
Tracking and Analyzing Cross-Cutting Activities in
Developers’ Daily Work

Lingfeng Bao1,2, Zhenchang Xing2, Xinyu Wang1, and Bo Zhou1

1College of Computer Science, Zhejiang University, Hangzhou, China
2School of Computer Engineering, Nanyang Technological University, Singapore

{lingfengbao, wangxinyu, bzhou}@zju.edu.cn; {zcxing}@ntu.edu.sg;

Abstract—Developers use many software applications to pro-
cess large amounts of diverse information in their daily work. The
information is usually meaningful beyond the context of an appli-
cation that manages it. However, as different applications function
independently, developers have to manually track, correlate and
re-find cross-cutting information across separate applications. We
refer to this difficulty as information fragmentation problem.
In this paper, we present ActivitySpace, an interapplication
activity tracking and analysis framework for tackling information
fragmentation problem in software development. ActivitySpace
can monitor the developer’s activity in many applications at a
low enough level to obviate application-specific support while
accounting for the ways by which low-level activity information
can be effectively aggregated to reflect the developer’s activity
at higher-level of abstraction. A system prototype has been
implemented on Microsoft Windows. Our preliminary user study
showed that the ActivitySpace system is promising in supporting
interapplication information needs in developers’ daily work.

I. INTRODUCTION

Software developers are a typical example of knowledge
workers [1]. Their work produces, consumes and communi-
cates large amounts of diverse information. Integrated Devel-
opment Environments (IDEs) have been designed to maximize
developer productivity by integrating separate software devel-
opment tools, such as editor, build tool, debugger, version
control, and project management. However, today’s software
development involves not only software development tools but
also many other software applications specializing in different
tasks. For example, developers use web browsers to search the
Web, ask or answer questions in Q&A sites, or communicate
with other developers on social media.

The information associated with the work of developers
is usually meaningful beyond the context of an application
that manages it. For example, the developer encounters an
unexpected error in the IDE, and then searches the Web for
solutions. He reads some web pages and finds a solution on
Stack Overflow. This solution contains a code example shared
on jsfiddle.net. He tests the code example on jsfiddle and finds
the code useful for his error. He finally integrates the code
example in his code. In this example, source code the developer
works on, program error he encounters, search queries he
uses, web pages he visits, and code example on jsfiddle are
all correlated, but they are managed in various desktop and
web applications, including IDE, web browser, Stack Overflow,
jsfiddle, respectively.

These applications function independently of one another.
This independence creates a problem of information fragmen-

tation, forcing the developer to manually correlate and re-
find cross-cutting information across separate applications. For
example, during a task, the developer may be interrupted by
another task. Once he is done with the other task, he needs
to resume his working context across several applications
for the previous task, including not only source files but
also Stack Overflow posts and code examples on jsfiddle. As
another example, two week later, the developer’s colleague
encounters a similar error. The developer believes that one of
the Stack Overflow posts he read before would be useful for his
colleague. Web browsing history does not help much because
there are too many browsing activities on Stack Overflow that
are irrelevant to that particular error. He recalls the source
file involved in his previous task. However, the information
fragmentation problem makes it difficult for him to re-find the
Stack Overflow posts that he visited while he worked on that
source file two weeks ago.

Today’s software development practice calls for innovation-
s to support interapplication information needs in software de-
velopment, going beyond tool integration (e.g., IBM Jazz [2],
SeaHawk [3]) and information management within separate
applications (e.g., Mylyn [4], Context Web History [5]). In this
work, we aim to develop mechanisms that unobtrusively track
and effectively aggregate cross-cutting activities in developer’s
daily work, to ease the process of re-finding cross-cutting
information across applications.

The challenge is to monitor the developer’s activity in
many applications at a low enough level to obviate application-
specific support while accounting for the ways in which
information at this low level fails to accurately reflect the
developer’s activity at higher-level of abstraction. To tackle
this challenge, we design ActivitySpace system that supports
interapplication activity tracking, aggregation, search, and ex-
ploration. We have implemented a ActivitySpace prototype on
Microsoft Windows. We conducted a user study of the Activi-
tySpace prototype, in which we collected 417 hours activity
data from 8 participants. Using this data, we analyzed the
information fragmentation problem in software development
and showed that ActivitySpace is promising in supporting
interapplication information needs in developers’ daily work.

II. THE ActivitySpace SYSTEM

Fig. 1 shows the architecture of our ActivitySpace system.
ActivitySpace is composed of three components: 1) Activity
Tracker supports real-time recording of the developer’s activity
in different applications using operating-system (OS) level

Action Records

Window Information

Focused UI Information

Screenshot

Software Applications

…
Users

Action Inference Action Transcripts

Digest Collecter Activity Aggregator

 Recent Activities
Digest

History Activities Web Server

Activity Analysis

Activity Interface

Recent Activity
Digest Viewer

Correlated Activity
Snippet Viewer

Activity History
Explorer

Timeline
Inspector

Topic
Summary

 Edit History
Inspector

OS
Windows

APIs
Accessibility APIs

Activity Tracker

Fig. 1: The Architecture of the ActivitySpace System

instrumentation and computer vision techniques; 2) Activity
Analysis identifies cross-cutting activities and documents likely
to be relevant based on temporal locality [6]; and 3) Activity
Interface provides episodic and semantic User Interfaces (UIs)
to help the developer search and browse cross-cutting activities
and documents from various perspectives.

A. Activity Tracker

The ActivityTracker component monitors the developer’s
actions in the applications being used. It generates a se-
quence of time-ordered action records stored in the action
records database. Action records collect the low-level Human-
Computer Interaction (HCI) data, including window informa-
tion, focused UI information and screenshot.

Three factors must be taken into account when designing
the ActivityTracker: generality (i.e., easy to deploy to track
the developer’s actions in a wide range of commonly used
software applications), unobtrusiveness (i.e., do not disturb the
developers’ normal work flow), and efficiency (i.e., real-time
activity tracking and data collection). At the same time, the
collected action data should be easy to aggregate to infer the
developer’s activity at higher-level of abstraction.

To satisfy these design requirements, the ActivityTracker
component combines OS level instrumentation and screen
capture technique. As the developer is using a software appli-
cation, OS level instrumentation collects window and focused
UI information that applications expose to operating system,
while screen-capture technique records the screenshots which
can be analyzed using computer vision techniques to infer
the developer’s actions. These two techniques do not require
application-specific support, and thus can be easily deployed
in many applications and operating systems. Furthermore, they
can provide real-time activity tracking with very little data
collection overhead, and will not disturb the developer’s work.

1) OS Level Instrumentation: ActivityTracker uses a mouse
hook to monitor mouse click actions. The user can specify
which application(s) he wants or does not want ActivityTracker
to monitor. Once a mouse click occurs in a to-be-monitored

t1 t2
Timeline

WinTitle java calendar - Google Search - Mozilla Firefox
ParentWinTitle N/A
Boundary 0, 0, 1920, 1040
Mouse Position 272, 133
Process Name firefox.exe

UI Name Search
UI Type combo box
UI Value java calendar
UI Boundary 136, 121, 706, 140
Parent UI Name java calendar - Google Search - Mozilla Firefox
Parent UI Type window

WinTitle N/A

ParentWinTitle Java ActivityDisplayer/src/cn/zju/edu/timeline/TimelineExample.java - Eclipse

Boundary 524, 108, 1534, 765

Mouse Position 595, 262

Process Name eclipse.exe

UI Name N/A

UI Type edit

UI Value * File: TimelineExample.java… (source code, too long)

UI Boundary 524, 108, 1534, 765

Parent UI Name TimelineExample.java

Parent UI Type pane

Fig. 2: An Example of Action Records

application, ActivityTracker uses OS window APIs and accessi-
bility APIs to extract two kinds of information: window infor-
mation and focused UI information. The extracted information
will be time-stamped and stored as an action record in the
action records database.

Using OS window APIs, ActivityTracker extracts the fol-
lowing window information: the WinTitle and Boundary of the
focused application window in which the mouse click occurs,
the Position of mouse click, the ParentWinTitle of the root
parent window of this application window, and the Process
Name of the application. Using accessibility APIs, Activity-
Tracker extracts the following information of the focused UI
component: UI Name, UI Type, UI Value and UI Boundary of
the focused UI component, and the UI Name and UI Type of
the root parent UI component.

Due to privacy reason, the keyboard monitoring is disabled
by default. If keyboard monitoring is enabled, ActivityTracker
uses a keyboard hook to monitor keyboard actions in a same
way as monitoring mouse click actions.

Fig. 2 shows an example of two action records. The first
action occurs in Firefox. The developer searches java calendar
on Google. The second action occurs in Eclipse. The developer
works on TimelineExample.java source file in code editor.

2) Screen Capture: Accessibility API provides a generic
way to track the developer’s actions in different software
applications. However, it requires application developers to

invest additional engineering effort to properly expose the
internal data of the application when developing the software.
As a result, not all applications expose their internal data to
accessibility API, or not all the information is exposed 1.

To deal with the variety of accessibility support and to
capture the application context of the developer’s actions,
ActivityTracker uses OS window APIs to record a screenshot of
the application when a mouse click or keyboard action occurs
in the application. This screenshot provides a supplementary
information for accessibility information. The screenshots will
be stored together with the corresponding action records in
the action records database. The screenshots will be used in
two ways. First, it can be aggregated with the mouse position
information to infer application-specific actions that cannot be
tracked using accessibility API, for example, setting breakpoint
in Eclipse code editor. Second, replaying a time-series of
screenshots can help the developer recall when he did what
by invoking episodic memory [7].

B. Activity Analysis

As a new action record arrives on the server, the Action-
Inference component first infers an action transcript (appli-
cation being used, developer action, document involved and
document content) from the action record. Action transcript
is stored in the action transcripts database. Then, the Digest-
Collector component updates application usage and document
usage statistics for the most recent action transcripts in a
fixed-length time window. These usage statistics are referred
as recent activities digest stored in recent activities digest
database. The ActivityAggregator component runs at a given
time interval to periodically aggregates action transcripts into
history activities stored in the history activities database. An
activity represents all the actions performed on a document
within an application during a period of time. Further infor-
mation such as correlated activities, topics in documents used,
edit history of documents can be extracted from activities.
Note that these activity analyses are time consuming, and
thus cannot be performed by the ActivityTracker. Otherwise,
the ActivityTracker cannot satisfy the unobtrusiveness and
efficiency requirements.

1) Inferring Developer Actions: The ActionInference com-
ponent first tries to infer action transcript from the window and
focused UI information of the action record. Application being
used can be determined from the Process Name attribute of
the window information. Document involved in the action can
be determined from the WinTitle or ParentWinTitle attribute
of the window information. For example, in Fig. 2, at time
t1 the application being used is firefox.exe and the document
involved is java calendar - Google Search. At time t2 the ap-
plication being used is eclipse.exe and the document involved
is .../TimelineExample.java.

If the focused UI component supports accessibility API,
ActionInference can use the UI Name and/or UI Type attributes
of the focused UI information to infer the developer action
over the UI component. Furthermore, the detailed document
content can usually be extracted from the UI Value attribute.

1Visit http://baolingfeng.weebly.com/accessibility-survey.html for the re-
sults of our investigation of accessibility support in commonly used software
applications on Windows, Mac, and Linux operating systems.

For example, at time t1 the developer action is Search (UI
Name) and the document content is java calendar (UI Value).
At time t2 the developer is in an edit component (UI Type),
the source file is TimelineExample.java ((Parent UI Name), and
the file content can be extracted from the UI Value attribute.

However, not all UI components expose accessibility in-
formation to accessibility API. This is especially the case for
fine-grained UI components, such as buttons or UI decorators.
For example, the breakpoint on the editor ruler in Eclipse
edit component cannot be accessed by accessibility API. As
another example, the tab close button in Firefox tabs cannot
be accessed by accessibility API. In such cases, ActionInfer-
ence will use image template matching techniques to determine
the UI component that the developer interacts with and to infer
the developer’s action.

ActionInference uses two kinds of image template matching
techniques for different situations, as implemented in our video
scraping tool scvRipper [8]. The first technique is key point
based template matching [9], [10]. The second technique is
template matching with alpha mask [11], because some small
icons may not have enough key points. To detect the small
icons in the screenshot, the ActivitySpace user needs to provide
some template images of the icons that he wants the system to
recognize and associate the template images with some actions.

Once the icon is detected in the screenshot, ActionInference
will examine the mouse position against the icon position in the
screenshot to determine whether the mouse action is over the
icon. Then, based on the action definition associated with the
icon, ActionInference can determine what action the developer
performs in the action record. For example, ActionInference
can infer that the developer action is set breakpoint in code
editor by recognizing the breakpoint icon and linking it to
mouse action. This computer-vision based action recognition
complements the accessibility information.

2) Generating Recent Activity Digest: The DigestCollector
component maintains a recent activity digest for the most
recent actions in a fixed-length time window. Once a new
action transcript is added in the action transcripts database,
DigestCollector finds the archived action transcripts within X
minutes (X = 30 by default) from the latest action transcript.
It then collects the application usage and document usage s-
tatistics in these action transcripts, including applications being
used and the time spent on each application, and document
being used and the time spent on each document. These
application usage and document usage statistics constitute
recent activity digest in the latest activity digest time window,
which will be updated in Recent Activity Digest Viewer.

3) Aggregating History Activities: At a given time interval
Y minutes (Y = 60 by default), the ActivityAggretator
component will be launched to aggregate the action transcripts
archived in a period of Y minutes into history activities. The
new action transcripts can keep arriving after ActivityAggre-
gator has been launched. These new action transcripts will be
processed in the next execution of ActivityAggregator.

ActivityAggregator assumes that the information used by
the developer across separate applications exhibit temporal
locality, i.e., actions which occur at closer points in time are
more likely to be conceptually related. Temporal locality has

http://baolingfeng.weebly.com/accessibility-survey.html

been applied with success in numerous settings involving user
activity [12]–[14]. Temporal locality allows ActivityAggregator
to infer a likely relevance among different documents without
knowledge of their contents or the purpose of the actions.

Let < a1, a2, ..., an > be a sequence of action transcripts
in the latest Y minutes since the last execution of the Activ-
ityAggregator. ActivityAggregator regards as an activity all the
actions on a particular document within an application window
that occur within the time interval threshold Tclose (30 minutes
by default). Given the two actions ai and aj (1 ≤ i < j ≤ n),
ai and aj are regarded as part of an activity if the time span
between the two actions |ai.time − aj .time| < Tclose and
the two actions have the same process name and the same
window title. If an application window is a sub-window of
the main application window, e.g. open a dialog window in
an application window, ActivityAggregator uses the title of the
main application window for comparison. If the time span of
the two activities overlap, ActivityAggregator considers the two
activities as correlated activities, and the documents involved
in the two activities as correlated documents.

C. Activity Interface

ActivitySpace currently supports three semantic UIs (Re-
cent Activity Digest Viewer, Correlated Activity Snappit View-
er, and Topic Summary), and three episodic UIs (Activity His-
tory Explorer, Timeline Inspector, and Edit History Inspector.
Semantic UIs enable the developer to find information based
on the documents (i.e., what) he has used, while episodic UIs
enable the developer to find information based on the time
(i.e., when) and place (i.e., where) of his actions. Readers are
referred to our tool website 2 for detailed description of these
semantic and episodic UIs.

III. EVALUATION

We have implemented a ActivitySpace prototype 2 on
Microsoft Windows. We invited 8 volunteer graduate students
in a user study of the ActivitySpace prototype. The partici-
pants installed the ActivitySpace prototype on their working
computer. The system was configured to track user activity in
web browsers (Firefox, Chrome, Internet Explorer), office soft-
ware (Word, Excel, PowerPoint), PDF reader (Adobe Reader,
Foxit Reader), text editors (Notepad, Notepad++), latex editor
(WinEdt), and IDEs (Eclipse, Visual Studio). Activity in all
other applications are categorized as others. In this section,
we analyze the collected activity data and report the post-study
survey results.

A. Activity Statistics

The 8 participants used the ActivitySpace system for 4 to
22 days. We collected in total 417 hours activity data. The
total time of each participant is computed as the sum of the
interval of adjacent action records, but we discard long idle
time between the two action records whose interval is longer
than 30 minutes. Table I summarizes the collected activity
data in these 417 hours. The participants S1-S5 used the
ActivitySpace system for more than 10 days and produced
sufficient activity data for analysis. They used the tracked

2Visit http://baolingfeng.weebly.com/ase2015-demonstration.html for tool
demonstration and installation information.

applications on average more than 4 hours per day and used
large amounts of distinct documents.

Table II shows the document usage and application usage
statistics by the participants S1-S5. We can see that S1-S5
used many software applications in their work. S1-S5 visited
large amounts of distinct web pages. Distinct web pages visited
by S1-S5 account for more than 85% of all the documents
used by S1-S5, while S1-S5 used a small number of dis-
tinct documents in other categories of applications. However,
looking at application usage statistics, S1-S5 spent only about
50% of their working time in web browser. This means that
these participants usually spent very short time on a web page
visited. For example, they often opened some web pages after
search, and then closed the page after a quick look. In contrast,
the participants usually spent much longer time on a document
in other categories of applications.

TABLE I: The Statistics of Activity Data

#Day Duration [hour] #ActionRecord
(avg per hour)

#Activity
(avg per hour)

#Distinct
Document

S1 22 89.25 45667 (324.39) 3981 (28.28) 2401
S2 21 87.09 35010 (381.96) 4471 (48.78) 2898
S3 21 98.15 20202 (185.77) 3465 (31.86) 1843
S4 19 68.45 34576 (439.23) 3433 (43.61) 1644
S5 11 52.63 12993 (245.75) 2161 (40.87) 1078
S6 5 3.97 1961 (496.46) 130 (32.91) 99
S7 5 5.71 635 (115.04) 121 (21.92) 41
S8 4 11.96 4019 (327.55) 635 (51.75) 358
Total 108 417.2 155063 18397 10362

TABLE II: The Document and Application Usage
(a) The Usage of Distinct Documents (number)

S1 S2 S3 S4 S5
All Applications 2401 2893 1843 1644 1078
Browser 2096 (87.30%) 2641 (91.29%) 1710 (92.78%) 1446 (87.96%) 915 (84.88%)
Office Sofware 68 (2.83%) 48 (1.66%) 22 (1.19%) 69 (4.20%) 12 (1.11%)
PDF Reader 20 (0.83%) 39 (1.35%) 31 (1.68%) 38 (2.31%) NA
Text Editor 65 (2.71%) 29 (1.00%) 8 (0.43%) 37 (2.25%) 121 (11.22%)
Latex Editor 22 (0.92%) 89 (3.08%) 59 (3.20%) 34 (2.07%) 30 (2.78%)
Eclipse 110 (4.58%) 24 (0.83%) 13 (0.71%) 20 (1.22%) NA
Visual Studio 13 (0.54%) NA NA NA NA
Others 7 (0.29%) 23 (0.80%) NA NA NA

(b) The Usage of Applications (hour)

S1 S2 S3 S4 S5
All Applications 89.25 87.09 98.15 68.45 52.63
Browser 41.26 (46.23%) 50.5 (57.99%) 57.41 (58.49%) 38.42 (56.13%) 26.88 (51.07%)
Office Software 2.58 (2.89%) 3.65 (4.19%) 1.05 (1.07%) 10.63 (15.53%) 0.45 (0.86%)
PDF Reader 0.09 (0.10%) 0.74 (0.85%) 1.46 (1.49%) 1.03 (1.50%) NA
Text Editor 0.71 (0.80%) 0.26 (0.30%) 0.19 (0.19%) 0.89 (1.30%) 11.67 (22.17%)
Latex Editor 15.08 (16.90%) 28.84 (33.12%) 31.81 (32.41%) 13.33 (19.47%) 13.63 (25.90%)
Eclipse 28.3 (31.71%) 2.82 (3.24%) 6.23 (6.35%) 4.15 (6.06%) NA
Visual Studio 1.12 (1.25%) NA NA NA NA
Others 0.11 (0.12%) 0.28 (0.32%) NA NA NA

B. Document Revisits

As shown in Fig. 3a, about 10% of the documents that each
participant used were used in 2 or more days. Fig. 4 shows
the statistics of time intervals (days) of document revisits.
We can see that many documents revisits occur after a long
time interval. For example, S2 revisited the web page “User
GManNickG - Stack Overflow” 14 days after the first visit.
Fig. 3b shows the percentage of revisited documents of the
participants S1-S5 by different applications. We can see that
although the five participants visited thousands of distinct web
pages, there were only about 10% of web pages that were
visited in 2 or more days. In contrast, in other categories of
applications (e.g., Latex Editor and IDEs) higher percentage
of documents were revisited in 2 or more days.

As shown in Table III, the participants searched Google
with hundreds of distinct queries during the study. A small
percentage of queries were reused in 2 or more days. We find
that the participants sometimes use Google as a “bookmark”
to revisit the relevant web information they visited before.

http://baolingfeng.weebly.com/ase2015-demonstration.html

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S1 S2 S3 S4 S5

P
e

rc
e

n
ta

ge
 o

f
d

o
cu

m
en

ts
 u

se
d

 in
 #

d
ay

(s
)

1 Day 2 Days 3-5 Days >5 Days

(a) By Different Participants

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

ge
 o

f
d

o
cu

m
e

n
ts

 u
se

d
 in

 #
d

ay
(s

)

1 Day 2 Days 3-5 Days >5 Days

(b) By Different Software Applications

Fig. 3: The Statistics of Document Revisits

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
u

m
b

er
 o

f
R

e
vi

si
t

(2
i)

Revist Interval (days)

S1 S2 S3 S4 S5

Fig. 4: The Statistics of Document Revisit Intervals

C. Correlated Activities and Documents

If consecutive action transcripts involved different doc-
uments within an application, we regard it as a within-
application transition. If consecutive action transcripts involve
different categories of applications, we regard it as an across-
application transition. Fig 5 shows a discrete-time Markov
chain for the within- and across-application transitions in
the work of the participant S3. Node size is proportional
to the percentage of distinct documents used in a particular
category of applications (see Table IIb). We can see that
within-applications account for large percentage of transitions
(blue font). Meanwhile, S3 also frequently switches from one
application to another, especially from other applications to
browser (red font). This shows that S3 interleaves coding, web
search and learning in his work.

TABLE III: The Statistics of Search Queries on Google
#QueryInGoogle #Re-UsedQuery Percentage (%)

S1 421 17 4.038%
S2 227 10 4.405%
S3 448 22 4.911%
S4 342 17 4.971%
S5 234 12 5.128%

Browser 93.70%

Eclipse

1.34%

Text

0.17%

Latex

4.16%

PDF
0.32%

Office

0.32%

40.89%

45.81%

0.99%

9.85%

2.46%

52.63%

5.26%

26.32%

10.53%

5.26%

24.65%

2.41%

0.20%

66.80%

4.83%

1.11%
4.28%

17.13%

77.98%

0.61%

22.00%

5.00%

5.00%

5.00%

63.00%

Fig. 5: The Application Transitions in the work of S3

Table IV shows the documents with the most correlated
documents for each category of software application in the
work of S3. We can see that these documents correlate with
many other documents within- and across-applications. For
non-browser applications, most of the correlated documents
are in different applications.

TABLE IV: The Document with the Most Correlated Documents in
the work of S3

Document With
The Most Correlated Documents #CorrelatedDocument #CorrelateDocument

InDifferentApplication
Browser #S3’s name# - Outlook 193 37 (19.17%)
Office Software ...full conference name.xlsx 12 11 (91.67%)
PDF Reader draft.pdf - Adobe Acrobat Reader DC 53 34 (64.15%)
Text Editor log.log - Notepad 17 16 (94.12%)
Latex Editor WinEdt 9.0 ... /draft.tex 76 62 (81.58%)
Eclipse UrlProcess.java (URLMatch/src) 49 43 (87.76%)

D. Post-Study Survey

The 8 participants did not report difficulty in installing
the ActivitySpace prototype. The ActivitySpace prototype can
successfully track activity data in the diverse computer settings
of the 8 participants. The participants did not feel the overhead
of activity tracking. They did not report that the ActivitySpace
prototype disturbs their work.

TABLE V: The Usefulness of ActivityInterface UIs

Activity Interface Usefulness (mean±std)
Recent Activity Digest Viewer 4.0±0.63
Correlated Activity Snippet Viewer 4.2±0.75
Activity History Explorer 4.2±0.40
Topic Summary 3.4±1.36
Timeline Inspector 3.4±0.80
Edit History Inspector 3.2±1.17

We conducted a post-study using a questionnaire in which
we asked the participants rate the usefulness of the semantic
and episodic UIs in 5-points likert scales (1 being least useful,
5 being most useful). Table V summarizes the participants’
feedbacks. The participants found Correlated Activity Snipper
Viewer useful, because it supports context-sensitive recall of
documents previously used together with the current document

(S3). They also found Activity History Explorer useful, because
it not only provides a comprehensive overview of history
activities but also supports effective ways to filter or search
relevant activities/documents (S1). Some participants found
Recent Activity Digest Viewer useful, because it allows them
to quickly find recently used documents. Most participants
did not find Topic Summary, Timeline Inspector, and Edit
History Inspector very useful, except S1 and S4. S4 used Topic
Summary to find the web pages he visited. S1 made many code
changes in Eclipse and found Edit History Inspector useful to
recall the intermediate code changes that were not committed
in version control system.

IV. RELATED WORK

Tracking User Activity. Software applications can be in-
strumented to log the user’s activity within an application, for
example TaskTracker [15], Mylyn [4], and Reverb [16]. Soft-
ware instrumentation usually requires sophisticated reflection
APIs provided by applications and GUI toolkits, which are
not always available [17]. Furthermore, instrumenting many
of today’s software systems is considerably complex. Acces-
sibility APIs are standard interfaces built in modern operating
systems. They provide a generic way to access application
information, but what information an application exposes to the
accessibility APIs is determined by the application developers
which vary greatly across applications and operating systems 1.
Furthermore, it is usually problematic to derive user interest
and activity from highly fine-grained accessibility data with-
out the information about application context. To overcome
this limitation, our ActivityTracker complements accessibility
information with screenshots of applications.

Activity-Centric Computing. Our ActivitySpace system is
inspired by the activity theory [18] and the recent development
of activity-centric computing tools [19]–[22]. Activity-centric
computing has been proposed as a computing paradigm that
supports the users’ activities rather than the resources and tools
used to perform such activities. Activity-centric computing
goes beyond tool integration and task-centric management in
separate applications. However, existing activity-centric sys-
tems mainly focus on activity construction and activity resump-
tion. In contrast, our ActivitySpace system unobtrusively track
developer activity in different applications and automatically
infer high-level activities and their correlations.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented our ActivitySpace system
that supports interapplication activity tracking, aggregation,
search and exploration. ActivitySpace creates interapplication
information scents to ease the process of correlating and
re-finding cross-cutting activities and documents across ap-
plications in developers’ daily work. A pilot study of 8
participants demonstrated the usefulness of the ActivitySpace
prototype for supporting interapplication information needs
in software development. In the future, we will investigate
activity-centric virtual workspace and community-of-practice
for better supporting integrated knowledge work in today’s
software development practices, which requires higher-level
information integration and management than current focus on
tool integration and within-application task management.

ACKNOWLEDGMENT

This work was partially supported by the Major State
Basic Research Development Program of China (973 Pro-
gramNo.2015CB352201)and National Key Technology R&D
Program of the Ministry of Science and Technology of China
(No. 2013BAH01B01). This work is supported by NTU SUG
M4081029.020 and MOE AcRF Tier1 M4011165.020.

REFERENCES

[1] T. H. Davenport, Thinking for a living: how to get better performances
and results from knowledge workers. Harvard Business Press, 2013.

[2] R. Frost, “Jazz and the eclipse way of collaboration,” Software, IEEE,
vol. 24, no. 6, pp. 114–117, 2007.

[3] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow
in the IDE,” in Proc. ICSE, pp. 1295–1298, 2013.

[4] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proc. AOSD, pp. 159–168, 2005.

[5] S. S. Won, J. Jin, and J. I. Hong, “Contextual web history: Using visual
and contextual cues to improve web browser history,” in Proc. CHI,
pp. 1457–1466, 2009.

[6] M. Snir and J. Yu, “On the theory of spatial and temporal locality,”
2005.

[7] M. Lamming and M. Flynn, “Forget-me-not: intimate computing in
support of human memory,” in Proceedings of the ’94 Symposium on
Next Generation Human Interface (FRIEND21), pp. 2–4, 1994.

[8] L. Bao, J. Li, Z. Xing, X. Wang, and B. Zhou, “Reverse engineering
time-series interaction data from screen-captured videos,” in Proc. 22nd
IEEE International Conference on Software Analysis, Evolution and
Reengineering, pp. 399–408, 2015.

[9] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. ICCV, vol. 2, pp. 1150–1157, 1999.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[11] D. A. Forsyth and J. Ponce, Computer vision: a modern approach.
Prentice Hall Professional Technical Reference, 2002.

[12] N. Oliver, G. Smith, C. Thakkar, and A. C. Surendran, “Swish: Semantic
analysis of window titles and switching history,” in Proc. IUI, pp. 194–
201, 2006.

[13] T. Rattenbury and J. Canny, “Caad: An automatic task support system,”
in Proc. CHI, pp. 687–696, 2007.

[14] C. A. N. Soules and G. R. Ganger, “Connections: Using context to
enhance file search,” in Proc. SOSP, pp. 119–132, 2005.

[15] A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, L. Li,
and J. L. Herlocker, “TaskTracer: a desktop environment to support
multi-tasking knowledge workers,” in Proc. IUI, p. 75, 2005.

[16] N. Sawadsky, G. C. Murphy, and R. Jiresal, “Reverb: Recommending
code-related web pages,” in Proc. ICSE, pp. 812–821, IEEE, 2013.

[17] A. Hurst, S. E. Hudson, and J. Mankoff, “Automatically identifying
targets users interact with during real world tasks,” in Proc. IUI, pp. 11–
20, 2010.

[18] Y. Engeström, R. Miettinen, and R.-L. Punamäki, Perspectives on
activity theory. Cambridge University Press, 1999.

[19] S. Jeuris, S. Houben, and J. Bardram, “Laevo: A Temporal Desktop
Interface for Integrated KnowledgeWork,” in Proc. UIST, pp. 679–688,
2014.

[20] S. Houben, P. Tell, and J. E. Bardram, “ActivitySpace: Managing Device
Ecologies in an Activity-Centric Configuration Space,” in Proceedings
of the Ninth ACM International Conference on Interactive Tabletops
and Surfaces - ITS ’14, pp. 119–128, 2014.

[21] S. Houben, J. E. Bardram, J. Vermeulen, K. Luyten, and K. Coninx,
“Activity-centric support for ad hoc knowledge work: A case study of
co-activity manager,” in Proc. CHI, p. 2263, 2013.

[22] S. Houben, S. r. Nielsen, M. Esbensen, and J. E. Bardram, “Noo-
Sphere: An Activity-Centric Infrastructure for Distributed Interaction,”
in Proceedings of the 12th International Conference on Mobile and
Ubiquitous Multimedia - MUM ’13, pp. 1–10, 2013.

