
ing them significantly. NEURALSZZ improves the best-
performing baseline by 40.7% on the F1 score metric
and by 121.8% on the precision metric. This shows that
NEURALSZZ is better at identifying bug-inducing commits
and provides a better balance between precision and recall.

D. RQ4. Key designs of NEURALSZZ

In this RQ, we want to investigate the effectiveness of
the key designs in NEURALSZZ. We also use the top 1,
2, and 3 lines in the ranking list to identify bug-inducing
commits. NEURALSZZ consists of two key components: the
codeBERT embedding layer, which captures semantic meaning
from statements in the nodes, and the heterogeneous graph
attention network, which enables each node to update its
embedding from its neighbors. To evaluate the effectiveness
of each component, we compare NEURALSZZ with its two
variants: NEURALSZZ-c and NEURALSZZ-h. Each of them
lacks one of the key designs. In NEURALSZZ-c, we replace
codeBERT with Doc2vec [51], a machine learning algorithm
that can convert statements to fixed-length vectors. There are
two main types of Doc2vec models: Distributed Memory (DM)
and Distributed Bag of Words (DBOW). The DM model
takes into account the context of each word and the overall
document, while the DBOW model only considers the words
themselves. In this experiment, we apply the DM model. We
use the output embeddings produced by Doc2vec as input
for HAN. In NEURALSZZ-h, we remove the HAN layer and
input codeBERT embeddings directly to the RankNet model.
NEURALSZZ-c and NEURALSZZ-h share the same graph
construction process with NEURALSZZ.

Table VI compares the performance of NEURALSZZ with
its two variants: NEURALSZZ-c and NEURALSZZ-h, in iden-
tifying bug-inducing commits. The best results are highlighted
in bold. NEURALSZZ outperforms both variants in all metrics
except recall in the top 3 nodes in the ranking list. But
the difference is only 0.4%. Comparing the performance of
NEURALSZZ with NEURALSZZ-c and NEURALSZZ-h, we
observe that the F1-score is improved by 3.35% in the top 1
node. The results confirm that incorporating CodeBERT and
HAN can enhance the performance of our model.

While both key designs make contributions to performance,
there are priorities between them. In this experiment, we



TABLE VI: The performance comparisons in ablation study

Model top@1 top@2 top@3

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

NEURALSZZ-h 0.807 0.575 0.672 0.698 0.634 0.664 0.677 0.671 0.674
NEURALSZZ-c 0.723 0.525 0.612 0.670 0.593 0.629 0.619 0.630 0.624
NEURALSZZ 0.834 0.598 0.698 0.728 0.635 0.678 0.685 0.667 0.676

TABLE VII: The statistics of bug-fixing commits that NEU-
RALSZZ fails to correctly identify the root cause

Project #LARGE #SMALL #DELETED

ambari
lucene
accumulo
hadoop
oozie

8
8
2
3
8

0
1
0
0
0

63
23

8
35
30

observed that the node’s own embedding plays a more critical
role than its neighbors in identifying bug-inducing commits.

RQ-4: Based on the experimental results presented in Table
5, incorporating both CodeBERT and HAN has improved
the performance of the NEURALSZZ model in identifying
bug-inducing commits. However, the results also indicate
that CodeBERT makes a more significant contribution to
the improvements in performance than HAN.

VII. DISCUSSION

A. Manual Analysis of Failed Cases

In this subsection, we manually analyze those bug-fixing
commits where NEURALSZZ fails to correctly rank the
deletion lines. We examine the highest-ranked lines in the
corresponding ranking list to gain insights into the reasons
for the failed ranking. The aim of the study is to provide an
illustration of the factors contributing to the ranking failures.
We use the results of the cross-project setting in RQ2 for this
analysis.

Table VII presents the statistics of all bug-fixing commits
that NEURALSZZ fails to correctly rank in DATASET1. For
each project, the second and third columns present the number
of large commits and small commits that fail to rank and
the fourth column presents the average deleted lines in all
commits. The table shows that the majority of the failed
bug-fixing commits are large commits, except the one in the
lucene project. Additionally, the average number of deleted
lines in all the failed commits is high.

After conducting a manual analysis, we identified the fol-
lowing reasons why NEURALSZZ fails to correctly identify
the root cause:
• Sometimes NEURALSZZ still fails to accurately capture

the semantic meaning of deleted statements. A typical
example is the only small bug-fixing commit in the lucene
project, where NEURALSZZ wrongly identifies an import
statement as the root cause. In total, there are four bug-fixing
commits associated with this issue.

TABLE VIII: The performance comparisons between NEU-
RALSZZ and V-SZZ for vulnerabilities

Approach Precision Recall F1-score

BSZZ
AG-SZZ
MA-SZZ
RA-SZZ

0.359
0.521
0.418
0.433

0.687
0.731
0.761
0.591

0.472
0.608
0.540
0.499

V-SZZ 0.505 0.836 0.630

NEURALSZZ@1 0.670 0.662 0.666

NEURALSZZ@2 0.591 0.635 0.612

NEURALSZZ@3 0.547 0.768 0.639

• Refactoring operations can also have an influence on the
accuracy of NEURALSZZ. For example, in the commit
4c83c2200c of the lucene project, NEURALSZZ incor-
rectly ranks a deletion line that is part of a refactoring
operation where the statement was encapsulated into a new
function. This issue affects two bug-fixing commits in total.

• The third reason is that a few bug-fixing commits are exces-
sively large. For example, consider the bug-fixing commit
d330d406 in the oozie project. It consists of seven changed
files and 144 deletion lines. NEURALSZZ fails to identify
the root cause due to a large number of noisy information. It
may need more comprehensive details to achieve the desired
outcome.
To improve NEURALSZZ, we can incorporate refactoring

detection tools to identify and eliminate noise in commits.
Additionally, we can consider utilizing large language models,
which have demonstrated impressive performance in various
software engineering tasks [52]–[54], to tackle complex bug-
fixing commits.

B. NEURALSZZ for Vulnerabilities

Vulnerabilities are a special kind of bugs that can signifi-
cantly impact software systems. Hence, we are also interested
in the effectiveness of NEURALSZZ in detecting bug-inducing
commits by identifying the root cause for vulnerabilities. Bao
et al. have proposed V-SZZ, a specialized SZZ algorithm
designed for vulnerabilities [10]. They find that vulnerabilities
tend to exist in the initial versions of the software. As a result,
V-SZZ identifies the initial commits that introduce the deletion
line in the vulnerability-fixing commit and regards them as
vulnerability-inducing commits.

We use the dataset of 72 Java vulnerabilities annotated by
Bao et al.. Note that this dataset only contains small fixing
commits with equal or less than five deletion lines. We follow



the same approach of identifying the root cause as described
in Section IV-B. Specifically, we use NEURALSZZ to rank all
deletion lines and select the top three deletion lines to apply
the V-SZZ algorithm. Table VIII presents the performance of
the previous SZZ algorithms and NEURALSZZ.

As shown in the table, NEURALSZZ@1 achieves the best
performance in terms of precision and F1-score. It enhances
the precision by 15% using the top 1 deletion line in the
ranking list. Nonetheless, its recall significantly declines in
comparison to V-SZZ. Overall, NEURALSZZ@1 has the
highest F1-score, indicating that identifying the root cause
can help improve the effectiveness of the SZZ algorithm for
vulnerabilities.

C. Time Efficiency

It is important to consider the time efficiency when deploy-
ing the model. In this case, the whole inference time is 93.2
seconds on the entire test set using a simple GPU RTX3090.
On average, the model takes about 0.59 seconds to process
each bug-fixing commit.

D. Threats to Validity

Construct Validity. One potential threat to the construct
validity of our study lies in the measurements used. To
address this, we applied multiple measurements in our study,
including common metrics for ranking algorithms and metrics
for identifying bug-inducing commits.
Internal Validity. Errors may arise when we identify the
root cause for each commit since the annotators are not the
developers of the projects in our dataset. To address the
potential errors, we made use of the bug-inducing commits
provided in our dataset, which helped to narrow down the
number of deletion lines that needed to be examined. Another
threat to the internal validity is the strong assumption made
in the paper, where we consider the top three deletion lines as
the root cause. Indeed, there are some bugs whose root causes
are unrelated to deletion lines, such as missing a null pointer
check. However, the SZZ algorithm and its variants cannot find
the inducing commits for those kinds of bugs. The objective of
this research is to enhance the precision of the SZZ algorithm
while maintaining an acceptable level of recall. Consequently,
we exclude all commits whose root causes cannot be identified
through deletion lines in comparison.
External Validity. Threats to external validity refer to the gen-
eralizability of our approach. One potential issue is the limited
number of bugs in our dataset, which consists of 675 commits
in total. However, this number is comparable to the number of
bugs analyzed in prior studies [13], [55], [56]. Furthermore,
we collect 17,027 pairs on average to train the model. To
ensure generalizability, we also do cross-fold validation and
cross-project prediction. Another potential threat is that our
study only includes Java projects. In future research, we plan
to examine more bugs in different programming languages to
increase the generalizability of our approach.

VIII. RELATED WORK

We summarize the related work from the following perspec-
tives:
SZZ Applications in Software Engineering. The original
SZZ algorithm and its variants have a wide application in
software engineering research. A number of empirical in-
vestigations rely on the SZZ algorithm, such as code re-
views [57], code smells [58], developer collaboration [59],
[60], and technical debt [61]. For example, Bavota et al. [57]
conducted a study to compare the probability of inducing a
bug between unreviewed and reviewed commits. They used
the SZZ algorithm to retrieve bug-inducing commits.

SZZ has also been applied in the field of defect predic-
tion, where researchers have used the algorithm to extract
bug-inducing commits and build datasets for training and
evaluating their proposed models [1], [7], [8]. One example
is the large-scale study of change-level defect prediction
conducted by Kamei et al. [1]. In their study, they used B-
SZZ to label bug-inducing commits and built a dataset for
training and evaluating their proposed models. Afterward, Fan
et al. [9] evaluated the performance of different types of SZZ
algorithms. Keshavarz et al. [62] applied several filtering steps
to reduce false positives in the dataset. These steps included
considering the issue report date, the size of the commit, and
the presence of trivial changes.
Detecting Noise in Commits. Many researchers focus on
detecting noise in commits. The noise here often means
refactoring operations [15], [17], nonessential changes [63]
and casualty changes [64]. For example, the RefDiff tool [15]
can identify 13 types of refactoring operations, while a newer
tool proposed by Tsantalis et al [17]. supports 15 types of
operations. Diffcat [63] aims to detect nonessential changes
which include renaming of variables, methods, or classes, or
trivial changes such as adding a keyword in programs written
in Java. To detect noise better, Sejfia et al. [64] propose the
taxonomy of casualty changes, which refers to changes that
happen as a result of other changes and do not alter the logic
of the program. They implement a tool called CASCADE to
isolate this type of noise in commits. Our approach differs
from these static methods in two ways. Compared to previous
work, we use a deep learning model to capture the semantic
meanings of changed codes and their relationships with other
changed codes. Moreover, instead of focusing on identifying
and filtering out the noise, we utilize a ranking model to detect
the changed lines that are most likely to be the root cause.
Commit Detangling. Various approaches have been proposed
to divide composite commits into smaller changes that are
easier to comprehend and review [65]–[68], which is referred
to as commit detangling. For example, Wang et al. [65] use
a heuristic approach based on code dependency analysis and
similarity detection to decompose commits for code review.
However, our approach differs from commit detangling meth-
ods as it aims to identify the root cause of a bug-fixing commit,
rather than dividing a complex commit into a single-activity
commit. It is worth noting that a bug-fixing commit may be



highly complicated but only related to a single activity, which
falls outside the scope of commit detangling.

IX. CONCLUSION AND FUTURE WORK

In this paper, we present our approach NEURALSZZ that
prioritizes deletion lines according to their likelihood of being
the root cause of a bug in bug-fixing commits. Our approach
leverages the semantic meaning of each deletion line and its
relationships with other deletion and addition lines. We then
apply the SZZ algorithm on the deletion lines that are on
top of the ranking list. To train and evaluate our model, we
combine three high-quality datasets and manually annotate the
root cause deletion lines in bug-fixing commits based on their
corresponding bug-inducing commits. Our results demonstrate
that NEURALSZZ outperforms baseline methods in ranking
deletion lines and significantly improves the precision and F1-
score of previous SZZ algorithms. In the future, we plan to ex-
tend our research by gathering additional high-quality datasets
of bug-fixing and bug-inducing commits and evaluating our
model on various programming languages.
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