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Abstract—Developer online chatrooms serve as vital connec-
tions among developers in Open Source Software (OSS) projects.
However, the presence of impatient and unfriendly users can
disrupt the harmony within these chatrooms, leading to neg-
ative consequences such as reduced activity and attrition. To
address this, we aim to first understand toxicity in developer
chatrooms and further develop automated detection techniques.
We collect chat messages from three active Gitter chatrooms,
and conduct an in-depth analysis at the discussion thread
level to examine intent and sentiments. Using a card-sorting
method, we create a fine-grained taxonomy with seven toxicity
categories and manually annotate a dataset of 5,158 threads.
This enables us to gain insights into the nature of toxicity and
identify shortcomings in existing detection methods. We further
propose an automated binary toxicity detection approach that
integrates textual features, non-textual features, and negative
sentiment features derived from a Large Language Model (LLM).
Our experimental results demonstrate an average F1-Score of
0.546, representing a significant 57.8% improvement over the
best-performing baseline. We also validate the effectiveness of
incorporating non-textual and negative sentiment features.

Index Terms—toxicity detection, developer online chatrooms

I. INTRODUCTION

With the growth of Open Source Software (OSS), com-
munication channels like GitHub issues, Stack Overflow, and
Gitter chatrooms [1] are vital for developers to share and
learn. Constructive discussions drive progress, but there is also
a small fraction of toxic remarks (e.g., harassment, conflict)
within these communities. Toxicity refers to disruptive or
inappropriate content [2], negatively impacting community
members and projects [3], [4]. To foster a harmonious and
constructive environment in OSS communities, research ad-
dressing toxic remarks is crucial.

Online chatrooms have been a prevalent platform for fos-
tering connections within communities. They are becoming
increasingly popular because of real-time and interactive dis-
cussions [5]. There are several popular online developer chat
platforms, including Gitter, Slack, and Discord. Among them,
Gitter stands out due to its direct connection with open-source
projects on GitHub and ready access to its historical data [5]–
[7]. However, the toxicity in online chatrooms has not received
adequate attention.

Toxicity is a pervasive issue in online chatrooms, despite
the presence of conduct guidelines. Some users choose to
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disregard these guidelines, leading to toxic discourse [4], [8].
This poses several challenges for administrators in monitoring
chatrooms. Firstly, disentangling discussion threads from un-
structured message streams and identifying toxic content is a
labor-intensive task. Secondly, the rapid turnover of messages
makes it difficult to promptly detect and remove problematic
content. Lastly, a lack of timely intervention can disrupt the
harmonious atmosphere and alienate users. Therefore, there is
an urgent need for in-depth analysis and automated detection
methods to alleviate the burden on administrators and improve
the chat environment [2], [9]. Real-time toxicity detection can
foster a positive atmosphere and encourage active participation
from developers.

Existing sentence-level methods for toxicity detection [3],
[9]–[12] have limitations in developer online chatrooms. These
limitations stem from the focus on sentence-level analysis and
the lack of customization for chatroom environments [6], [7],
[13], [14]. Developer chatrooms primarily involve technical
discussions, follow a Q&A format [13], [15], and exhibit
tangled discussions with multiple rounds of information ex-
change [13], [14]. Given the high contextual coherence and
technical relevance, thread-level toxicity detection would be
more valuable than existing methods.

In this study, we explore toxicity in developer chatrooms
and create a thread-level discussion dataset from representative
chatrooms on Gitter. We develop a suitable toxicity taxonomy
for developer chatrooms, define clear classification criteria,
and analyze each toxicity category to understand their char-
acteristics. To address the lack of thread-level datasets, we
manually annotate a dataset reflecting real toxicity. Using the
fine-grained taxonomy and dataset, we evaluate existing toxic-
ity detection methods and identify reasons for false detection.
We propose a thread-level toxicity detection approach that
combines textual features from neural networks, handcrafted
non-textual features, and negative sentiment features from a
Large Language Model (LLM). It performs the binary classi-
fication task to determine whether a thread is toxit. We evaluate
our approach, compare it with sentence-level methods, and
demonstrate the effectiveness of incorporating non-textual and
negative sentiment features in toxicity detection.

The contributions of our work are summarized as follows:
• We propose a thread-level toxicity taxonomy designed ex-

plicitly for online developer chatrooms and analyze the



characteristics of different categories.
• We collect a comprehensive dataset from chatrooms on

Gitter and manually annotate thread-level toxicity labels
after disentangling the discussion threads.

• We conduct experiments to compare the performance of
our approach with sentence-level baselines and evaluate the
effectiveness of non-textual features and negative sentiment
features in our method. The experiment results show that
our approach significantly outperforms the baselines.

• To foster future works and adhere to good research practices,
we provide a replication package [16] of our work.

II. BACKGROUND & MOTIVATION
A. Toxicity Detection

Toxicity detection identifies and mitigates harmful content
in text for a harmonious online environment. Prior stud-
ies integrated sentiment analysis, such as VADER [17] in
STRUDEL [9], as negative sentiments like anger and disgust
may indicate toxicity. Our work also incorporates sentiment
analysis. Various widely adopted methods for toxicity detec-
tion and sentiment analysis have emerged in recent years, cov-
ering general platforms and the software engineering domain.
Regular Expression (Regex) is a straightforward approach
that uses certain keywords (e.g., fuck, shit) to detect toxicity.
We use the regex list proposed by Cheriyan et al [3]. Moreover,
we refine their regex list based on our dataset. Please refer to
the complete regex list in our replication package [16].
Perspective API (PAPI) [11], developed by Jigsaw and
Google’s Counter Abuse Technology team, aims to address
online toxicity and abusive behavior, promoting healthy con-
versations. Initially, multilingual BERT-based models were
trained and then distilled into single-language Convolutional
Neural Networks (CNNs) for each language. For this paper,
we exclusively utilize the English model and focus specifically
on the Toxicity attribute with the threshold at 0.5.
MAX Toxic Comment Classifier (MAX Classifier) [10] was
created as a component of the IBM Developer Model Asset
Exchange, utilizing a pre-trained BERT model for multi-label
classification [18]. It was fine-tuned on the Toxic Comment
Classification Dataset, which was sourced from the famous
Toxic Comment Classification Challenge [19]. The MAX
Classifier categorizes texts into six toxicity types, using a
threshold of 0.5 for each type. If the value for any toxicity
type exceeds 0.5, the text is classified as Toxicity.
STRUDEL, the first SE domain-specific toxicity detector,
utilizes an SVM classifier incorporating pre-trained toxicity
detectors like Perspective API [11] and VADER [17]. To
mitigate the impact of SE technical terms, a verification step
replaces them with neutral alternatives before re-evaluating the
modified text for the final outcome.
BERT4SentiSE applies BERT [20] for sentiment analysis
in SE domain [21], which shows promising performance in
software-related texts. The BERT model is fine-tuned on an
extended dataset sourced from Stack Overflow posts, which
includes three labels: Negative, Positive, and Neutral. To
identify potential instances of toxicity, we utilize the Negative
sentiment labeled by BERT4SentiSE.

How	did	you	define	a?
Screenshot
Sent	above	^^
Your	re	defining	a	with	itself...	
If	you	change	that	to	a	=	"word”
Try	that
Worked	now
That	was	a	stupid	mistake
Thanks	a	lot	xD

D1
D1
D2
D1
D1
D1
D2
D2
D2

Developer	ID Session	message

Fig. 1. Instance misidentified as toxicity at the sentence level.

how	do	start	doing	100	days	of	coding	for	learning	python	3
language.	plis help
@D1 google	your	question
this	is	gitter not	google

D1

D2
D2

Developer	ID Session	message

Fig. 2. Instance of toxicity that goes unrecognized at the sentence level.

B. Motivation
Numerous studies have been conducted to explore sentence-

level toxicity detection in SE domain [2]–[4], [12]. However,
few studies have been done on toxicity in developer chat-
rooms which typically involve multiple rounds of interaction.
Previous studies of developer chatrooms show that thread is
the smallest unit containing a complete intent [7], [14], [22],
proving the strong necessity to incorporate contextual infor-
mation. Therefore, our research focuses on the thread level,
recognizing that enhancements in current toxicity detection
methods can be pursued from two perspectives:

Reducing instances misidentified as toxicity at the sen-
tence level. In Fig. 1, the highlighted part is a single sentence
in the original conversation. The word mistake in this sentence,
not attributed to anyone, might lead to misinterpretation at
the sentence level, resulting in misclassification as Toxicity.
Previous approaches (introduced in Section II-A) classified it
as such. However, considering the context, it is evident that
stupid mistake refers to the speaker’s own error, reflecting self-
deprecation or humility. Instances where questioners refer to
themselves using words like stupid, dumb, or idiot are common
in online chatrooms, leading to many misclassifications by tra-
ditional sentence-level methods. Thus, expanding detection to
the thread level can effectively reduce such misclassifications
caused by unclear intent due to context absence.

Increasing instances of toxicity that go unrecognized at
the sentence level. Examples of non-sentential toxicity include
seemingly harmless individual statements that reveal aggres-
sion when viewed in the context of the entire conversation.
For instance, in Fig. 2, D2’s response appears innocent but
becomes toxic when considering the dismissive attitude to-
wards a novice seeking help in a chatroom meant for advanced
chats. Accurate judgment requires understanding the context,
as some responders may recommend Google while politely
explaining the chatroom’s purpose, conveying a friendlier
sentiment. Assessing off-topic discussions also requires clear
comprehension of the conversation’s intent. Thus, analyzing
at the thread level improves the identification of such cases
missed at the sentence level due to incomplete information.

III. TOXICITY DETECTION AT THREAD-LEVEL
A. Data Preparation

There are many datasets for sentiment analysis [21],
[23]–[27] or toxicity detection in general platforms (e.g.,



TABLE I
THE DETAILED CHARACTERISTICS OF SELECTED CHATROOMS

Chatroom Messages Threads Toxicity Duration

Angular 1,135,913 1,011 21 2015/03 – 2022/07
Node.js 124,462 1,014 20 2014/12 – 2022/07
Python 28,399 3,133 60 2016/03 – 2022/07

Wikipedia [19], Twitter [28]). Among the limited datasets
related to communications between developers, most of them
are categorized based on the communication elements towards
specific platforms, such as issues/comments of GitHub [2],
[8], [9]. To the best of our knowledge, none of the existing
works investigates toxicity in developer chatrooms. Thus, we
build our own dataset by 1) collecting thread-level chat data,
2) building the thread-level taxonomy of toxicity in developer
chatrooms using card sorting, and 3) manually labeling the
chat data with the built toxicity taxonomy.

Gitter is a popular developer chatroom platform with nu-
merous active users in open source projects [5]–[7], offering
ample chat data for our research. However, toxic conversations
are rare, making manual labeling costly. To gain insights into
different types of toxicity, we conduct a preliminary study to
select projects with a higher volume of toxic threads.
1) Crawling raw data: there are 24 categories of chatrooms

on Gitter [29]. We randomly select 100 active chatrooms
for each category and crawl all historical messages of them
using the official API provided by Gitter.

2) Applying toxic detectors: we use existing toxicity detectors
introduced in Section II-A to detect potential toxicities in
the raw chat data. We obtain the union of positive (i.e.,
toxic) results from all the detectors and calculate the final
proportion of potential toxicities for each chatroom.

After preliminary detection, we tend to select chatrooms
with higher proportions of potential toxicity. To enhance the
representativeness of the dataset, we take into account both the
category and scale of the chatrooms. We categorize the scales
into four levels, including small-scale (< 104 messages),
medium-scale (104 ∼ 105 messages), large-scale (105 ∼ 106

messages), and extra-large-scale (> 106 messages). Due to the
small number of potential toxicity in small-scale chatrooms,
we focus our selection on the remaining three scale levels.
Among these, we choose chatrooms with the highest propor-
tion of potential toxicity, while ensuring they represent dif-
ferent development categories. Finally, the selected chatrooms
are Angular, Node.js, and Python. The summarization of the
selected chatrooms is shown in Table I.

B. Manual Labeling at Thread-Level
Our goal is to create a dataset at the thread level, where

we first segment the historical messages from Gitter into
discussion threads and further assign labels to each of these
threads. We employ the disentanglement method proposed by
Ehsan et al [15], which demonstrates promising performance
in segmenting Gitter chatrooms. Considering the high cost
of manual annotation, we conduct full manual annotation
on the Python chatroom, which has a smaller number of
messages. As for the larger Angular and Node.js chatrooms,

we randomly select 1,000 threads as representative samples for
manual annotation, respectively. Table I presents the number
of messages and threads available in each chatroom.

To build a comprehensive thread-level taxonomy of tox-
icity for developer chats, we employ the open card sorting
method [30], which has been widely utilized in various pre-
vious studies (e.g., identify the potential information types
in developer chatrooms [14], identify the potential toxicity
types in GitHub issues [2]). We assign a separate card to each
discussion thread. The labeling of each card is a collaborative
effort between the first two authors. We also provide the
detection results at the sentence level as some sort of reference
for annotators. The entire process involves two steps:
Step 1: We first use 30% of the card. The first two authors
code these threads separately. Miller et al. [2] categorized
GitHub issue threads into five toxicity classes based on the
problems discussed and the project context. This is similar
to our work on Gitter discussion threads. Therefore, we use
their taxonomy as a foundation and refine it to create our own
taxonomy. Firstly, the annotators are instructed to carefully
review the content of each discussion thread and label them
into toxicity according to the criteria in [2]. If the thread is la-
beled as Toxicity, it is further classified into toxicity categories
proposed in [2], otherwise only labeled as Non-toxicity. In
cases where the threads do not fit into the existing categories
but are considered toxic to the chatroom by the annotators,
they are allowed to propose a new category that they believe
is most appropriate accordingly. After that, the two authors
discuss the similarities and differences between GitHub issues
and chatroom discussions. Based on these findings, they refine
the taxonomy and resort to the cards. Finally, a new taxonomy
for chatroom discussion threads is built as shown in Table. II,
which has the description of each category and the rule
to sort threads into each category. Step 2: According to
the guidelines presented in Table. II, the remaining threads
are marked independently by two authors. The agreement
between the two authors is assessed using Cohen’s Kappa
coefficient [31], resulting in a Kappa value of 0.75, indicating
a strong consensus. In cases where disagreements arise, the
two authors engage in discussions to reach a mutual decision.
The entire annotation process costs 672 person-hours.
C. Taxonomy of Toxicity on Gitter

In this section, we provide detailed explanations for each
toxicity category in our built taxonomy and the criteria used
for labeling. As shown in Table II, we divide the toxic threads
into eight categories:
Rudeness. Some users tend to use dirty words, such as shit and
fuck in verbal expression, which can create a sense of discom-
fort or displeasure for other users and can thus be categorized
as toxic. At the sentence level, any sentence containing dirty
words is easily labeled as toxic. However, based on our find-
ings at the thread level, the use of certain profanities without
malicious intent may not necessarily impede the progress of
a conversation. The overall tone of the conversation remains
friendly. Therefore, we do not classify such conversations as
toxic. We only label a thread as Toxicity when the proportion



TABLE II
THE TAXONOMY OF TOXICITY ON GITTER FOR DEVELOPER DISCUSSION THREADS

Category Description Rule Support

Rudeness Rudeness is messages that have dirty words but not too many and are less
aggressive.

Includes dirty words and rude words that give people a bad feeling, but do not reach the
level of severe verbal abuse or harassment.

28

Harassment Harassment is messages that are harmful and offensive to other users. Includes sexual language and imagery, racial discrimination, deliberate intimidation, stalking,
name-calling, unwelcome attention, libel, and any malicious hacking.

14

Argument Argument is messages that contain quarrel between different people. Includes conflict, quarrel, and severe words between different users. 9
Criticism Criticism is messages in which a user criticizes something or someone, or

expresses strong dissatisfaction with something or someone.
Includes harsh criticism, disagreement, strong dissatisfaction, or sarcasm messages from
users.

19

Complaint Complaint is messages in which people express dissatisfaction with something
or someone in a less intense way.

Includes complaints and dissatisfaction from users. 17

Command/Arrogance Command/Arrogance is the commanding, indicative messages of what someone
or something must do in a condescending tone.

Includes command, indicative messages, dictatorial messages, and some absolute messages. 29

Spamming Spamming is messages that are off-topic or too many posted once to bother
other users.

Includes posting off-topic messages to disrupt discussions, promoting a product, soliciting
donations, advertising a job, or flooding discussions with files, text, or images.

26

Others Others is toxicities that cannot be divided into the types above. Includes messages which are indeed toxicities but hard to be sorted into types above. 2
Non-toxicity Non-toxicity is threads that do not have any toxicities mentioned above. Includes messages that are friendly, welcoming, respectful, technical, and general, and do

not lead to bad feelings.
5,057

of explicit profanity (e.g., the dirty words) exceeds 20% in
discussion or when it contains evident malicious intent, as
illustrated in the dialogue example in Fig. 3.

i’m not	sure	why	my	vsc is	being	an	insufferable	piece	of	shit	rn
every	other	IDE:	*works	completely	fine*
VSC:	*Screw	you,	I’m	out*

D1
D2
D1

Developer	ID Session	message

Fig. 3. Instance of toxicity that can be categorized as Rudeness.Harassment. Harassment involves directing intense malice
and offensive behavior towards a specific individual or group,
going beyond mere rudeness. It encompasses actions such as
discrimination, insults, and the use of sexual language, as
demonstrated in the dialogue example Fig. 4, which includes
toxic remarks implying gender discrimination. We define the
scope of harassment based on our assessment with the specific
details provided in Table II. It is important to note that ha-
rassment is considered a more severe category than rudeness.
Therefore, The priority of Harassment is higher than that of
Rudeness in our annotation.

Look	at	all	the	masses	in	the	stands
No,	Shady	man,	don't	massacre	the	fans
@D1	That's	a	very	misogynistic	song	you	are	referencing	there.

D1
D1
D2

Developer	ID Session	message

Fig. 4. Instance of toxicity that can be categorized as Harassment.

Argument. The strong interactive conversations between users
also lead to friction and conflict. When inspecting the discus-
sion threads, we do come across an instance where a heated
argument between two users resulted in one person perma-
nently leaving the chatroom. Thus, disharmonious conflicts
could lead to the loss of participants. Furthermore, we also
observe that not all conflicts necessarily involve the use of
explicit profanity, highlighting the need to consider the overall
conversation (i.e., with the comprehensive contexts) to assess
the occurrence of conflicts. We only label discussion threads
as toxic when extreme disputes arise due to differing views,
as demonstrated in the dialogue example in Fig. 5.
Criticism. In open-source chatrooms, users often comment on
open-source software. Most of these evaluations are impartial,
constructive, and helpful, while a minority of individuals
simply make derogatory and dismissive remarks like calling
certain software shit or using harsh language that is not easily
accepted by others. The latter, to some extent, constitutes
malicious criticism, which is detrimental to the development
of open-source chatrooms. Therefore, we categorize such
instances as a form of toxicity, as shown in Fig. 6.

I	have	developed	a	face recognition	model.	for	local	testing	the	
model	is	loaded	for	each	query
but	I	need	to	serve	multiple	query	at	a	same	time	withoout
reloading	the	model	
how	can	that	be	possible
Facial	recognition	that's	BS	@D1 no	programmer	would	visit	this	
place	for	help.	They'd	be	willing	to	give	help
@D2	you	are	assuming	he	is	a	programmer	by	trade,	there	are	
many	data	scientists	and	others	who	have	worked	with	the	open	
source	tools	to	create	models	but	don't	understand	how	to	apply	
those	in	a	programmatic	fashion	to	other	problem	domains
@D3 your	Point?	If	he/she	worked	on	machine	learning	they'd	
understand	the	math	and	programming	involved	with	making	a	
facial	recognition	system.	Those	aren't	easy	if	he's	trying	to	Build	
his	own	version	of	TRIPWIRE	I	wish	him	the	best	of	luck	
@D3 this	wasn't	your	argument	to	try	and	solve
not	sure	it	was	an	argument	in	the	first	place?
you	were	being	rather	degrading	and	confrontational	and	I	was	
simply	trying	to	figure	out	why
@D3	tripwire	is	based	off	a	facial	recognition	algorithm	that	
marks	a	person	if	they're	eliciting	suspicious	behavior	and	what's	
the	issue	with	being	degrading,	that's	how	I	became	good	at	
programming.	Someone	criticizes	my	code	I	make	it	better	

D1

D1

D1
D2

D3

D2

D2
D3
D3

D2

Developer ID Session message

Fig. 5. Instance of toxicity that can be categorized as Argument.

ok	but	tkinter is	very	complicated	to	use
for	gui
I	used	Tkinter once	and	it	was	terrible	indeed
yeah	i used	it	several	times	&	it	sucks	&	i can't	find	any	other	
alternative
i guess	i have	to	work	with	tkinter somehow

D1
D1
D2
D1

D1

Developer	ID Session	message

Fig. 6. Instance of toxicity that can be categorized as Criticism.

Complaint. Complaint is chosen to complement Criticism.
When checking the threads, we find that while some messages
may not be harshly worded, they still exhibit a certain degree
of dissatisfaction and other negative sentiment to somebody
or something without any constructive content, as seen from
the dialogue example in Fig. 7. The toxicity of this type
of thread is much lower compared to Criticism, but it still
probably brings a negative impact. After careful consideration,
we decide to label such threads as a form of toxicity as well.

don't	you	hate	it	when	you	try	to	help	someone	and	they	don't	
even	tell	you	to	eff	off?	Do	I	come	across	as	rude	or	
something?	:smile:	
it	happens
Too	frequently.	By	the	way,	Happy	New	Year.
to	you	too
sometimes	people	just	get	busy	or	they	find	the	solution	and	off	
they	go	:P
They	come	and	get	what	they	want	and	leave	courtesy	out	the	door.	
Damn	kids	:smile:	

D1

D2
D1
D2
D3

D1

Developer	ID Session	message

Fig. 7. Instance of toxicity that can be categorized as Complaint.

Command/Arrogance. The rationale for this category is
generally from [2]. They proposed Entitled and Arrogant
comments are common forms of toxicity. Our research also



validates this conclusion. It often occurs among users who
are prone to answer questions. Certain individuals, consider-
ing themselves experienced, tend to express authoritarian or
directive statements rather than offering advisory opinions, as
illustrated in the dialogue example in Fig. 8. This can lead to
a sense of arrogance among other users and make the content
difficult to accept. Generally, this type of toxicity is subtle and
does not involve specific characteristic language. It requires the
comprehensive context in the thread to determine whether the
speaker’s tone exhibits arrogance.

Anybody	online?
I	think	there's	more	people	interested	in	webdev than	
programming	so	that's	why	python	is	empty

D1
D2

Developer	ID Session	message

Fig. 8. Instance of toxicity that can be categorized as Command/Arrogance.

Spamming. Spamming is a frequent source of toxicity in on-
line chatrooms. It has a variety of forms, but the key to it is off-
topic. Amount of off-topic messages can impede meaningful
and effective conversations, and hide valid information. One
of the typical examples is advertisements, which can evoke a
sense of aversion among users, as presented in the dialogue
segment in Fig. 9. In developer chatrooms, another type of
spamming can also cause users to feel uncomfortable. Instead
of making regular inquiries, some users inundate the chatroom
with an excessive number of images or text to describe the
issues they encountered, sometimes resulting in a flooding
effect. Most importantly, spamming is difficult to discern from
individual sentences and often requires considering the thread
context and topic to make an accurate judgment.

Silence
I	silence	you]
I	silence	you	all
@D3 checkout	@D1
@D2 hey
I	don't	know	what's	up	with	that
@D2 just	kidding
@D1 Please	stop	spamming	the	room.	Please	review	our	code	of	
conduct	is	available	at	https://code-of-conduct.freecodecamp.org/.
@D3 ,	I	silence	you.	Silence.	I	silence	you	all.	ok	ok	thatwas the	last	
time,	i won't	insert	nonsense	messages.	promise.

D1
D1
D1
D2
D3
D3
D1
D3

D1

Developer	ID Session	message

Fig. 9. Instance of toxicity that can be categorized as Spamming.

D. Analysis of Toxicity
When building the taxonomy of toxicity, we find that there

are some intersection relationships between different cate-
gories, which aligns with the study of [2]. Table II illustrates
that the total support for all categories exceeds the number
of samples, indicating overlaps. There are some findings:
Firstly, we observe overlaps between Rudeness and Criticism
or Complaint, where Criticism is defined as severe Complaint.
Notably, Rudeness has a higher proportion within Criticism
(73.68%) than within Complaint (less than 50%). This aligns
with our expectations. Additionally, minimal overlaps (only
one respectively) are found among Rudeness, Harassment,
and Argument, suggesting that not all arguments necessarily
involve extreme rudeness. Finally, minor overlaps are observed
between categories like Criticism and Command/Arrogance,
or Argument and Command/Arrogance. While our goal is to
classify toxicity across different attributes, real-world instances

can be complex, often exhibiting multiple features that meet
criteria for various categories, leading to multi-label scenarios.

Fig. 10. Percentage of toxicity per type per detector.
Based on manual thread labeling, we further analyze the

performance of existing detectors across different toxicity
types (as shown in Fig. 10) to understand their shortcomings.
Overall, Command/Arrogance and Spamming exhibit lower
coverage rates due to their less apparent characteristics at
the sentence level. Conversely, Rudeness, Harassment, and
Criticism demonstrate higher coverage rates, likely due to their
frequent use of explicit language. However, not all threads in
the Argument category contain explicit language, highlighting
the need to consider user interactions at the thread level. De-
tector BERT4SentiSE shows high coverage across toxicities,
supporting our assumption that toxicity often involves negative
emotions. Additionally, All the detectors follow the pattern that
higher levels of profanity are more likely to be detected.
E. Trigger of Misidentification

For these sentence-level detectors, we carry out a thread-
level analysis to investigate the triggers behind their misclas-
sifications. In Table. III, we calculate the ratio of false positive
(FP) to positive (P) of each detector. All detectors show a
high rate of misclassification in Toxicity, with the lowest one
reaching 0.672, while the highest one reaches as high as 0.970.
To investigate the triggers of misclassification and potential
solutions, we conduct an analysis on samples that are wrongly
detected as FP by the existing sentence-level detectors.

TABLE III
THE LABELING DETAILS AND THE RATIO OF FP TO P OF EACH DETECTOR

Detector Toxicity Labeled Ratio of FP to P

BERT4SentiSE 77 2,594 0.970
Regex 57 262 0.782
STRUDEL 28 169 0.834
MAX Classifier 43 179 0.760
PAPI 38 116 0.672

We utilize the same card sorting method [30] as used in
establishing the toxicity taxonomy to analyze the triggers,
and the process is consistent. Finally, we obtain five types of
triggers and the main toxicity detectors influenced by them,
as shown in Table. IV:
Abbreviation. This trigger only appears in the MAX Clas-
sifier, suggesting a unique case where users commonly use
abbreviations during chat, leading to detector confusion.



TABLE IV
TRIGGERS OF MISCLASSIFICATION AND MAIN INFLUENCED DETECTORS

Type Main Detector Example

Abbreviation MAX Classifier @A ok chcking. @B FYI.
Negativity BERT4SentiSE, STRUDEL how do we avoid a file from being edited by

user or deleted by mistake ?
Tone ALL I know going straight from front end to

generator-angular-fullstack was confusing as
hell for me at first and I think going straight
to django might be the same for newbies

Humility ALL Thanks Lucas:). I know this looks silly to you,
your probably a master but this stuff is nerve
racking in the beginning lol

Technical Terms MAX Classifier, Regex hi all, looking for help with POST for JSON
API on python. loads and dumps

Negativity within Sentence. In sentence-level sentiment anal-
ysis task, confusion and frustration is always labeled as
negative sentiment, which we believe is the reason why
BERT4SentiSE and STRUDEL (merging sentiment analysis
methods in it) misclassify messages containing negative word
as toxicity. It can be solved by incorporating thread-level
context information.
Tone. While annotating toxicity, we find that messages con-
taining profanity like “shit” or “suck” may not necessarily
be toxic. In some cases, these words are used to express
strong emotions rather than intentionally attacking someone
or something. Thus, we attribute this misclassification to tone.
We believe that considering more context, particularly at the
thread level, can help resolve this issue.
Humility. Another major cause of misclassification in toxicity
involves words like “stupid” or “fool”, which may be consid-
ered insults when directed towards others but can also be used
self-deprecatingly by individuals when asking questions. In-
correctly identifying the intended target of these expressions is
a significant factor contributing to misclassification. Detection
methods require comprehensive context and understanding of
the speaker’s role in the conversation (i.e., the asker or the
respondents) to accurately determine the intended subject of
such words and resolve this issue.
Technical Terms. SE-specific technical terms having a neg-
ative impact on the performance of toxicity detectors have
been raised in previous studies [9]. We regard this trigger as
one type of out-of-vocabulary (OOV) problem [32], [33]. This
trigger mainly appears in general detectors, which motivates
the need for SE-specific toxicity detectors.

All the above analysis results have provided us with insights
on how to establish a more effective toxicity detector.

IV. AUTOMATED THREAD-LEVEL TOXICITY DETECTION

In this study, we propose a thread-level toxicity detector
to automate the detection of toxicity in developer chatrooms.
The detector is composed of three main components: a text se-
mantic encoder, a large language model (LLM) that facilitates
the examination of negative sentiments within texts, and an
encoder for processing non-textual features (see Fig. 11). We
follow Pan et al. [14] to preprocess each thread by replacing
special tokens (e.g., code snippet) and merging consecutive
messages from the same user. Due to the extremely limited
number of available toxic samples, we focus on identifying
toxicity without categorizing it into specific types. The fine-
grained taxonomy built in Section III is primarily utilized to

gain a comprehensive understanding of the characteristics of
toxicities in developer chatrooms and the shortcomings of the
existing sentence-level detection techniques [3], [9], [12].

A. Textual Features
To extract textual features at the thread level, the

Encodertext first encodes each message within the thread and
then combines the embeddings of messages to get the embed-
ding representing the entire thread. At the sentence/message
level, we leverage BERT [20], one of the most widely used
pre-trained models (PTMs) to encode each message within
the thread. BERT is pre-trained and can be adapted to various
downstream tasks through finetuning. In our case, considering
the limited data available, BERT enables us to reduce training
efforts and achieve more satisfying results. At the thread level,
we choose Bidirectional Long Short Term Memory Network
(Bi-LSTM) [34] to capture the contextual information of the
entire discussion thread from both forward and backward
directions. We concatenate the features from both directions
and obtain the final textual feature through MAX pooling.

Another challenge we face is the severe class imbalance is-
sue of the dataset, where Toxicity samples, serving as positive
instances, account for less than 0.2% of the overall data. To
address this problem, we adopt the online negative sampling
(ONS) [35], [36] strategy during training. Specifically, it in-
volves dynamically re-undersampling negative samples in each
training epoch while retaining all positive data. Compared with
the traditional undersampling technique (which only under-
samples the negatives once before the training starts), online
negative sampling allows us to better utilize the abundant
negative samples, enabling the model to learn from a larger
pool of unseen negative instances while maintaining stable
positive instance learning.

B. Negative Sentiment Features from LLM
LLMs like LLaMA [37] and GPT [38] have shown promis-

ing performance regarding generation-based tasks. However,
their direct applicability to specific classification tasks remains
somewhat constrained. Transferring new classification criteria
to existing LLMs poses a challenge, making them less suitable
for direct task completion [39], [40]. Nonetheless, extant
studies have highlighted the exceptional capabilities of LLMs
in sentiment analysis [39], and the annotation of negative
sentiments proves instrumental in unearthing potential toxicity.
Thus, our approach does not entail directly applying LLMs to
detect the presence of toxic threads. Instead, we utilize them to
analyze the discussion texts and provide insights into potential
negative sentiments. To obtain better responses from LLM, we
design a prompt.

Prompt Design. Prompt has to include both the instructions
of the toxicity detection task and the input thread. We design
the prompt (see Fig. 12) following the handbook from Ope-
nAI [41]. Specially, we adopt two prompts in total. The first
prompt, as shown in Prompt 1 of Fig. 12, is used to capture
the potential negative sentiments contained in the thread. The
second prompt, depicted in Prompt 2 of Fig. 12, is used to
extract the number of SE-related words in the threads, serving
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Fig. 11. Overview of automated toxicity detection.

Prompt 1:
System template: Can you tell me what type of negative 
sentiment the following dialogue from developer chatroom 
related to {project} has? Please answer with just one word.
Human template: {thread}

Prompt 2:
System template: Can you tell me how many words related 
to Software Engineering domain in the following dialogue? 
Please answer with just one Arabic numerals.
Human template: {thread}

Thread example:
D1: I have also applied for a CS degree . fingers crossed 
EMOJITAG
D2: *rejected* EMOJITAG
D1: ?. MENTIONTAG go to your cave troll
D2: lol

Response from ChatGPT:
Prompt 1: sarcastic
Prompt 2: 1 Replacement	of	special	tokens

merging	consecutive	messages

Fig. 12. Prompt template for the LLM.

as one of the non-textual features (see Section IV-C). The
placeholders {project} and {thread} can be replaced with
specific project and discussion thread, respectively. The input
format of the thread follows the example illustrated in Fig. 12.

As the outputs obtained from LLM are in text format, we
utilize BERT to transfer the responses of the negative senti-
ment query into embeddings (which will be further combined
with embeddings of other types of features), annotated as
Encodersentiment.

C. Non-textual Features

We mainly follow the non-textual features proposed by
Pan et al. [14], which include four categories: length features,
structural features, participant features, and special-token
features. For each category of non-textual features, three per-
spectives are considered: the whole thread, the first message,
and the activities of the asker (please refer to [14] for more
details). However, we have made specific adaptations to align
better with our task. Specifically, we introduce two newly
designed special-token features. One of these new features
quantifies the number of approvals, while the other assesses
the usage of emojis. We believe these two special tokens
offer valuable insights for our task. Furthermore, the number
of SE-related words obtained from LLM in Section IV-B is
also included as a non-textual feature. This non-textual feature
primarily serves toxicity detection targeting the Spamming
category, which helps to determine if the discussion is closely

related to the technical topics. For encoding non-textual fea-
tures, we have adopted a concise Encodernon−text (i.e., a
fully connected feed-forward network with one hidden layer)
due to the computability of numerical features themselves.
D. Incorporating All Features

Once we have obtained three types of features, we combine
them all together for the final toxicity detection. Denote the
embedding from the text encoder as etext, the embedding rep-
resenting negative sentiment as esentiment, and the embedding
of non-textual features as enon−text. These three embedding
features are first concatenated to obtain a comprehensive repre-
sentation of the thread e = [etext

⊕
esentiment

⊕
enon−text]

and further passed through a nonlinear projection header for
classification. Finally, a softmax layer is applied to obtain the
binary prediction results of the model (i.e., Toxicity or Non-
toxicity). We employ cross-entropy as the loss function and
adjust the class weights (i.e., with a ratio of pos:neg=3:1) to
address the data imbalance issue.

V. EXPERIMENTS AND RESULTS

In this section, we present detailed experimental settings,
introduce the research questions, and provide answers to each
question based on the experimental results.

A. Experiment Setting
Testing Scenarios. We use two scenarios as follows:
• 5-fold cross-validation. The dataset containing all samples

is divided into five equally sized subsets, maintaining the
original class distribution, wherein each of the five rounds,
four of them are used as the training set, and the remaining
one is used as the testing set.

• Cross-chatroom-validation. For each chatroom in the
dataset, we utilize all samples from it as the testing set,
while using all samples from the remaining chatrooms as the
training set, in order to evaluate the model’s generalization
performance when faced with previously unseen chatrooms.

Implementation Details. We select ChatGPT with gpt-3.5-
turbo from the available large language models (LLMs) due
to its proven superior performance. Using the chat comple-
tion API [41], we provide prompts and receive responses.
To ensure stability, we configure the parameters as follows:
temperature = 0 and n = 1. This prioritizes accurate replies
over creative ones, generating a single result each time. We



TABLE V
THE DETAILED PERFORMANCE OF OUR APPROACH AND BASELINES ON

TOXICITY UNDER CROSS-VALIDATION SCENARIO
Detector Toxicity Non-toxicity Overall
Name P R F1 P R F1 Acc
BERT4SentiSE 0.030 0.761 0.057 0.991 0.502 0.667 0.507
Regex 0.218 0.565 0.314 0.991 0.959 0.975 0.952
STRUDEL 0.164 0.275 0.203 0.985 0.972 0.979 0.959
MAX Classifier 0.242 0.424 0.306 0.988 0.973 0.981 0.962
PAPI 0.328 0.374 0.346 0.988 0.985 0.986 0.973
Our work 0.618 0.503 0.546 0.990 0.993 0.992 0.983

use pre-trained BERT [20] base model from HuggingFace’s
Transformers library [42] and follow the suggestion by Devlin
et al. [20] to set the learning rate (lr) as 2e-5. To mitigate data
imbalance, we apply the Online Negative Sampling (ONS)
strategy with a sampling ratio of neg:pos=3:1, which has been
regarded as optimal for training network [35], [36]. During the
training process, we set dropout to 0.1 to avoid over-fitting. We
use AdamW as the optimizer and have lr of 1e-4 for modules
besides BERT. The learning rate linearly warm-ups over the
first 150 steps and then decays in the remaining steps. Finally,
An early stopping with patience of 30 epochs is set.
Baseline. Since thread-level toxicity detection methods
haven’t been explored before, we use sentence-level methods
as baselines for comparison. These baselines include Regular
Expression, Perspective API, MAX Toxic Comment Classifier,
STRUDEL, and BERT4SentiSE (as discussed in Section II-A).
To ensure a fair comparison with thread-level approaches
and preserve the characteristics of sentence-level methods, we
refrain from modifying them to operate at the thread level.
Instead, we maintain the strategy of labeling a thread as toxic
if any sentence within it is marked as toxic.
Metrics. We evaluate the performance of all approaches using
commonly used classification evaluation metrics, including
precision, recall, and F1-Score. While toxic samples are our
primary detection target, metrics related to non-toxic samples
can also reflect the performance of the approaches to some ex-
tent. Therefore, we evaluate the approaches in both categories.

B. Research Questions & Experiment Results
RQ1: Is our proposed approach effective in accurately
detecting toxicity at the thread level?
Motivation. Existing toxicity detection methods mainly op-
erate at the sentence level (Section II-A). As the first to
focus on thread-level detection, we compare our approach
with baselines to assess the accuracy of coarser granularity
detection. Additionally, the generalization capability of models
in unknown chatrooms presents a challenge, so we evaluate
performance in cross-chatroom scenarios.
Results. Tab. V presents the results of the 5-fold cross-
validation scenario with the best result for each metric high-
lighted in bold. The BERT4SentiSE method achieves an ex-
tremely high recall value because it detects a broader range of
negative sentiment than toxicity, albeit at very low precision.
The second highest recall value is attained by the Regex
method, which, however, lacks an understanding of the overall
sentence semantics, leading to a lower precision value. The
performance of the SE-specific method STRUDEL is also un-
satisfactory. Conversely, the general toxicity detection method

TABLE VI
THE DETAILED PERFORMANCE OF OUR APPROACH AND BASELINES ON

TOXICITY UNDER CROSS-CHATROOM SCENARIO
Detector Angular Node.js Python
Name P R F1 P R F1 P R F1
BERT4SentiSE 0.030 0.952 0.058 0.030 0.750 0.057 0.030 0.700 0.057
Regex 0.213 0.619 0.317 0.190 0.550 0.282 0.231 0.550 0.325
STRUDEL 0.119 0.238 0.159 0.147 0.250 0.185 0.194 0.300 0.235
MAX Classifier 0.176 0.429 0.250 0.312 0.500 0.385 0.250 0.400 0.308
PAPI 0.184 0.333 0.237 0.370 0.500 0.426 0.412 0.350 0.378
Our work 0.476 0.476 0.476 0.647 0.550 0.595 0.419 0.433 0.426

PAPI performs best in baselines, achieving an F1-score (F1)
of 0.346. However, our approach demonstrates outstanding
performance compared to all the baselines. Compared to the
best-performing baseline, our method shows an improvement
of 88.4% in precision, 34.5% in recall, and 57.8% in F1-
score (F1). The surge in precision showcases our method’s
improved ability to differentiate toxic and non-toxic instances,
minimizing false positives. The significant increase in recall
indicates our method’s broader coverage of toxicity compared
to existing approaches.
In the cross-chatroom scenario, we select Angular, Node.js,
and Python chatrooms as target chatrooms respectively. Due to
the limit of the dataset, when using the Python chatroom as the
test set, the number of samples in the test set is more than in
the training set, leading to a lack of training samples. However,
experimental results demonstrate strong performance across
all three chatrooms, consistently outperforming the baselines.
Notably, the detection efficacy for the Node.js chatroom sur-
passes even that of the cross-validation scenario. While the
performance in the Python chatroom is comparatively lower,
there is a noticeable improvement over the baseline.
RQ2: Do the handcrafted non-textual features and neg-
ative sentiment analysis results from LLM enhance the
performance of the thread-level toxicity detection method?
Motivation. In toxicity detection, we include non-textual
and negative sentiment features from LLM. To assess their
effectiveness, we conduct ablation experiments, selectively
removing either non-textual or negative sentiment features.
Other experimental settings align with those described in
Section V-A.
Results. Firstly, we conduct an ablation study on non-textual
features under the cross-validation scenario, and the results are
shown in the Ours-no-nontext row of Tab. VII. Removing non-
textual features results in a significant decrease in all Toxicity
metrics, with precision, recall, and F1-score (F1) dropping
by 17.3%, 21.5%, and 22.9%, respectively. This decline is
evident even in the Non-toxicity category, which initially has
high metric values. Next, we conduct ablation experiments
on non-textual features under the cross-chatroom scenario
and the results are presented in the Ours-no-nontext row of
Tab. VIII. The results vary from different target chatrooms.
When the target chatroom is Angular, the absence of non-
textual features leads to a significant decline of over 30% in
all performance metrics. When the target chatroom is Node.js,
precision decreases while recall increases. Even considering
the slight decrease in the F1-score (F1), the absence of non-
textual features still results in an overall reduction in detection
performance. When the target chatroom is Python, the metrics



TABLE VII
THE DETAILED PERFORMANCE OF OUR APPROACH AND ABLATION

STUDIES ON TOXICITY UNDER CROSS-VALIDATION SCENARIO
Detector Toxicity Non-toxicity Overall
Name P R F1 P R F1 Acc
Our work 0.618 0.503 0.546 0.990 0.993 0.992 0.983
Ours-no-nontext 0.511 0.395 0.421 0.988 0.991 0.990 0.979
ours-no-sentiment 0.534 0.359 0.422 0.987 0.993 0.990 0.981

TABLE VIII
THE DETAILED PERFORMANCE OF OUR APPROACH AND ABLATION

STUDIES ON TOXICITY UNDER CROSS-CHATROOM SCENARIO
Detector Angular Node.js Python
Name P R F1 P R F1 P R F1
Our work 0.476 0.476 0.476 0.647 0.550 0.595 0.419 0.433 0.426
Ours-no-nontext 0.333 0.286 0.308 0.520 0.650 0.578 0.409 0.450 0.429
ours-no-sentiment 0.500 0.571 0.533 0.458 0.550 0.500 0.104 0.217 0.141

with or without non-textual features are very close, indicating
minimal impact on the detection results.
When dealing with chatrooms where relevant information has
been learned, the non-textual features show a more pronounced
impact. When facing entirely new chatrooms, the impact is
slightly less pronounced. Nevertheless, they still manage to
maintain a stable level of detection effectiveness. Therefore,
the inclusion of non-textual features proves to be effective.
Secondly, we conduct an ablation study on the negative senti-
ment features from LLM under the cross-validation scenario,
and the results are presented in the ours-no-sentiment row
of Tab. VII. The experimental results closely mirror those
of the ablation study on non-textual features. However, in
comparison, there is a more substantial decrease in recall, indi-
cating that these features are more instrumental in identifying
toxicity. However, under the cross-chatroom scenario as shown
in Tab. VIII, the ablation results of negative sentiment features
from LLM show a stark contrast to non-textual features. It
leads to a decrease in detection performance in the Angular
chatroom but triples the results in the Python chatroom.

VI. RELATED WORK
Toxicity detection is crucial for maintaining effective and

harmonious online discussions. Existing studies primarily
focus on platforms like Twitter [43], Facebook [44], and
Wikipedia [11], employing rule-based, traditional machine
learning, and deep learning approaches. Early methods by
Burnap et al. [28] used Bayesian Logistic Regression, Random
Forest Decision Tree, and Support Vector Machine on Twitter.
Del Vigna et al. [44] explored hate speech on Facebook using
neural networks and LSTM. Perspective API demonstrated
the best detection performance by leveraging pre-trained mod-
els [11]. However, these methods struggle with understanding
professional expressions in developer communication, leading
to reduced accuracy in capturing intentions.

Toxicity detection research in the Software Engineering
(SE) domain is relatively limited, with a focus on the GitHub
platform. Raman et al. [9] introduced STRUDEL, the first SE-
specific toxicity detector, using domain adaptation to enhance
classification accuracy. Sarker et al. [45] demonstrated im-
proved performance of existing detectors after retraining on
SE domain datasets. Ferreira et al. [4], [8], [12] conducted
in-depth analysis on GitHub Issues/Comments and Code Re-
views, proposing SE-specific toxicity detection methods based
on BERT, which outperformed traditional methods and vali-
dated the effectiveness of pre-trained models in this domain.

Research on real-time Chat platforms like Gitter is limited,
with a focus on sentence-level analysis using general crite-
ria [3], [45]. Gitter chatrooms foster free expression, often
involving multi-turn Q&A interactions, providing complete
context and intentions for toxicity detection. Adopting the
thread as the research granularity, we develop a toxicity
taxonomy tailored to conversational patterns in developer
chatrooms. Our approach incorporates thread structure infor-
mation features into toxicity detection, validated on our self-
constructed dataset, demonstrating its effectiveness.

VII. THREATS TO VALIDITY
Threats to Internal Validity. Due to the high cost of manual
annotation, building a large-scale labeled dataset is challeng-
ing. To ensure dataset representativeness, we select diverse
chatrooms with different topics and scales. During annotation,
we manually correct potential inaccuracies in thread disentan-
glement and employ two annotators who achieve a Cohen’s
Kappa coefficient of 0.75 for high agreement. To mitigate
biases from a small dataset, we use 5-fold cross-validation
in our experiments. To improve detection results, our method
relies on negative sentiment from LLMs. We choose ChatGPT,
known for superior sentiment analysis performance [46]. To
enhance response stability, we follow official guidance [41],
experiment with prompt formats, and identify the most effec-
tive template (Fig. 12).
Threats to External Validity. We address two threats to
the generalizability of our approach. The first is to predict
toxicity in unknown developer chatrooms. We conduct exper-
iments and prove the strong performance of our approach,
outperforming the baselines by a significant margin. The other
is that we only involve Gitter as the data source. However,
Gitter represents a significant platform among developer online
chatroom platforms with its highly real-time and interactive
characteristics typical of such communication modes. So the
method proposed based on Gitter demonstrates applicability
across various developer online chatroom platforms.

VIII. CONCLUSION
In this paper, we thoroughly investigate toxic discussions

in developer chatrooms, establishing a thread-level toxicity
taxonomy and creating a dataset of 5,158 samples. We an-
alyze misclassification triggers in sentence-level methods and
propose an automated toxicity detection approach combining
textual, non-textual, and negative sentiment features from
LLM. Our method outperforms baselines with precision, re-
call, and F1-Score values of 0.618, 0.503, and 0.546 respec-
tively, performing well in cross-validation. Ablation experi-
ments confirm the effectiveness of non-textual and negative
sentiment features, enhancing robustness and performance.
Future work includes collecting more threads from different
chatrooms for generalizability and classifying toxicities into
specific categories for better user insights.
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